```
SCHEDULE
    Date Topic
1. Tue 14.09. Lec-1: Introduction
2. Fri 17.09. Lec-2: Crystal Chemistry & Tolerance parameter
3. Fri 17.09. EXERCISE 1
4. Tue 21.09. Lec-3: Crystal chemistry & BVS
5. Fri 24.09. Lec-4: Symmetry & Point Groups
6. Fri 24.09. EXERCISE 2
7. Tue 28.10. Lec-5: Crystallography & Space Groups
8. Fri 01.10. Lec-6: XRD & Reciprocal lattice
9. Fri 01.10. EXERCISE 3
10. Tue 05.10. Lec-7: ND & GI-XRD
11. Fri 08.10. Lec-8: Rietveld
12. Fri 08.10 EXERCISE 4: Rietveld
13. Tue 12.10. Lec-9: Synchrotron rad. & XAS & RIXS
14. Fri 15.10. Lec-10: EXAFS & Mössbauer
15. Fri 15.10. EXERCISE 5
16. Tue 19.10. Seminars: XPS, FTIR, Raman, ED, HRTEM, SEM, AFM
17. Fri 22.10. Lec-11: XRR
18. Fri 22.10. EXERCISE 6: XRR
EXAM: Friday, Oct. 29th, 2021
```


LECTURE 5: CRYSTALLOGRAPHY BASICS

- From "point-like" molecules to 3D crystals
- Translation in 3D crystals \rightarrow NEW SYMMETRY OPERATIONS (glide planes \& screw axes)
- From Point groups to Space groups
- Crystal lattice, lattice points \& unit cell
- International Tables of Crystallography

Symmetry elements (Schönflies / Hermann-Mauguin)

RECALL FROM PREVIOUS LECTURE:

Point/Molecular symmetry \longrightarrow One point remains unchanged

Identity E

Symmetry/inversion center i/ $\mathbf{1}^{-}$
Rotation axis $C_{n} / 1,2,3, \ldots$
Reflection/mirror plane σ / m
Improper rotation axis $S_{n} /(\overline{1}, \overline{2}), \overline{3,}, \overline{4}, \overline{6}$

NOTE:

- Inproper rotation axis $1{ }^{-}$and inversion center 1 are equivalent
- Mirror plane m and inproper rotation axis 2 are equivalent

FROM MOLECULES TO CRYSTALS

There are two things which make macroscopic (infinite) crystals different from discrete molecules in terms of symmetry: Space-filling \& Translation

Space-filling

- Macroscopic crystals need to continuosly fill the space
- For molecules 5 -fold rotation is possible, but not for crystals (except in quasicrystals)

Translation in crystals

- Translation: move from one point to another (the entire object)
- This does not exist in molecules, but is the essence of macroscopic crystals exhibiting long-range order
- Combining translation with other symmetry operations/elements \rightarrow new symmetry operations/elements (not included in point groups): glide planes \& screw axes

Translation

Additional translation symmetry elements in INFINITE LATTICES

Translation

- Movement from one point to another point

Screw axis

- Rotation plus translation
$n_{m}\left(2_{1}, 3_{1}, 3_{2}, 4_{1}, 4_{2}, 4_{3}, 6_{1}, 6_{2}, 6_{3}, 6_{4}, 6_{5}\right)$
For example: 2_{1} : rotation 180° and translation $1 / 2(\mathrm{~m} / \mathrm{n})$

Glide plane

- Reflection against a mirror plane plus (half) translation parallel to the plane

Axis glide plane:
Diagonal glide plane:
a, b, c (translations by $1 / 2 a, 1 / 2 b, 1 / 2 c$ to each glide plane direction)
$n[1 / 2(a+b), 1 / 2(b+c), 1 / 2(c+a)]$
$d[1 / 4(a+b), 1 / 4(b+c), 1 / 4(c+a)]$ (so-called diamond glide plane)

GLIDE PLANE c ($\perp \mathrm{b})$

Reflection (m) through ac-plane, followed by (half) translation (t) along c-axis

Rotation (c) followed by translation (t)

SCREW AXIS

$$
x, y, z->-x,-y, z+1 / 2
$$

Table 1.1 Symmetry elements of crystal point groups.

