### SCHEDULE

|     | Date | •      | Торіс                                           |
|-----|------|--------|-------------------------------------------------|
| 1.  | Tue  | 14.09. | Lec-1: Introduction                             |
| 2.  | Fri  | 17.09. | Lec-2: Crystal Chemistry & Tolerance parameter  |
| 3.  | Fri  | 17.09. | EXERCISE 1                                      |
| 4.  | Tue  | 21.09. | Lec-3: Crystal chemistry & BVS                  |
| 5.  | Fri  | 24.09. | Lec-4: Symmetry & Point Groups                  |
| 6.  | Fri  | 24.09. | EXERCISE 2                                      |
| 7.  | Tue  | 28.10. | Lec-5: Crystallography & Space Groups           |
| 8.  | Fri  | 01.10. | Lec-6: XRD & Reciprocal lattice                 |
| 9.  | Fri  | 01.10. | EXERCISE 3                                      |
| 10. | Tue  | 05.10. | Lec-7: ND & GI-XRD                              |
| 11. | Fri  | 08.10. | Lec-8: Rietveld                                 |
| 12. | Fri  | 08.10  | EXERCISE 4: Rietveld                            |
| 13. | Tue  | 12.10. | Lec-9: Synchrotron rad. & XAS & RIXS            |
| 14. | Fri  | 15.10. | Lec-10: EXAFS & Mössbauer                       |
| 15. | Fri  | 15.10. | EXERCISE 5                                      |
| 16. | Tue  | 19.10. | Seminars: XPS, FTIR, Raman, ED, HRTEM, SEM, AFM |
| 17. | Fri  | 22.10. | Lec-11: XRR                                     |
| 18. | Fri  | 22.10. | EXERCISE 6: XRR                                 |
|     |      |        |                                                 |

EXAM: Friday, Oct. 29th, 2021

# LECTURE 5: CRYSTALLOGRAPHY BASICS

- From "point-like" molecules to 3D crystals
- Translation in 3D crystals →
   NEW SYMMETRY OPERATIONS (glide planes & screw axes)
- From *Point groups* to *Space groups*
- Crystal lattice, lattice points & unit cell
- International Tables of Crystallography

Symmetry elements (Schönflies / Hermann-Mauguin)

**RECALL FROM PREVIOUS LECTURE:** 

Point/Molecular symmetry 

One point remains unchanged

Identity **E** 

Symmetry/inversion center *i* / 1

Rotation axis  $C_n/1, 2, 3, ...$ 

Reflection/mirror plane  $\sigma / m$ 

Improper rotation axis  $S_n / (1, 2), 3, 4, 6$ 

NOTE:

- Inproper rotation axis 1 and inversion center 1 are equivalent
- Mirror plane m and inproper rotation axis  $\overline{2}$  are equivalent

### FROM MOLECULES TO CRYSTALS

There are two things which make macroscopic (infinite) crystals different from discrete molecules in terms of symmetry: **Space-filling & Translation** 

#### Space-filling

- Macroscopic crystals need to continuosly fill the space
- For molecules 5-fold rotation is possible, but not for crystals (except in quasicrystals)

#### **Translation in crystals**

- Translation: move from one point to another (the entire object)
- This does not exist in molecules, but is the essence of macroscopic crystals exhibiting long-range order
- Combining translation with other symmetry operations/elements → new symmetry operations/elements (not included in point groups): glide planes & screw axes



#### Additional translation symmetry elements in INFINITE LATTICES

#### **Translation**

- Movement from one point to another point

#### Screw axis

- Rotation plus translation

 $n_m$  (2<sub>1</sub>, 3<sub>1</sub>, 3<sub>2</sub>, 4<sub>1</sub>, 4<sub>2</sub>, 4<sub>3</sub>, 6<sub>1</sub>, 6<sub>2</sub>, 6<sub>3</sub>, 6<sub>4</sub>, 6<sub>5</sub>) For example: 2<sub>1</sub>: rotation 180° and translation  $\frac{1}{2}(m/n)$ 

#### **Glide plane**

- Reflection against a mirror plane plus (half) translation parallel to the plane

Axis glide plane: Diagonal glide plane: a, b, c (translations by  $\frac{1}{2}a$ ,  $\frac{1}{2}b$ ,  $\frac{1}{2}c$  to each glide plane direction)  $n [\frac{1}{2}(a+b), \frac{1}{2}(b+c), \frac{1}{2}(c+a)]$  $d [\frac{1}{4}(a+b), \frac{1}{4}(b+c), \frac{1}{4}(c+a)]$  (so-called diamond glide plane)



Reflection (m) through ac-plane, followed by (half) translation (t) along c-axis





Rotation (c) followed by translation (t)