System	Point group symmetry		Symmetry elements	$\begin{array}{\|c} \text { Number } \\ \text { of } \\ \text { opera- } \\ \text { tions } \end{array}$
	S	H/M		
Triclinic	$\begin{aligned} & C_{1} \\ & C_{i}=S_{2} \end{aligned}$	$\frac{1}{1}$	$\begin{aligned} & I=C_{1} \\ & I, i\left(=S_{2}\right) \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
Monoclinic	$\begin{aligned} & C_{2} \\ & C_{S}=C_{1 \mathrm{~h}}=C_{1 \mathrm{v}} \\ & C_{2 \mathrm{k}} \end{aligned}$	$\begin{aligned} & 2 \\ & m \\ & 2 / m \end{aligned}$	$\begin{aligned} & I, C_{2} \\ & I, \sigma \\ & I, C_{2}, \sigma_{n}, I \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 4 \end{aligned}$
Orthorhombic	$\begin{aligned} & C_{2} \\ & D_{2} \\ & D_{2 k} \end{aligned}$	$\begin{aligned} & m m 2 \\ & 222 \\ & \mathrm{mmm} \end{aligned}$	$\begin{aligned} & I, C_{2}, 2 \sigma \\ & I, 3 C_{2} \\ & I, 3 C_{2}, 3 \sigma, i \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 8 \end{aligned}$
Tetragonal	C_{4} S_{4} D_{4} $C_{4 v}$ $C_{4 \mathrm{~b}}$ $\mathrm{C}_{2 \mathrm{t}}$ $D_{2 \mathrm{k}}$ $D_{4 \mathrm{k}}$	4 4 422 4 mm 4/m $\overline{4} 2 \mathrm{~m}$ $4 / \mathrm{mmm}$	I, C_{4} I, $S_{4}\left(=C_{2}\right)$ I, $C_{4}\left(=C_{2}\right), 2 C_{2}^{\prime}, 2 C_{2}^{\prime}$ I, $C_{4}, 2 \sigma_{v}, 2 \sigma_{G}$ $I, C_{4}\left(=S_{4}\right), \sigma_{k}, i$ $I, S_{4}\left(=C_{2}\right), 2 C_{2}^{\prime}, 2 \sigma_{4}$ $I, C_{4}\left(=S_{4}\right), 2 C_{2}^{\prime}, 2 C_{2}^{\prime}$,	$\begin{gathered} 4 \\ 4 \\ 8 \\ 8 \\ 8 \\ 8 \\ 16 \end{gathered}$
Trigonal	C_{3} $C_{3 i}=S_{6}$ D_{3} $C_{3 v}$ $D_{3 d}$	$\begin{aligned} & \frac{3}{3} \\ & 32 \\ & 32 \\ & \frac{3}{3} m \end{aligned}$	I, C_{3} I, $S_{6}\left(=C_{3}\right), i$ I, $C_{3}, 3 C_{2}$ $1, C_{3}, 3 \sigma_{0}$ $I, S_{6}\left(-C_{3}\right), 3 C_{2}, 3 \sigma_{\mathrm{d}}, i$	$\begin{array}{r} 3 \\ 6 \\ 6 \\ 6 \\ 12 \end{array}$
Hexagonal	C_{6} $C_{3 n}$ D_{6} $D_{3 t}$ $C_{6 n}$ C_{60}. $D_{6 k}$		I, C_{6} I, $S_{3}\left(=C_{3}\right), \sigma_{4}$ I, $C_{6}, 3 C_{2}^{\prime}, 3 C_{2}^{\prime}$ $I, C_{3}\left(=S_{3}\right), 3 C_{2}, 3 \sigma_{n}, \sigma_{n}$ I, $C_{6}\left(=S_{6}\right), \sigma_{k}, i$ I, $C_{6}, 3 \sigma_{0}, 3 \sigma_{d}$ $I, C_{6}\left(=S_{6}\right), 3 C_{2}^{\prime}, 3 C_{2}^{*}$, $3 \sigma_{v}, 3 \sigma_{d}, \sigma_{k}, i$	$\begin{array}{r} 6 \\ 6 \\ 12 \\ 12 \\ 12 \\ 12 \\ 24 \end{array}$
Cubic	$\begin{aligned} & T \\ & T_{\mathrm{k}} \\ & T_{e} \\ & o \\ & O_{\mathrm{h}} \end{aligned}$	$\begin{aligned} & 23 \\ & m^{3} \\ & 43 m \\ & 432 \\ & m 3 m \end{aligned}$	I, $3 C_{2}, 4 C_{3}$ $I, 3 C_{2}, 4 C_{3}\left(=S_{6}\right), 3 \sigma_{\mathrm{k}}, t$ $I, 3 C_{2}\left(=S_{4}\right), 4 C_{3}, 6 \sigma_{d}$ $I, 3 C_{2}, 4 C_{3}, 3 C_{4}$ $I, 3 C_{2}, 4 C_{3}\left(=S_{6}\right)$, $3 C_{4}\left(=S_{4}\right), 3 \sigma_{\mathrm{n}}, 6 \sigma_{\mathrm{d}}, i$	$\begin{aligned} & 12 \\ & 24 \\ & 24 \\ & 24 \\ & 48 \end{aligned}$

WHAT WE LIKE TO KNOW ABOUT THE CRYSTAL STRUCTURE

CRYSTALLOGRAPHY

- symmetry
- unit cell
- lattice parameters
- number of formula units in unit cell
- space group
- etc.

CRYSTAL CHEMISTRY

- coordination numbers
- coordination polyhedra
- bond lengths/angles
- occupation factors
- etc.

Discussed in Lecture 2!

$$
\mathcal{H g B a}_{2} \mathrm{Ca}_{2} \mathrm{Cu}_{3} \mathrm{O}_{9 \cdot \delta}
$$

CRYSTAL LATTICE

- Regular (infinite 3D) arrangement of lattice points
- Lattice point: consists of one or more atoms (= basis)
- Each lattice point has identical environment + symmetry properties (point group)

UNIT CELL

Choices of
unit cell (in 2D)

- Smallest possible microscopic 3D part of the crystal lattice that repeats itself periodically and completely fills the lattice volume, and is enough to describe the lattice perfectly
- Choice of the unit cell not always unambicious: several possible choices

Each lattice point should be able to be described with the vector $Q_{[u v w]}=u a+v b+w c$, where u, v and w all are INTEGER values

Unit cell: YES

Unit cell: NO

What we need to tell about the UNIT CELL

- Shape \& size of the unit cell plus the atomic positions in the unit cell
- Shape \& size are given by:
- Lattice parameters: a, bja c
- Angles between the axes: α, β ja γ

CLASSIFICATIONS

- "Macroscopic shape of the crystal"
\rightarrow "Point group for the lattice" $\rightarrow 7$ CRYSTAL SYSTEMS (can fill the space without holes; no information of the lattice points/atoms)

CRYSTAL SYSTEM \& LATTICE POINTS (historical importance)

- Combination of crystal system and lattice type $\rightarrow 14$ Bravais lattices
- Lattice type: positions of lattice points (\neq atoms) within the cell considered: primitive (P), body-centered (I), face-centered (F), base-centered ($\mathrm{A} / \mathrm{B} / \mathrm{C}$), rhombohedral (R)

CRYSTAL SYSTEM \& SYMMETRY (most important in crystallography)

- Possible combinations of point symmetry elements (which leave one point fixed)
$\rightarrow 32$ (geometric) cystal classes
\rightarrow describe completely the symmetry of macroscopic crystals
There are an infinite number of three-dimensional point groups, but the crystallographic restriction results in there being only 32 crystallographic point groups.
- Considering also the translational symmetry operations in 3D $\rightarrow 230$ space groups

CRYSTAL SYSTEMS (7)

No information of the positions of atoms

Cubic
$\mathrm{a}=\mathrm{b}=\mathrm{c}$
$\alpha=\beta=\gamma=90^{\circ}$
$\mathrm{NaCl}, \mathrm{MgAl}_{2} \mathrm{O}_{4}$

Tetragonal
$\mathrm{a}=\mathrm{b}$ \# c
$\alpha=\beta=\gamma=90^{\circ}$
$\mathrm{TiO}_{2}, \mathrm{~K}_{2} \mathrm{NiF}_{4}$

Orthorhombic a \# b \# c
$\alpha=\beta=\gamma=90^{\circ}$ $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$

Rhombohedral
$\mathrm{a}=\mathrm{b}=\mathrm{c}$
$\alpha=\beta=\gamma \# 90^{\circ}$ BaTiO_{3} (low-T)

Hexagonal $\mathrm{a}=\mathrm{b} \# \mathrm{c}$
$\alpha=\beta=90, \gamma=120^{\circ}$
LiNbO_{3}

Monoclinic
a \# b \# c
$\alpha=\gamma=90^{\circ}, \beta \# 90^{\circ}$
$\mathrm{KH}_{2} \mathrm{PO}_{4}$

Triclinic
a \# b \# c
$\alpha \# \beta \# \gamma \# 90^{\circ}$

Element	What it does	Possible in crystal system
Identity (1)	-	All
Inversion $(\overline{1})$	Inversion	All
Mirror plane (m)	Mirror	All but triclinic
2- fold rotation (2)	Rotate 180°	All but triclinic
3-fold rotation (3)	Rotate 120°	Trigonal, Hexagonal and Cubic
4-fold Rotation (4)	Rotate 90°	Tetragonal and Cubic
6-fold Rotation (6)	Rotate 60°	Hexagonal

BRAVAIS LATTICES (14)

Positions of lattice sites (not atoms) included

EXAMPLE

- What is the Bravais lattice type of NaCl : Cubic F (basis: $\mathrm{Na}-\mathrm{Cl}$)

Your EXERCISE question

- What is the Bravais lattice type of CsCI

The 32 Point Groups

CRYSTAL CLASSES (32)

1	4	$\overline{3}$	6 mm
$\overline{1}$	$\overline{4}$	32	$\overline{6} m 2$
2	$4 / \mathrm{m}$	3 m	$6 / \mathrm{mmm}$
m	422	$\overline{3} m$	23
$2 / \mathrm{m}$	4 mm	6	$m \overline{3}$
222	$\overline{4} 2 m$	$\overline{6}$	432
mm 2	$4 / \mathrm{mmm}$	$6 / \mathrm{m}$	$\overline{4} 3 m$
mmm	3	622	$m \overline{3} m$

The 32 Point Groups (Schoenflies)

$1\left(C_{1}\right)$	$4\left(C_{4}\right)$	$\overline{3}\left(C_{3 i}\right)$	$6 \mathrm{~mm}\left(\mathrm{C}_{6 \sigma \mathrm{v}}\right)$
$\overline{1}\left(\mathrm{C}_{\mathrm{i}}=\mathrm{S}_{2}\right)$	$\overline{4}\left(\mathrm{~S}_{4}\right)$	$32\left(\mathrm{D}_{3}\right)$	$\overline{6} m 2\left(\mathrm{D}_{3 \sigma \mathrm{~h}}\right)$
$2\left(\mathrm{C}_{2}\right)$	$4 / \mathrm{m}\left(\mathrm{C}_{4 \sigma \mathrm{~h}}\right)$	$3 m\left(\mathrm{C}_{3 \sigma \mathrm{v}}\right)$	$6 / \mathrm{mmm}\left(\mathrm{D}_{6 \sigma \mathrm{~h}}\right)$
$\mathrm{m}\left(\mathrm{C}_{\sigma}\right)$	$422\left(\mathrm{D}_{4}\right)$	$\overline{3} m\left(\mathrm{D}_{3 \mathrm{~d}}\right)$	$23(\mathrm{~T})$
$2 / \mathrm{m}\left(\mathrm{C}_{2 \sigma \mathrm{~h}}\right)$	$4 \mathrm{~mm}\left(\mathrm{C}_{4 \sigma \mathrm{v}}\right)$	$6\left(\mathrm{C}_{6}\right)$	$m \overline{3}\left(\mathrm{~T}_{\mathrm{h}}\right)$
$222\left(\mathrm{D}_{2}\right)$	$\overline{4} 2 m\left(\mathrm{D}_{2 \mathrm{~d}}\right)$	$\overline{6}\left(\mathrm{C}_{3 \sigma \mathrm{~h}}\right)$	$432(\mathrm{O})$
$2 \mathrm{~mm}\left(\mathrm{C}_{2 \sigma \mathrm{v}}\right)$	$4 / \mathrm{mmm}\left(\mathrm{D}_{4 \mathrm{~h}}\right)$	$6 / \mathrm{m}\left(\mathrm{C}_{6 \sigma \mathrm{~h}}\right)$	$\overline{4} 3 m\left(\mathrm{~T}_{\mathrm{d}}\right)$
$\mathrm{mmm}\left(\mathrm{D}_{2 \sigma \mathrm{~h}}\right)$	$3\left(\mathrm{C}_{3}\right)$	$622\left(\mathrm{D}_{6}\right)$	$m \overline{3} m\left(\mathrm{O}_{\mathrm{h}}\right)$

Crystal System	\# of Point Groups	\# of Crystal Lattices
Cubic	5	3
Tetragonal	7	2
Orthorhombic	3	4
Monoclinic	3	2
Triclinic	2	1
Hexagonal	7	1
Trigonal	5	1
	32	14

System	Minimum Requirements
Cubic	Four 3-fold rotation axis
Tetragonal	One 4-fold rotation (or RI) axis
Orthorhombic	Three perpendicular 2-fold axis
Rhombohedral	One 3-fold rotation (or RI) axis
Hexagonal	One 6 fold rotation (or RI) axis
Monoclinic	One 2 fold rotation axis or mirror plane
Triclinic	none