# (from historical reasons) DIFFERENT SYMMETRY SYMBOLS

### Schoenflies (S) symbols

- were developed first
- in molecular symmetry & spectroscopy

### Hermann-Mauguin (H/M) symbols

- in crystallography
- long and short forms
- Graphical symbols



| System       | Point group s                                                                            | ymmetry<br>H/M                                          | Symmetry elements                                                                                                                                                                                                                                                                                                                   | Number<br>of<br>opera-<br>tions                  |  |
|--------------|------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|
| Triclinic    | $C_1$<br>$C_i = S_2$                                                                     | 1<br>1                                                  | $I = C_1$<br>I, $i(=S_2)$                                                                                                                                                                                                                                                                                                           | 1 2                                              |  |
| Monoclinic   | $\begin{array}{c} C_{2} \\ C_{S} = C_{1k} = C_{1v} \\ C_{2k} \end{array}$                | 2<br>m<br>2/m                                           | I, C <sub>2</sub><br>I, σ<br>I, C <sub>2</sub> , σ <sub>h</sub> , i                                                                                                                                                                                                                                                                 | 2<br>2<br>4                                      |  |
| Orthorhombic | C2+<br>D2<br>D2h                                                                         | mm2<br>222<br>mmm                                       | $ \begin{array}{l} I, \ C_2, \ 2\sigma \\ I, \ 3C_2 \\ I, \ 3C_2, \ 3\sigma, \ i \end{array} $                                                                                                                                                                                                                                      | 4<br>4<br>8                                      |  |
| Tetragonal   | $\begin{array}{c} C_4 \\ S_4 \\ D_4 \\ C_{4v} \\ C_{4h} \\ D_{24} \\ D_{4h} \end{array}$ | $4 \over 4$<br>422<br>4mm<br>4/m<br>4/m<br>4/m<br>4/mmm | $\begin{split} I, & C_4 \\ I, & S_4 \; (=C_2) \\ I, & C_4 \; (=C_2), \; 2C_2', \; 2C_2'' \\ I, & C_4, \; 2\sigma_v, \; 2\sigma_d \\ I, & C_4 \; (=S_4), \; \sigma_h, \; i \\ I, & S_4 \; (=C_2), \; 2C_2', \; 2\sigma_d \\ I, & C_4 \; (=S_4), \; 2C_2', \; 2C_2'', \\ & 2\sigma_v, \; 2\sigma_d, \; i \end{split}$                 | 4<br>4<br>8<br>8<br>8<br>8                       |  |
| Trigonal     | $C_3 \\ C_{3i} = S_6 \\ D_3 \\ C_{3v} \\ D_{3d}$                                         | 3<br>32<br>3 <i>m</i><br>3 <i>m</i>                     | $I, C_3$ $I, S_6 (= C_3), i$ $I, C_3, 3C_2$ $I, C_3, 3\sigma_{\varphi}$ $I, S_6 (= C_3), 3C_2, 3\sigma_d, i$                                                                                                                                                                                                                        | 3<br>6<br>6<br>6<br>12                           |  |
| Hexagonal    | $C_6 \\ C_{3\lambda} \\ D_6 \\ D_{3h} \\ C_{6h} \\ C_{6e} \\ D_{6k}$                     | 6<br>622<br>6/m<br>6/m<br>6/mmm                         | $\begin{array}{l} I, \ C_6 \\ I, \ S_3 \ (= C_3), \ \sigma_k \\ I, \ C_6, \ 3C'_2, \ 3C''_2 \\ I, \ C_3 \ (= S_3), \ 3C_2, \ 3\sigma_v, \ \sigma_k \\ I, \ C_6 \ (= S_6), \ \sigma_k, \ i \\ I, \ C_6 \ (= S_6), \ 3C'_2, \ 3C''_2 \\ I, \ C_6 \ (= S_6), \ 3C'_2, \ 3C''_2 \\ 3\sigma_v, \ 3\sigma_d, \ \sigma_k, \ i \end{array}$ | 6<br>6<br>12<br>12<br>12<br>12<br>12<br>12<br>24 |  |
| Cubic        | T<br>T <sub>k</sub><br>T <sub>d</sub><br>O<br>O <sub>k</sub>                             | 23<br>m3<br>43m<br>432<br>m3m                           | $\begin{array}{l} I, \ 3C_2, \ 4C_3\\ I, \ 3C_2, \ 4C_3 \ (=S_6), \ 3\sigma_k, \ i\\ I, \ 3C_2 \ (=S_4), \ 4C_3, \ 6\sigma_d\\ I, \ 3C_2, \ 4C_3, \ 3C_4\\ I, \ 3C_2, \ 4C_3 \ (=S_6), \ 3C_4 \ (=S_6), \ 3\sigma_k, \ 6\sigma_d, \ i \end{array}$                                                                                  | 12<br>24<br>24<br>24<br>24                       |  |

Symmetry elements of crystal point groups

### WHAT WE LIKE TO KNOW ABOUT THE CRYSTAL STRUCTURE

### CRYSTALLOGRAPHY

- symmetry
- unit cell
- Iattice parameters
- number of formula units in unit cell
- space group
- etc.

### **CRYSTAL CHEMISTRY**

- coordination numbers
- coordination polyhedra
- bond lengths/angles
- occupation factors
- etc.

**Discussed in Lecture 2!** 



HgBa<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>9-δ</sub>

# **CRYSTAL LATTICE**

- Regular (infinite 3D) arrangement of lattice points
- Lattice point: consists of one or more atoms (= basis)
- Each lattice point has identical environment + symmetry properties (point group)



# **UNIT CELL**

- Smallest possible microscopic 3D part of the crystal lattice that repeats itself periodically and completely fills the lattice volume, and is enough to describe the lattice perfectly
- Choice of the unit cell not always unambicious: several possible choices

#### Choices of unit cell (in 2D)



Each lattice point should be able to be described with the vector  $Q_{[uvw]} = ua + vb + wc$ , where *u*, *v* and *w* all are INTEGER values



#### What we need to tell about the UNIT CELL

• Shape & size of the unit cell *plus* the atomic positions in the unit cell

να

- Shape & size are given by:
  - Lattice parameters: a, b ja c
  - Angles between the axes:  $\alpha$ ,  $\beta$  ja  $\gamma$

# **CLASSIFICATIONS**

"Macroscopic shape of the crystal"
 → "Point group for the lattice" → 7 CRYSTAL SYSTEMS
 (can fill the space without holes; no information of the lattice points/atoms)

### **CRYSTAL SYSTEM & LATTICE POINTS** (historical importance)

- Combination of crystal system and lattice type  $\rightarrow$  14 Bravais lattices
- Lattice type: positions of <u>lattice points</u> (≠ atoms) within the cell considered: primitive (P), body-centered (I), face-centered (F), base-centered (A/B/C), rhombohedral (R)

### **CRYSTAL SYSTEM & SYMMETRY** (most important in crystallography)

- Possible combinations of point symmetry elements (which leave one point fixed)
  - $\rightarrow$  32 (geometric) cystal classes
  - $\rightarrow$  describe completely the symmetry of macroscopic crystals

There are an infinite number of **three-dimensional point groups**, but the crystallographic restriction results in there being only 32 crystallographic point groups.

 Considering also the translational symmetry operations in 3D → 230 space groups

# **CRYSTAL SYSTEMS (7)**

No information of the positions of atoms





Cubic a = b = c $\alpha = \beta = \gamma = 90^{\circ}$ NaCl, MgAl<sub>2</sub>O<sub>4</sub>

Hexagonal

a = b # c

LiNbO<sub>3</sub>

Tetragonal a = b # c $\alpha = \beta = \gamma = 90^{\circ}$  $TiO_2$ ,  $K_2NiF_4$ 



Orthorhombic a # b # c  $\alpha = \beta = \gamma = 90^{\circ}$ YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub>



Rhombohedral a = b = c $\alpha = \beta = \gamma \# 90^{\circ}$ BaTiO<sub>3</sub> (low-T)





Monoclinic a # b # c  $\alpha = \gamma = 90^{\circ}, \beta \# 90^{\circ}$ KH<sub>2</sub>PO<sub>4</sub>



Triclinic a # b # c  $\alpha \# \beta \# \gamma \# 90^{\circ}$ 

| Element                    | What it does | Possible in crystal system    |  |  |
|----------------------------|--------------|-------------------------------|--|--|
| Identity (1)               | -            | All                           |  |  |
| Inversion $(\overline{1})$ | Inversion    | All                           |  |  |
| Mirror plane (m)           | Mirror       | All but triclinic             |  |  |
| 2- fold rotation (2)       | Rotate 180°  | All but triclinic             |  |  |
| 3-fold rotation (3)        | Rotate 120°  | Trigonal, Hexagonal and Cubic |  |  |
| 4-fold Rotation (4)        | Rotate 90°   | Tetragonal and Cubic          |  |  |
| 6-fold Rotation (6)        | Rotate 60°   | Hexagonal                     |  |  |

# **BRAVAIS LATTICES (14)**

Positions of lattice sites (not atoms) included



Rhombohedral

Monoclinic

monoclinic

| Centering                 | Lattice points/cell | Abbreviation |
|---------------------------|---------------------|--------------|
| Primitive                 | 1                   | Р            |
| Base (A,B, or C) centered | 2                   | A,B or C     |
| Body centered             | 2                   | L            |
| Hexagonal<br>rhombohedral | 3                   | hR           |
| Face centered             | 4                   | F            |

# EXAMPLE

What is the Bravais lattice type of NaCI: Cubic F (basis: Na-CI)



# Your **EXERCISE** question

What is the Bravais lattice type of CsCl



# CRYSTAL CLASSES (32)

|     | The 32 Point Groups |                 |                  |  |  |  |  |  |  |
|-----|---------------------|-----------------|------------------|--|--|--|--|--|--|
| 1   | 4                   | 3               | 6mm              |  |  |  |  |  |  |
| 1   | $\overline{4}$      | 32              | $\overline{6}m2$ |  |  |  |  |  |  |
| 2   | 4/m                 | 3m              | 6/mmm            |  |  |  |  |  |  |
| m   | 422                 | $\overline{3}m$ | 23               |  |  |  |  |  |  |
| 2/m | 4mm                 | 6               | $m\overline{3}$  |  |  |  |  |  |  |
| 222 | $\overline{4}2m$    | 6               | 432              |  |  |  |  |  |  |
| mm2 | 4/mmm               | 6/m             | $\overline{4}3m$ |  |  |  |  |  |  |
| mmm | 3                   | 622             | $m\overline{3}m$ |  |  |  |  |  |  |

| Th                                                | The 32 Point Groups (Schoenflies)   |                                    |                                      |  |  |  |  |  |  |  |
|---------------------------------------------------|-------------------------------------|------------------------------------|--------------------------------------|--|--|--|--|--|--|--|
| 1 (C <sub>1</sub> )                               | 4 (C <sub>4</sub> )                 | 3 (C <sub>3i</sub> )               | 6mm (C <sub>6σν</sub> )              |  |  |  |  |  |  |  |
| $\overline{1}$ (C <sub>i</sub> = S <sub>2</sub> ) | $\overline{4}$ (S <sub>4</sub> )    | 32 (D <sub>3</sub> )               | $\overline{6}m2$ (D <sub>3oh</sub> ) |  |  |  |  |  |  |  |
| 2 (C <sub>2</sub> )                               | 4/m (C <sub>4σh</sub> )             | 3m (C <sub>3σν</sub> )             | 6/mmm (D <sub>6oh</sub> )            |  |  |  |  |  |  |  |
| m (C <sub>σ</sub> )                               | 422 (D <sub>4</sub> )               | $\overline{3}m$ (D <sub>3d</sub> ) | 23 (T)                               |  |  |  |  |  |  |  |
| 2/m (C <sub>2σh</sub> )                           | 4mm (C <sub>4σν</sub> )             | 6 (C <sub>6</sub> )                | $m\overline{3}$ (T <sub>h</sub> )    |  |  |  |  |  |  |  |
| 222 (D <sub>2</sub> )                             | $\overline{4}2m$ (D <sub>2d</sub> ) | 6 (C <sub>3σh</sub> )              | 432 (O)                              |  |  |  |  |  |  |  |
| 2mm (C <sub>2σv</sub> )                           | 4/mmm (D <sub>4h</sub> )            | 6/m (C <sub>6σh</sub> )            | $\overline{4}3m$ (T <sub>d</sub> )   |  |  |  |  |  |  |  |
| mmm (D <sub>2σh</sub> )                           | 3 (C <sub>3</sub> )                 | 622 (D <sub>6</sub> )              | $m\overline{3}m$ (O <sub>h</sub> )   |  |  |  |  |  |  |  |