System	Point groups
Cubic	$23, m \overline{3}, 432, \overline{4} 3 m, m \overline{3} m$
Tetragonal	$4, \overline{4}, 4 / \mathrm{m}, 422,4 \mathrm{~mm}, \overline{4} 2 \mathrm{~m}, 4 / \mathrm{mmm}$
Orthorhombic	$222,2 \mathrm{~mm}, \mathrm{mmm}$
Trigonal	$3, \overline{3}, 32,3 \mathrm{~m}, \overline{3} \mathrm{~m}$
Hexagonal	$6, \overline{6}, 6 / \mathrm{m}, 622,6 \mathrm{~mm}, \overline{6} \mathrm{~m} 2,6 / \mathrm{mmm}$
Monoclinic	$2, \mathrm{~m}, 2 / \mathrm{m}$
Triclinic	$1, \overline{1}$

NUMBER of FORMULA UNITS in UNIT CELL (Z)

- typically 1 - 6, but can be tens or even hundreds
- atom inside unit cell: belongs only to one unit cell
- atom on unit cell face: belongs to two unit cells
- atom on unit cell edge: belongs to four unit cells
- atom on unit cell corner: belongs to eight unit cells

Simple cubic

Simple cubic

Body-centered cubic

Face-centered cubic

Face-centered cubic

EXAMPLE

- How many NaCl formula units in unit cell?
- Answer: 4

- Cl^{-}
- Na^{+}

Your EXERCISE question

White balls are Ti atoms, red balls are oxygen atoms.
Unit cell parameters: $\mathbf{a}=\mathbf{b}=4.5937 \AA$ A , $\mathbf{c}=2.9587 \AA \AA$; all angles 90°.
(a) What is the crystal system?
(b) What is the formula of the compound?
(c) Please calculate the density.

SPACE GROUPS

- From finite molecule (or macroscopic crystal) to infinite lattice \rightarrow translation symmetry must be included
- Possible combinations of symmetry elements (including the translation symmetry elements): 230 $\rightarrow 230$ space groups
- Space groups (and the characteristic information in 2 pages) are listed in International Tables for Crystallography \rightarrow BIBLE of CRYSTALLOGRAPHY
- Next-next slide: Space Group P4/mmm as an example

Triclinic				
1. P1	2. P-1			
Monoclinic				
(For a fuller list with alternative urique axes, origins, or enlarged uait cells elick bete)				
3. P121	4. 81211	5.C121	6. P1的1	7. P1c1
8. Cl 1 ml	9. $C 1 \mathrm{cl}$	10.P12/m1	11. $P_{121 / m 1}$	12. $\mathrm{Cl} 12 / \mathrm{ml}$
13. P12/cl	14. $2121 / \mathrm{cl}$	15. $\mathrm{Cl} 2 / \mathrm{cl}$		
Orthorhombic				
(For a fuller list with alternative axes and origins click here)				
16. P222	17. 22224	18. $P_{21} 2_{21} 2$	19. $P_{21} 2_{1} 24$	20. $\mathrm{C} 222{ }_{4}$
21. C 222	22.E222	23. 1222	24. $12,2,21$	25. Pmm 2
26. $P_{m c 21}$	27. PCC2	28. P ma 2	29. $P_{c a} 2_{1}$	30. Pnc2
31. $\mathrm{Pmn24}$	32. Pba2	33. Pnal_{1}	34. $P n n 2$	35. Cmm 2
36. $\mathrm{Cmc} \mathrm{C}_{1}$	37. Ccc 2	38. $4 \mathrm{~mm}^{2}$	39.46 m 2	40. Amaz
41. 46.22	42.Emm2	43. Edd 2	44. 2 mm m 2	45. 1602
46. 1 maz	47. $\mathrm{Pmmm}^{\text {mm }}$	48. $p_{n n n}$	49. $\underline{P c c m}$	50. Pban
51. Pmma	52. Pnna	53. Pmna	54. Pcca	55. Pbam
56. PCCN	57. Pbem	58. $P \pi n m$	59. Pmm mm	60. Pbcn
61. Pbca	62. Pnma	63. Cmcm	64. Cmaca	65. Cmmm
66. Cecm	67. Cmma	68. Ceca	69.Fmemm	70.Fddd
71. 4 mmm	72. 16 am	73. Lbca	74. Lmma	

Tetragonal									
(For the milrged C - and F-centred unit cells, clikk heres)									
75.P4	76. P $_{4}$	77. P_{4}	78. P_{3}	79. 14	Hexagonal				
80. 24_{4}	81.P.4	82. 2.4	$83.24 / \mathrm{m}$	84. $\mathrm{P}_{2} / \mathrm{m}$					
85. $\mathrm{p}_{4 / n}$	86. $\mathrm{P}_{42} / \mathrm{ln}$	87. $14 / \mathrm{m}$	88. $441 / 0$	89.p422	168.P6	169.P61	170. P6s	171. P67	172. $\underline{P 64}$
90. P_{4212}	91. $p_{4} 22$	92. $P_{4} 1_{1} 212$	93. $p_{42} 22$	94. $P_{4} 2212$	173. P_{63}	174. P-6	175. $26 / \mathrm{m}$	176. $\mathrm{P}_{63} / \mathrm{m}$	177. P622
95.p4i22	96. P4, 212	97. 1422	98. 14,22	99. $\mathrm{pamm}^{\text {m }}$	178.P6122	179.P6, 22	180.P6222	181. P6, 22	182. PG3 22
100. 2.8 bm	101. $P_{4} 2 \mathrm{~cm}$	102. 24.42 mm	103.P4cc	104.P4nc	183. $P 6 \mathrm{~mm}$	184. P6cc	185. P6, cm	186. P6, me	187. P-6m 2
105. $\mathrm{P}_{2} \mathrm{mmc}$	106. $P 4268$	107. 14 mm	108. 44 cm	109. $L 4_{1} \mathrm{mmd}$	188. P-6c2	189. p-62m	190. P-62c	191. $\mathrm{Pb}_{6 / \mathrm{mmm}}$	192. P6/mcc
110. Liscd	111. P. 42 m	112.p-42c	113. $P-421 \mathrm{~m}$	114. P-4218	193. $\mathrm{Pb}_{6} / \mathrm{mcm}$	194. $P 63 / m m c$			
115. $P=4 \mathrm{~m} 2$	116.p.4c2	117.p-4b2	118. $P-4 n 2$	119. $\mathrm{t} 4 \mathrm{4m} 2$					
120. $\underline{H-4 c 2}$	121. l 4.42 m	122. $\underline{t-42 d}$	123. $\mathrm{P} / \mathrm{4} / \mathrm{mmm}$	124. P4/mcc	Cubic				
125. P4/nbm	126. P4/nnc	$127 . \mathrm{P} 4 / \mathrm{mbm}$	128.p4/mnc	129. $\mathrm{P} 4 / \mathrm{nmm}$	195.P23	196.F23	197. 212	198.P213	199. 1213
130.P4/nce	131. $\mathrm{P}_{4} / \mathrm{mmec}$	132. $\mathrm{p}_{4} / \mathrm{mcm}$	133. $P_{4} / n b c$	134. $\mathrm{P}_{4} / \mathrm{nnm}$	200. Pm-3	201. P_{n-3}	202. Fm-3	203. Fd-3	204. Im-3
135.pha/mbc	136. $\mathrm{P}^{\text {S }} / \mathrm{mmm}$	137.P4n/ame	138. $\mathrm{P} 42 / \mathrm{ncm}$	139. $\mathrm{r} / \mathrm{/mmm}$	205. Pa-3	206. Ia-3	207.P432	208.P4232	209.F432
$140.54 / \mathrm{mcm}$	141. $/ 4, / a m d$	142. $\left[4_{1} /\right.$ acd			210.F4, 32	211. 1432	212. $P 4332$	213.P4, 32	214. $\underline{14} 132$
		Trigonal			215.P-43m	216. F-43m	217. $\mathrm{t}-43 \mathrm{~m}$	218.P-43n	219.F-43c
(For the R-centred cells with berngosal axes and the largee H-centred trigonal cells, click hate)					220.1-43d	221. $P_{m-3 m}$	222. $P n-3 n$	223. $P m-3 n$	224. Pn-3m
143. 23	144. P_{4}	${ }_{145} \cdot P_{3}$	146. R3	147. P-3	225.Fm-3m	226.Fw-3c	227.Fd-3m	228. $\mathrm{Fd}-3 \mathrm{c}$	229. $7 \mathrm{mb}-3 \mathrm{~m}$
148.R-3	149.P312	150.P321	151. $P_{3}{ }_{1} 12$	152.P3121	230. 1 a-3d				
153. P3 $_{2} 12$	154.P3221	155.R32	156.P3m1	157. P31m					
158.p3c1	159.P31c	160.R3m	161. R3c	162.P.31m					
163.P.31e	164. P-3 3 ml	165.P.3. 1	166. R.3m	167.R.3e					

From: http://img.chem.ucl.ac.uk/sgp/large/sgp.htm

No. 123
P4/m $2 / m 2 / m$

Origin at centre ($4 /$ wiwn w)
Asymmetric mult $0 \leq x \leq 1 ; 0 \leq y \leq 1 ; 0 \leq z \leq 1 ; x \leq y$

Symmetry operations

$\begin{array}{lll}\text { (1) } 1 & \\ \text { (5) } 2 & 0, y, 0 \\ \text { (9) } & 0,00\end{array}$

(2)	$20,0, z$
(6)	$2 x, 0,0$

(9) $10,0,0$
$\begin{array}{lll}\text { (10) } m & x, 0,0 \\ \text { (1) } & x, y, 0\end{array}$
$\begin{array}{lll}\text { (3) } & 4^{*} & 0,0, z \\ \text { (7) } & 2 & x, x, 0\end{array}$
(13) $\% x, 0, z$
(14) $\mathrm{m} 0, y, z$
(15) $4^{+} 0,0,2=0,0$
(15) $m \pi, \pi, z$
(4) $4^{-} \quad 0,0, z$
(8) $\frac{2}{3} x, 5,0$
(12) 4 - $0,0,2: 0,0,0$
(16) $m \quad x, x, z$

Maximal nen-isomorphic subgroups

Maximal isomorphic subgroups of lowest index

Ik $[2] P 4 / m m m\left(c^{\prime}=2 c\right) ;[2] C 4 / w w w\left(a^{\prime}=2 a, b^{\prime}=2 b\right)(P 4 / m m m)$

Minimal nen-isomorphic supergroups

 II $[2] \mathrm{J} / \mathrm{/m} \mathrm{~mm}$

Generators selected (1); $t(1,0,0) ; \quad r(0,1,0) ; \quad r(0,0,1) ; \quad(2) ; \quad(3) ; \quad(5) ; \quad(9)$

Special:

no exm conditions
no extra conditions
no extra cooditions
to citra conditions
a0) extra conditions
no extr conditions
ne exter cunditions
no exita conditions
no extra cenditions
so eitra conditions
no extra conditicos
h $\boldsymbol{h}: ~ \lambda+k=2 \pi$
no extra conditions
no extra cooditions
能: $: \frac{1}{1}+k=2 x$
能: $: h+k=2 n$
no extra conditions
no extro conditions
no extre conditions
no extra conditions

Symmetry of special projections

Along [001] p 4man	Alogt [100] $p^{2 m m}$	Along [110] p 2 ww
$a^{\prime}=a \quad b^{\prime}=b$	$a^{\prime}=b \quad b^{\prime}=\boldsymbol{c}$	$a^{\prime}=:(-a+b) \quad b^{\prime}=c$
Origin at $0,0,8$	Origin as $x, 0,0$	Origin at $x, x, 0$
(Contimued on preceding parge)		