| Crystal System | # of Point Groups | # of Crystal Lattices |
|----------------|-------------------|-----------------------|
| Cubic          | 5                 | 3                     |
| Tetragonal     | 7                 | 2                     |
| Orthorhombic   | 3                 | 4                     |
| Monoclinic     | 3                 | 2                     |
| Triclinic      | 2                 | 1                     |
| Hexagonal      | 7                 | 1                     |
| Trigonal       | 5                 | 1                     |
| Totals         | 32                | 14                    |

| System       | Minimum Requirements                     |  |  |  |  |
|--------------|------------------------------------------|--|--|--|--|
| Cubic        | Four 3-fold rotation axis                |  |  |  |  |
| Tetragonal   | One 4-fold rotation (or RI) axis         |  |  |  |  |
| Orthorhombic | Three perpendicular 2-fold axis          |  |  |  |  |
| Rhombohedral | One 3-fold rotation (or RI) axis         |  |  |  |  |
| Hexagonal    | One 6 fold rotation (or RI) axis         |  |  |  |  |
| Monoclinic   | One 2 fold rotation axis or mirror plane |  |  |  |  |
| Triclinic    | none                                     |  |  |  |  |

| System       | Point groups                                                                   |  |  |  |  |
|--------------|--------------------------------------------------------------------------------|--|--|--|--|
| Cubic        | <b>23</b> , $m\overline{3}$ , <b>432</b> , $\overline{4}3m$ , $m\overline{3}m$ |  |  |  |  |
| Tetragonal   | 4, $\overline{4}$ , 4/m, 422, 4mm, $\overline{4}2m$ , 4/mmm                    |  |  |  |  |
| Orthorhombic | 222, 2mm, mmm                                                                  |  |  |  |  |
| Trigonal     | <b>3</b> , 3, <b>32</b> , <b>3</b> m, 3 <i>m</i>                               |  |  |  |  |
| Hexagonal    | 6, $\overline{6}$ , 6/m, 622, 6mm, $\overline{6}m2$ , 6/mmm                    |  |  |  |  |
| Monoclinic   | 2, m, 2/m                                                                      |  |  |  |  |
| Triclinic    | 1, 1                                                                           |  |  |  |  |

### NUMBER of FORMULA UNITS in UNIT CELL (Z)

- typically 1 6, but can be tens or even hundreds
- atom inside unit cell: belongs only to one unit cell
- atom on unit cell face: belongs to two unit cells
- atom on unit cell edge: belongs to four unit cells
- atom on unit cell corner: belongs to eight unit cells



# **EXAMPLE**

- How many NaCl formula units in unit cell?
- Answer: 4



#### Your **EXERCISE** question

White balls are Ti atoms, red balls are oxygen atoms.

Unit cell parameters: a = b = 4.5937 Å, c = 2.9587 Å; all angles 90°.

- (a) What is the crystal system?
- (b) What is the formula of the compound ?
- (c) Please calculate the density.



# **SPACE GROUPS**

- From finite molecule (or macroscopic crystal) to infinite lattice → translation symmetry must be included
- Possible combinations of symmetry elements (including the translation symmetry elements): 230
   → 230 space groups
- Space groups (and the characteristic information in 2 pages) are listed in International Tables for Crystallography
   BIBLE of CRYSTALLOGRAPHY
- Next-next slide: Space Group P4/mmm as an example