Along [110] p2ww Origin at $x, x, 0$

EXAMPLES of INFORMATION

- Space group number: 123
- Name: P4/mmm
- Complete name: $P 4 / m 2 / m 2 / m$; showing the symmetry elements (4-fold rotation axis, mirror planes)
- Crystal system: tetragonal
- Lattice type: P (primitive)
- Site symmetry of the highest-symmetry site: $\mathrm{D}_{\mathbf{4 h}}$
- Asymmetric unit: smallest closed part of space the entire space is filled by applying all symmetry operations

On the second page:

List of possible sites for the atoms

- These are indicated/named by: multiplicity, Wyckoff letter \& site symmetry

Not all sites are actually occupied by an atom

- On the top: general site (16u)

At the bottom: the highest symmetry site (1a)

Multiplicity: number of identical sites
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9)

Positions									
Multiplicity, Wyckoff letter. Site symmetry				Coordinates				Reflection conditions	
16	u	(1)	(1) x, y, z (5) \bar{x}, y, \bar{z} (9) $\bar{x}, \bar{y}, \bar{z}$ 3) x, \bar{y}, z	(2) \bar{x}, \bar{y}, z (6) x, \bar{y}, z (10) x, y, \bar{z} (14) \bar{x}, y, z	(3) \bar{y}, x, z (7) y, x, z (11) y, \bar{x}, \bar{z} (15) \bar{y}, \bar{x}, z		(4) y, \bar{x}, z (8) $\bar{y}, \bar{x}, \bar{z}$ (12) \bar{y}, x, \bar{z} (16) y, x, z	no conditions	
								Special:	
8	t	. m	$x, \frac{1}{2}, z$	$\bar{x}, \frac{1}{2}, z$	$\frac{1}{2}, x, z$	$\frac{1}{2}, \bar{x}, z$			no extra conditions
			$\bar{x}, \frac{1}{2}, \bar{z}$	$x, \frac{1}{2}, \bar{z}$	$\frac{1}{2}, x, z$	$\frac{1}{2}, \bar{x}, \bar{z}$			
8	s	.m	$x, 0, z$	$\bar{x}, 0, z$	$0, x, z$	$0, \bar{x}, z$			no extra conditions
			$\bar{x}, 0, \bar{z}$	$x, 0, \bar{z}$	$0, x, z$	$0, \bar{x}, \bar{z}$			
8	r	. . m	x, x, z	\bar{x}, \bar{x}, z	\bar{x}, x, z	x, \bar{x}, z		no extra conditions	
			\bar{x}, x, \bar{z}	x, \bar{x}, \vec{z}	x, x, \bar{z}	$\bar{x}, \bar{x}, \bar{z}$			
8	q	m. .	$x, y, \frac{1}{2}$	$\bar{x}, \bar{y}, \frac{1}{2}$	$\bar{y}, x, \frac{1}{2}$	$\bar{y}, \bar{x}, \frac{1}{2}$		no extra conditions	
			$\bar{x}, y, \frac{1}{2}$	$x, \bar{y}, \frac{1}{2}$	$y, x, \frac{1}{2}$	$\bar{y}, \bar{x}, \frac{1}{2}$			
8	p	m.	$x, y, 0$	$\bar{x}, \bar{y}, 0$	$\bar{y}, x, 0$	$y, \bar{x}, 0$		no extra conditions	
			$\bar{x}, y, 0$	$x, \bar{y}, 0$	$\boldsymbol{y}, \boldsymbol{x}, 0$	$\bar{y}, \bar{x}, 0$			
44	o	m $2 m$	$x, \frac{1}{2}, \frac{1}{2}$	$\bar{x}, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, x, \frac{1}{2}$	$\frac{1}{2}, \bar{x}, \frac{1}{2}$		no extra conditions	
	n	$m 2 m$	$x, \frac{1}{2}, 0$	$\bar{x}, \frac{1}{2}, 0$	$\frac{1}{2}, x, 0$	$\frac{1}{2}, \bar{x}, 0$		no extra conditions	
4	m	$m 2 m$	$x, 0, \frac{1}{2}$	$\bar{x}, 0, \frac{1}{2}$	$0, x, \frac{1}{2}$	$0, \bar{x}, \frac{1}{2}$		no extra conditions	
4	l	$m 2 m$.	$x, 0,0$	$\overline{8}, 0,0$	0, $x, 0$	$0, \bar{x}, 0$		no extra conditions	
4	k	m. 2 m	$\boldsymbol{x}, \boldsymbol{x}, \frac{1}{2}$	$\bar{x}, \bar{x}, \frac{1}{2}$	$\bar{x}, \boldsymbol{x}, \frac{1}{2}$	$x, \bar{x}, \frac{1}{2}$		no extra conditions	
4	j	m. $2 m$	$x, x, 0$	$\bar{x}, \bar{x}, 0$	$\bar{x}, x, 0$	$x, \bar{x}, 0$		no extra conditions	
4	i	2 mm .	0, $\frac{1}{2}, \mathrm{z}$	$\frac{1}{2}, 0, z$	$0, \frac{1}{2}, z$	$\frac{1}{2}, 0, \bar{z}$		$h k l: h+k=2 n$	
2	h	4 mm	$\frac{1}{2}, \frac{1}{2}, z$	$\frac{1}{2}, \frac{1}{2}, \bar{z}$				no extra conditions	
2	g	4 mm	0,0,z	0,0, \bar{z}				no extra conditions	
2	f	$m m m$.	0, 1,0	$\frac{1}{2}, 0,0$				$h k l: h+k=2 n$	
2	e	$m m m$.	0, $\frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, 0, \frac{1}{2}$				$h k l: h+k=2 n$	
1	d	4/mmm	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$					no extra conditions	
1	c	$4 / \mathrm{mmm}$	$\frac{1}{2}, \frac{1}{2}, 0$					no extra conditions	
	b	$4 / \mathrm{mmm}$	0,0, $\frac{1}{2}$					no extra conditions	
1	a	$4 / \mathrm{mmm}$	0,0,0					no extra conditions	

Symmetry of special projections

Along [110] p2mm $\boldsymbol{a}^{\prime}=\frac{1}{2}(-\boldsymbol{a}+\boldsymbol{b}) \quad \boldsymbol{b}^{\prime}=\boldsymbol{c}$ Origin at $x, x, 0$

EXAMPLE: Potassium tetrachloroplatinate(II): $\mathrm{K}_{2} \mathrm{PtCl}_{4}$

Space group: $P 4 / m m m$ (No. 123)
Lattice parameters: $a=b=7.023 \AA, c=4.1486 \AA$
Atomic positions:

$$
\begin{array}{ll}
\text { Pt } & \text { 1a: } 0,0,0 \\
\mathrm{~K} & \text { 2e: } 0,1 / 2,1 / 2 \\
\mathrm{Cl} & 4 j: x, x, 0 ; x=0.23247
\end{array}
$$

(a) Draw the unit cell with the atoms.
(b) Draw the projection of the unit cell in c-axis direction.
(c) Theoretical density is $3.37 \mathrm{~g} / \mathrm{cm}^{3}$. Calculate Z ? ($\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$; atomic weights: K 39.098 ; Pt 195.22; Cl 35.453)
(d) Calculate the distances: Pt-Pt, Pt-K, Pt-Cl.
(e) What is the coordination number of platinum ?
(f) What is the site symmetry of platinum ?

No. 123
P4/m $2 / m 2 / m$

Origin at centre ($4 /$ wiwn w)
Asymmetric mult $0 \leq x \leq 1 ; 0 \leq y \leq 1 ; 0 \leq z \leq 1 ; x \leq y$

Symmetry operations

$\begin{array}{lll}\text { (1) } 1 & \\ \text { (5) } 2 & 0, y, 0 \\ \text { (9) } & 0,00\end{array}$

(2)	$20,0, z$
(6)	$2 x, 0,0$

(9) $10,0,0$
$\begin{array}{lll}\text { (10) } m & x, 0,0 \\ \text { (1) } & x, y, 0\end{array}$
$\begin{array}{lll}\text { (3) } & 4^{*} & 0,0, z \\ \text { (7) } & 2 & x, x, 0\end{array}$
(13) $\% x, 0, z$
(14) $\mathrm{m} 0, y, z$
(15) $4^{+} 0,0,2=0,0$
(15) $m \pi, \pi, z$
(4) $4^{-} \quad 0,0, z$
(8) $\frac{2}{3} x, 5,0$
(12) 4 - $0,0,2: 0,0,0$
(16) $m \quad x, x, z$

Maximal nen-isomorphic subgroups

Maximal isomorphic subgroups of lowest index

Ik $[2] P 4 / m m m\left(c^{\prime}=2 c\right) ;[2] C 4 / w w w\left(a^{\prime}=2 a, b^{\prime}=2 b\right)(P 4 / m m m)$

Minimal nen-isomorphic supergroups

 II $[2] \mathrm{J} / \mathrm{/m} \mathrm{~mm}$

Generators selected (1); $t(1,0,0) ; \quad r(0,1,0) ; \quad r(0,0,1) ; \quad(2) ; \quad(3) ; \quad(5) ; \quad(9)$

Special:

no exm conditions
no extra conditions
no extra cooditions
to citra conditions
a0) extra conditions
no extr conditions
ne exter cunditions
no exita conditions
no extra cenditions
so eitra conditions
no extra conditicos
h $\boldsymbol{h}: ~ \lambda+k=2 \pi$
no extra conditions
no extra cooditions
能: $: \frac{1}{1}+k=2 x$
能: $: h+k=2 n$
no extra conditions
no extro conditions
no extre conditions
no extra conditions

Symmetry of special projections

Along [001] p 4man	Alogt [100] $p^{2 m m}$	Along [110] p 2 ww
$a^{\prime}=a \quad b^{\prime}=b$	$a^{\prime}=b \quad b^{\prime}=\boldsymbol{c}$	$a^{\prime}=:(-a+b) \quad b^{\prime}=c$
Origin at $0,0,8$	Origin as $x, 0,0$	Origin at $x, x, 0$
(Contimued on preceding parge)		

Along [110] p2ww Origin at $x, x, 0$

Pt: 1 atom in unit cell
K: 2 atoms in unit cell
Cl: 4 atoms in unit cell

Bond lengths:

Pt-Pt: (1-0) ${ }^{2 \cdot 4.15 \AA}$
Pt-K: $\sqrt{ }\left[(0.5-0)^{2} \cdot 7.023 \AA+(0.5-0)^{2} \cdot 4.149 \AA\right]=4.08 \AA$ Pt-CI: $\sqrt{ }\left[(0.232-0)^{2} \cdot 7.023 \AA+(0.232-0)^{2 \cdot 7.023} \AA\right]=2.30 \AA$

Site symmetry of Pt : $\mathrm{D}_{4 \mathrm{~h}}$
$a b$-projectio (seen from c-direction)

$\mathrm{K}_{2} \mathrm{PtCl}_{4}$

- $\rho=3.37 \times 10^{6} \mathrm{~g} / \mathrm{m}^{3}$
- $V=7.023 \AA \times 7.023 \AA \times 4.1486 \AA=204.62 \times 10^{-30} \mathrm{~m}^{3}$
- $\mathrm{M}=(2 \times 39.098+195.22+4 \times 35.453) \mathrm{g} / \mathrm{mol}=415.228 \mathrm{~g} / \mathrm{mol}$
- $Z=\left(\mathrm{V} \times \rho \times \mathrm{N}_{\mathrm{A}}\right) / \mathrm{M}=1$
- Distances: Pt-Pt: $4.15 \AA$