https://it.iucr.org/

| Triclinic          |                             |                          |                               |                    | ;                                                          | Tetragonal                          |                                            |                                     |                                            |                          |                          |                      |                                 |                                 |
|--------------------|-----------------------------|--------------------------|-------------------------------|--------------------|------------------------------------------------------------|-------------------------------------|--------------------------------------------|-------------------------------------|--------------------------------------------|--------------------------|--------------------------|----------------------|---------------------------------|---------------------------------|
|                    | (For the                    | enlarged unit cells, cl  | lick <u>here</u> )            |                    | (For the enlarged C- and F-centred unit cells, click here) |                                     |                                            |                                     |                                            |                          |                          |                      |                                 |                                 |
| 1. <u>P 1</u>      | 2. <u>P-1</u>               |                          |                               |                    | 75. <u>P 4</u>                                             | 76. <u>P 41</u>                     | 77. <u>P 4</u> 2                           | 78. <u>P 4</u> 3                    | 79. <u>/ 4</u>                             |                          |                          |                      |                                 |                                 |
|                    |                             | Monoclini                | c                             |                    | 80. <u>74</u>                                              | 81. <u>P-4</u>                      | 82. <u>/ -4</u>                            | 83. <u>P 4 / m</u>                  | 84. <u>P 4<sub>2</sub> / m</u>             |                          |                          | Hexagonal            |                                 |                                 |
| (For a ful         | aller list with alternative | unique axes, origins,    | or enlarged unit cells        | click here)        | 85. <u>P 4 / n</u>                                         | 86. <u>P 42 / 18</u>                | 87. <u>14/m</u>                            | 88. <u>[41/a</u>                    | 89. <u>P 4 2 2</u>                         | 168. <u>P6</u>           | 169. <u>P 61</u>         | 170. <u>P 65</u>     | 171. <u>P 62</u>                | 172. <u>P 64</u>                |
| 3. P 1 2 1         | 4. <u>P 1 21 1</u>          | 5. <u>C121</u>           | 6. P 1 m 1                    | 7.P1c1             | 90. <u>P 4 2<sub>1</sub> 2</u>                             | 91. <u>P 41 2 2</u>                 | 92. <u>P 4<sub>1</sub> 2<sub>1</sub> 2</u> | 93. <u>P 4<sub>2</sub> 2 2</u>      | 94. <u>P 4<sub>2</sub> 2<sub>1</sub> 2</u> | 173. <u>P 63</u>         | 174. <u>P-6</u>          | 175. <u>P 6 / m</u>  | 176. <u>P 6<sub>3</sub> / m</u> | 177. <u>P 6 2 2</u>             |
| 8. C 1 m 1         | 9. C1 e1                    | 10. P 1 2 / m 1          | $11. P 1 2_1 / m 1$           | 12.C12/m1          | 95. <u>P 43 2 2</u>                                        | 96. <u>P 43 21 2</u>                | 97. <u>1422</u>                            | 98. <u>/ 41 2 2</u>                 | 99. <u>P 4 m m</u>                         | 178. <u>P 61 2 2</u>     | 179. <u>P 65 2 2</u>     | 180. <u>P 62 2 2</u> | 181. <u>P 64 2 2</u>            | 182. <u>P 6<sub>1</sub> 2 2</u> |
| 13. P12/c1         | 14. P 1 21 / c 1            | 15. C12/c1               |                               |                    | 100. <u>P 4 b m</u>                                        | 101. <u>P 4<sub>2</sub> c m</u>     | 102. <u>P 4<sub>2</sub> n m</u>            | 103. <u>P4cc</u>                    | 104. <u>P 4 n c</u>                        | 183. <u>P 6 m m</u>      | 184. <u>P6cc</u>         | 185. <u>P 63 c m</u> | 186. <u>P 63 m c</u>            | 187. <u>P-6 m 2</u>             |
|                    |                             |                          |                               |                    | 105. <u>P 42 m c</u>                                       | 106. <u>P 42 b c</u>                | 107. <u>I 4 m m</u>                        | 108. <u>I 4 c m</u>                 | 109. <u>I 4<sub>1</sub> m d</u>            | 188. <u>P-6 c 2</u>      | 189. <u>P -6 2 m</u>     | 190. <u>P -6 2 c</u> | 191. <u>P6/mmm</u>              | 192. <u>P 6 / m c c</u>         |
|                    | 0                           | rthorhom                 | <b>D1C</b>                    |                    | 110. 141 cd                                                | 111. <u>P -4 2 m</u>                | 112. <u>P -4 2 c</u>                       | 113. <u>P-4 21 m</u>                | 114. <u>P-4 21 c</u>                       | 193. <u>P 63 / m c m</u> | 194. <u>P 63 / m m c</u> |                      |                                 |                                 |
|                    | (For a fuller list w        | ith alternative axes and | d origins click <u>here</u> ) |                    | 115. <u>P -4 m 2</u>                                       | 116. <u>P -4 c 2</u>                | 117. <u>P -4 b 2</u>                       | 118. <u>P -4 n 2</u>                | 119. <u>I -4 m 2</u>                       |                          |                          | C 11                 |                                 |                                 |