Pt-K: $4.08 \AA$
Pt-Cl: $2.31 \AA(\rightarrow$ chemical bond $)$

- $\mathrm{CN}(\mathrm{Pt})=4$
- Pl site symmetry: $D_{4 \mathrm{~h}}$

EXAMPLE: Chromium oxychloride CrOCl

Space group Pmmn (No. 59)
Lattice parameters: $a=3.88 \AA, b=3.20 \AA, c=7.72 \AA(Z=2)$
Atomic positions:

Cr	$2 a$	$z=0.109$
Cl	$2 b$	$z=0.327$
0	$2 b$	$z=0.960$

(a) Draw the unit cell.
(b) Give for chromium: - bond lengths

- coordination numbers
- site symmetry
(c) Calculate BVS for chromium.
[R^{0} values: $\left.\mathrm{Cr}^{1 I I}-\mathrm{O}^{-11}: 1.724, \mathrm{Cr}^{-1 I}-\mathrm{Cl}^{-1}: 2.08\right]$

Pmmn $\quad D_{2 h}^{13}$
 $m \mathrm{~mm} \quad$ Orthorhombic

No． 59
$P 2_{1} / m 21 / m 2 / n$
Patterson symmetry $P_{m m m}$

ORIGIN CHOICE I

Origin sif we $2 / \pi$, al $\ddagger, t, 0$ from
Asymmetrie unit $0 \leq x \leq 1 ; 0 \leq y \leq 1 ; 0 \leq z \leq t$

Symmetry operatioas

（1）
（2） $20,0, \tau$
（3） $2\left(0, \frac{1}{2}, 0\right) ~ t, y, 0$
（4） $2(1,0,0) \quad x, 1,0$
（5）$\dagger 1,1,0$
（b）$n(f, 2,0) \quad x, y, 0$
（7）$\pi \times, 0,2$
（B） w $0, y, z$

Generators selected（1）； $1(1,0,0) ; \quad t(0,1,0) ; \quad t(0,0,1) ;$（2）；（3）；（5）

Positions

Mangary	Courdinates	Reflection conditions

8		$\begin{array}{ll} 1 \text { (5) } \\ & \\ \hline \end{array}$	$\begin{aligned} & x, y, z \\ & i+4,9+1, z \end{aligned}$		（2）$I .5 .8$ （6）$x+1, y+\frac{1}{2}, z$			（4）$x+3, y+\frac{1}{2}, 5$ （8） $8,9,2$	General：		
					（3）$f+\frac{1}{2} y+1, z$ （7）$x, 5, z$	hk0；$h-k=2 e$ h00：$h=2 n$ 0． x ： $\mathrm{k}=2 \mathrm{n}$					
						Special：as above，plus					
4	f	田．	$x_{0} 0, t$	8.0 .7			$x+1.1 .2$	$x+$	＋1， 1.2		no exita conditions
4	c	m．	0．y．2	n．j．－			＋ $\mathrm{y}+\mathrm{t}$ \％	1	$y+3.5$		＊＊extre conditises
4	d	1	1．1．1	1．2．1．	t．f．t	1，i， 1			$\underline{k} l=k \cdot k=2 n$		
4	c	I	1．1．0	1．$\ddagger .0$	t， 1,0	1.1 .0			$k k f: A, k=2 \pi$		
2	b	m112	0，4，2	＋，0，\％					no extra exaditions		
2	a	7172	$0,0,2$	1．1．2					Do earra condibions		
Symmetry of special prejections											
Along［001］c2ww $a^{\prime}=a \quad b=b$ Origin at $0,0, t$							$\left[100 \operatorname{b}_{b^{\prime}}=c\right.$ ogin at $x, i, 0$		Along（0i0） p 2 gm $s^{\prime}-c \quad b^{\prime}=a$ Origin at $t, y, 0$		

Origin at $0,0, t$
$a^{\prime}=b \quad b^{\prime}=c$
Otigin at $x, i, 0$
$a^{\prime}=c \quad b^{\prime}=a$
Ongin at $t, y, 0$

Slasimal not－fsomorphic subgroups

$1 \quad 121 p_{2}, 2,2$
$\begin{array}{ll}{[2] P 112 / \pi(P 2 / c)} & 1 ; 2 ; 5 ; 6\end{array}$
（2］P12／／m｜$(P 2 / \sqrt{2} / m) \quad 1 ; 3 ; 5 ; 7$
$\left[2 \mid P 2_{2} / m 11\left(P_{2} / w\right) \quad 1 ; 4 ; 5 ; 8\right.$
［2］P\％＊T2
$1 ; 4 ; 5 ; 8$
$1 ; 2 ; 7 ; 8$

［2］$P 2_{1 \text { min }}\left(P_{w n} 2_{1}\right) \quad 1 ; 4 ; 6 ; 7$
IIa nose

Maximal isomorphic subgroups of lowest index
Ifc［3］P而雨n $\left(a^{\prime}=3 x\right.$ or $\left.b^{\prime}=3 b\right) ;[2] P$ own $\left(c^{\prime}-2 x\right)$

Xinimal noen－somarphic superzroups

 （2）P 局M $a\left(2 b^{\prime}=b\right)$

Chromium bonding
$2 \times \mathrm{Cr}-\mathrm{Cl}: \sqrt{ }\{(0.891-0.673) \times 7.72 \AA\}^{2}+\{0.5 \times 3.20 \AA\}^{2}=2.3222 \AA$ $2 \times \mathrm{Cr}-\mathrm{O}: \sqrt{ }\{(0.960-0.891) \times 7.72 \AA\}^{2}+\{0.5 \times 3.88 \AA\}^{2}=2.0118 \AA$ $2 \times \mathrm{Cr}-\mathrm{O}: \sqrt{ }\{[(1-0.891)+0.04] \times 7.72 \AA\}^{2}+\{0.5 \times 3.20 \AA\}^{2}=1.9706 \AA$ $\mathrm{CN}(\mathrm{Cr})=6$
Cr site symmetry: $\mathrm{C}_{2 \mathrm{v}}$
BVS(Cr): +2.985

CrOCI: simulated XRD pattern based on the structure data