| 16. <u>P 2 2 2</u> | 17. <u>P 2 2 2</u> 1        | 18. <u>P 21 21 2</u>     | 19. <u>P212121</u>            | 20. C2221          | 120. <u>I -4 c 2</u>                                       | 121. <u>I -4 2 m</u>                | 122. <u>I -4 2 d</u>                       | 123. <u>P 4 / m m m</u>             | 124. <u>P 4 / m c c</u>                    |                          |                          | Cubic                |                                 |                                 |
| 21. <u>C 2 2 2</u> | 22. <u>F 2 2 2</u>          | 23. 12.2.2               | 24. 121 21 21                 | 25. <u>Pmm2</u>    | 125. <u>P 4 / n b m</u>                                    | 126. <u>P 4 / n n c</u>             | 127. <u>P 4 / m b m</u>                    | 128. <u>P 4 / m n c</u>             | 129. <u>P 4 / n m m</u>                    | 195. <u>P 2 3</u>        | 196. <u>F 2 3</u>        | 197. <u>7 2 3</u>    | 198. <u>P 21 3</u>              | 199. <u>7 21 3</u>              |
| 26. <u>Pmc2</u> 1  | 27. <u>P c c 2</u>          | 28. Pma2                 | 29. Pc a 21                   | 30. Pnc2           | 130. <u>P4/ncc</u>                                         | 131. <u>P 4<sub>2</sub> / m m c</u> | 132. <u>P 4<sub>2</sub> / m c m</u>        | 133. <u>P 4<sub>2</sub> / n b c</u> | 134. <u>P 4<sub>2</sub> / n n m</u>        | 200. <u>Pm-3</u>         | 201. <u>P n - 3</u>      | 202. <u>F m - 3</u>  | 203. <u>F d -3</u>              | 204. <u>Im-3</u>                |
| 31. Pmn 21         | 32. Pba2                    | 33. Pna 21               | 34. Pnn2                      | 35. <u>Cmm2</u>    | 135. <u>P 42 / m b c</u>                                   | 136. <u>P 4<sub>2</sub> / m n m</u> |                                            | 138. <u>P 4<sub>2</sub> / n c m</u> | 139. <u>I 4 ( m m m</u>                    | 205. <u>Pa-3</u>         | 206. <u>I a -3</u>       | 207. <u>P 4 3 2</u>  | 208. <u>P 42 3 2</u>            | 209. <u>F 4 3 2</u>             |
| 36. <u>Cmc2</u>    | 37. Ccc2                    | 38. <u>A m m 2</u>       | 39. <u>A b m 2</u>            | 40. <u>A m a 2</u> | 140. <u>[4 / m c m</u>                                     | 141. <u>I 4<sub>1</sub> / am d</u>  | 142. <u>141/acd</u>                        |                                     |                                            | 210. <u>F 41 3 2</u>     | 211. / 4 3 2             | 212. <u>P 43 3 2</u> | 213. <u>P 4<sub>1</sub> 3 2</u> | 214. <u>I 41 3 2</u>            |
| 41. <i>4 b a 2</i> | 42. Fmm 2                   | 43. F d d 2              | 44. Im m 2                    | 45.1ba2            |                                                            |                                     | Trigonal                                   |                                     |                                            | 215. P-4 3 m             | 216. F-4 3 m             | 217. <u>I -4 3 m</u> | 218. P-4 3 n                    | 219. F-43 c                     |
| 46. <u>1 m a 2</u> | 47. <u>Pmmm</u>             | 48. <u>P n n n</u>       | 49. Pccm                      | 50. <u>Pban</u>    | (For the R-cen                                             | tred cells with hexago              | nal axes and the larger                    | H-centred trigonal ce               | lls, click here)                           | 220.1-43d                | 221. Pm-3m               | 222. <u>P n -3 n</u> | 223. Pm-3 n                     | 224. Pn-3 m                     |
| 51. <u>P m m a</u> | 52. <u>P n n a</u>          | 53. <u>Pmna</u>          | 54. <u>P c c a</u>            | 55. Pbam           | 143. <u>P 3</u>                                            | 144. <u>P 3</u> 1                   | 145. <u>P 32</u>                           | 146. <u><b>R 3</b></u>              | 147. <u>P - 3</u>                          | 225. Fm-3m               | 226. Fm-3 c              | 227. <u>F d -3 m</u> | 228. <u>F d -3 c</u>            | 229. Im -3 m                    |
| 56. <u>Pccn</u>    | 57. <u>Pbcm</u>             | 58. <u>P n n m</u>       | 59. <u>P m m n</u>            | 60. <u>Pbcn</u>    | 148. <u>R +3</u>                                           | 149. <u>P 3 1 2</u>                 | 150. <u>P 3 2 1</u>                        | 151. <u>P 31 1 2</u>                | 152. <u>P 31 2 1</u>                       | 230. <u>I a -3 d</u>     |                          |                      |                                 |                                 |
| 61. <u>Pbca</u>    | 62. <u>P n m a</u>          | 63. <u>Cmcm</u>          | 64. <u>Cmea</u>               | 65. <u>Cmmm</u>    | 153. <u>P 3<sub>2</sub> 1 2</u>                            | 154. <u>P 3<sub>2</sub> 2 1</u>     | 155. <u>R 3 2</u>                          | 156. <u>P 3 m 1</u>                 | 157. <u>P 3 1 m</u>                        |                          |                          |                      |                                 |                                 |
| 66. <u>C c c m</u> | 67. <u>Cmma</u>             | 68. <u>C c c a</u>       | 69. F m m m                   | 70. <u>F d d d</u> | 158. <u>P 3 c 1</u>                                        | 159. <u>P 3 1 c</u>                 | 160. <u>R 3 m</u>                          | 161. <u>R 3 c</u>                   | 162. <u>P +3 1 m</u>                       |                          |                          |                      |                                 |                                 |
| 71. <u>I m m m</u> | 72. [b a m                  | 73. <u>Ibca</u>          | 74. <u>I m m a</u>            |                    | 163. <u>P -3 1 c</u>                                       | 164. <u>P -3 m 1</u>                | 165. <u>P-3 c 1</u>                        | 166. <u>R -3 m</u>                  | 167. <u>R -3 с</u>                         |                          |                          |                      |                                 |                                 |
|                    |                             |                          |                               |                    |                                                            |                                     |                                            |                                     |                                            |                          |                          |                      |                                 |                                 |

From: http://img.chem.ucl.ac.uk/sgp/large/sgp.htm

All space group diagrams and tables online: http://img.chem.ucl.ac.uk/sgp/large/sgp.htm

| P 4/m m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $m D_{4h}^1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4/m m m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tetragonal    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| No. 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P 4/m 2/m 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /m Patterson sym                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ametry P4/mmm |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Origin at centre (4/n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nam)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Asymmetric unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0 \le x \le \frac{1}{2};  0 \le y \le \frac{1}{2};  0 \le z \le \frac{1}{2};$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $x \leq y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| Symmetry operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| (1) 1<br>(5) 2 0, y, 0<br>(9) 1 0, 0, 0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z (4) 4 <sup>-</sup> 0,0,z<br>0 (8) 2 x, x, 0<br>z; 0,0,0 (12) 4 <sup>-</sup> 0,0,z; 0,0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| (13) m x,0,z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (10) m x,y,0 (11) 4' 0,0<br>(14) m 0,y,z (15) m x,π,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .z; 0,0,0 (12) 4- 0,0,z; 0,0,0<br>z (16) m x,x,z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| (13) m x,0,2 (<br>Maximal non-isomory<br>I (2)P422<br>(2)P4m 11(P4<br>(2)P42w<br>(2)P4m 2<br>(2)P4m 2<br>(2)P2m 2/m 1()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>phic subgroups</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 (16) m x,x,z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |
| Maximal non-isomory<br>I [2]P422<br>[2]P4/m11(P4<br>[2]P4mm<br>[2]P4m 2<br>[2]P4m 2<br>[2]P2/m2/m1((<br>[2]P2/m2/m12/m()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (14) m 0,y,z (15) m x,x,<br>phic subgroups<br>1; 2; 3; 4; 5; 6; 7; 8<br>(m) 1; 2; 3; 4; 9; 10; 11; 12<br>1; 2; 3; 4; 13; 14; 15; 1<br>1; 2; 5; 6; 11; 12; 15; 1<br>1; 2; 5; 6; 11; 12; 15; 1<br>1; 2; 7; 8; 11; 12; 13; 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 (16) m x,x,z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |
| Maximal non-isomory<br>I [2]P422<br>[2]P4/m11(P4<br>[2]P42m<br>[2]P42m<br>[2]P42m<br>[2]P2m2<br>[2]P2m2<br>[2]P2m12m()<br>[2]P2/m2/m()<br>[2]P2/m2/m()<br>[2]P2/m2m()<br>[2]P2/m2m()<br>[2]P2/m2m()<br>[2]P2/m2m()<br>[2]P2/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m()<br>[2]P4/m2m()<br>[2]P4/m2m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/m()<br>[2]P4/ | (14) m 0,y,z (15) m x,x,<br>phic subgroups<br>1; 2; 3; 4; 5; 6; 7; 8<br>1/m) 1; 2; 3; 4; 9; 10; 11; 12<br>1; 2; 3; 4; 9; 10; 11; 12<br>1; 2; 3; 4; 13; 14; 15; 1)<br>1; 2; 5; 6; 9; 10; 13; 14<br>C m m m) 1; 2; 5; 6; 9; 10; 15; 16<br>= 2c); [2]P4_{5}/m m c (c' = 2c); [2]P<br>= 2a, b' = 2b)(P4/m b m); [2]C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 (16) m x,x,z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |
| (13) m x,0,2 (<br>Maximal non-isomory<br>I [2]P422<br>[2]P4m 11(P4<br>[2]P4m 2<br>[2]P2m 2/m 1<br>[2]P2/m 12/m (<br>[2]P2/m 12/m (<br>[2]P4/m cc(e'=<br>[2]C4/m m d(a',<br>[2]F4/m in w(a')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (14) m 0,y,z (15) m x,x,<br>phic subgroups<br>1; 2; 3; 4; 5; 6; 7; 8<br>1/m) 1; 2; 3; 4; 9; 10; 11; 12<br>1; 2; 3; 4; 9; 10; 11; 12<br>1; 2; 3; 4; 13; 14; 15; 1)<br>1; 2; 5; 6; 9; 10; 13; 14<br>C m m m) 1; 2; 5; 6; 9; 10; 15; 16<br>= 2c); [2]P4_{5}/m m c (c' = 2c); [2]P<br>= 2a, b' = 2b)(P4/m b m); [2]C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{4}{4\sqrt{m} cm(c'=2c); [2]C4/amd(a'=2a,b')}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
| (13) m x,0,2 (<br>Maximal non-isomory<br>I [2]P422<br>[2]P4m m<br>[2]P4m n<br>[2]P4m 2<br>[2]P2m 2[m 1]<br>[2]P2/m 12/m (<br>[2]P4m cc(c'=<br>[2]C4/m m d (a'<br>[2]F4/m in m (a'<br>Maximal isomorphic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (14) m 0.y.; (15) m x, x,<br>phic subgroups<br>1; 2; 3; 4; 5; 6; 7; 8<br>(m) 1; 2; 3; 4; 9; 10; 11; 12<br>1; 2; 3; 4; 9; 10; 11; 12<br>1; 2; 5; 6; 11; 12; 15; 1<br>1; 2; 7; 8; 11; 12; 13; 1<br>Pmmm) 1; 2; 5; 6; 10; 13; 14<br>Cmmm) 1; 2; 5; 15; 15<br>cmmm) 1; 2; 2; 15<br>cmmm) 1; 2; | $4 \qquad (16) \ m \ x, x, z$ $6$ $6$ $4$ $4 \qquad (16) \ m \ x, x, z$ $4 \qquad (16) \ m \ x, x, z$ $6$ $6$ $4 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $(16) \ m \ x, z$ $(16) \ x, z$ $(16)$ |               |
| (13) m x,0,2 (<br>Maximal non-isomory<br>I [2]P422<br>[2]P4mm<br>[2]P4m 11(P4<br>[2]P4m 2<br>[2]P2m 2[m 1(<br>[2]P2/m 12/m ()<br>[2]P4m cc(c'=<br>[2]C4/mmd (a'<br>[2]F4/min (a'<br>[2]F4/min (a'<br>[2]F4/min (a')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (14) m 0,y,z (15) m x,x,<br>phic subgroups<br>1; 2; 3; 4; 5; 6; 7; 8<br>1/m) 1; 2; 3; 4; 9; 10; 11; 12<br>1; 2; 3; 4; 9; 10; 11; 12;<br>1; 2; 3; 4; 13; 14; 15; 1)<br>1; 2; 5; 6; 10; 13; 14<br>C m m m) 1; 2; 5; 6; 9; 10; 13; 14<br>C m m m) 1; 2; 7; 8; 9; 10; 15; 16<br>= 2c); [2]P 4 <sub>5</sub> /m m c (c' = 2c); [2]P<br>= 2a, b' = 2b)(P 4/m b m); [2]C 4<br>= 2a, b' = 2b, c' = 2c)(I 4/m m m)<br>subgroups of lowest index<br>= 2c); [2]C 4/m m m (a' = 2a, b' =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $4 \qquad (16) \ m \ x, x, z$ $6$ $6$ $4$ $4 \qquad (16) \ m \ x, x, z$ $4 \qquad (16) \ m \ x, x, z$ $6$ $6$ $4 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $(16) \ m \ x, z$ $(16) \ x, z$ $(16)$ |               |
| Maximal non-isomory<br>I [2]P422<br>[2]P4/m11(P4<br>[2]P4/m11(P4<br>[2]P4/m<br>[2]P4/m2<br>[2]P2/m2/m(1)<br>[2]P2/m2/m(1)<br>[2]P2/m2/m(1)<br>[2]P2/m2/m(1)<br>[2]P4/mm(a'<br>[2]F4/mm(a'<br>[2]F4/mm(a'<br>[2]P4/mm(a')<br>Maximal isomorphic<br>[]C [2]P4/mm(a')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (14) m 0,y,z (15) m x,x,<br>phic subgroups<br>1; 2; 3; 4; 5; 6; 7; 8<br>1/m) 1; 2; 3; 4; 9; 10; 11; 12<br>1; 2; 3; 4; 9; 10; 11; 12;<br>1; 2; 3; 4; 13; 14; 15; 1)<br>1; 2; 5; 6; 10; 13; 14<br>C m m m) 1; 2; 5; 6; 9; 10; 13; 14<br>C m m m) 1; 2; 7; 8; 9; 10; 15; 16<br>= 2c); [2]P 4 <sub>5</sub> /m m c (c' = 2c); [2]P<br>= 2a, b' = 2b)(P 4/m b m); [2]C 4<br>= 2a, b' = 2b, c' = 2c)(I 4/m m m)<br>subgroups of lowest index<br>= 2c); [2]C 4/m m m (a' = 2a, b' =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $4 \qquad (16) \ m \ x, x, z$ $6$ $6$ $4$ $4 \qquad (16) \ m \ x, x, z$ $4 \qquad (16) \ m \ x, x, z$ $6$ $6$ $4 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $6 \qquad (16) \ m \ x, x, z$ $(16) \ m \ x, z$ $(16) \ x, z$ $(16)$ |               |

| CONTI                                 | NUED                         |                                            |                                                                     |                                    |                                                                                                  | No.                                                        | 123      | P 4/m m m                                               |
|---------------------------------------|------------------------------|--------------------------------------------|---------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------|---------------------------------------------------------|
| General                               | tors selecte                 | ed (1);                                    | t(1,0,0                                                             | ); r(0,1                           | ,0); 1(0,                                                                                        | 0,1); (2); (3);                                            | (5); (9) |                                                         |
| Position                              | 15                           |                                            |                                                                     |                                    |                                                                                                  |                                                            |          |                                                         |
| Multiplicit<br>Wyckoff 1<br>Sile tymm | citer.                       |                                            | C                                                                   | cordinate                          | 15                                                                                               |                                                            |          | Reflection conditions                                   |
| 16 <i>w</i>                           | (5)<br>(9)                   | x,y,z<br>I,y,Į<br>I,J,Į<br>x,J,Z           | (2) x, j<br>(6) x, j<br>(10) x, y<br>(14) x, y                      | ,2 (1                              | (3) <i>J</i> ,x,z<br>(7) <i>y</i> ,x,ž<br>1) <i>y</i> , <i>R</i> ,ž<br>5) <i>J</i> , <i>R</i> ,z | (4) y, f, z<br>(8) g, f, f<br>(12) f, x, f<br>(16) y, x, z |          | General:<br>no conditions                               |
|                                       |                              |                                            |                                                                     |                                    |                                                                                                  |                                                            |          | Special:                                                |
| 8 1                                   | .177 .                       | x.±.;<br>x.±.;                             | R, ½, Z<br>X, ½, Z                                                  | 1,X,Z<br>2,X,Z                     | 1.X.2<br>1.X.2<br>2.X.2                                                                          |                                                            |          | no extra conditions                                     |
| 8 \$                                  |                              | $_{\substack{x,0,z\\ x,0,z}}^{x,0,z}$      | 1,0,2<br>1,0,2                                                      | 0,x,t<br>0,x,t                     | 0,x,z<br>0,x,z                                                                                   |                                                            |          | no extra conditions                                     |
| 8 r                                   | 81                           | x,x,z<br>X,x,ž                             | X,X,Z<br>X,X,Z                                                      | X,X,Z<br>X,X,Z                     | X,X,Z<br>X,X,Z                                                                                   |                                                            |          | no extra conditions                                     |
| 8 q                                   | т                            | $x, y, \frac{1}{2}$<br>$x, y, \frac{1}{2}$ | R, 9, 1<br>x, 9, 1                                                  | ÿ,x,‡<br>y,x,‡                     | $y, \overline{x}, \frac{1}{2}$<br>$\overline{y}, \overline{x}, \frac{1}{2}$                      |                                                            |          | no extra conditions                                     |
| 8 p                                   | m                            | $\substack{x,y,0\\ x,y,0}$                 | $\begin{array}{c} \vec{x}, \vec{y}, 0 \\ x, \vec{y}, 0 \end{array}$ | ÿ,x,0<br>y,x,0                     | y,£,0<br>J,£,0                                                                                   |                                                            |          | no extra conditions                                     |
| 4 0                                   | m 2m .                       | x.+.+                                      | 8.1.1                                                               | $\frac{1}{2}, \pi, \frac{1}{2}$    | 1.8.1                                                                                            |                                                            |          | no extra conditions                                     |
| 4 л                                   | m 2m .                       | x,±,0                                      | 8,1,0                                                               | 9,x,§                              | 0.t.j                                                                                            |                                                            |          | no extra conditions                                     |
| 4 m                                   | <i>m</i> 2 <i>m</i> .        | x,0,±                                      | $_{x,0,\frac{1}{2}}$                                                | 0,x,±                              | 0,£,‡                                                                                            |                                                            |          | no extra conditions                                     |
| 4 1                                   | m 2m .                       | x,0,0                                      | 1,0,0                                                               | 0,x,0                              | 0,1,0                                                                                            |                                                            |          | no extra conditions                                     |
| 4 k                                   | m.2m                         | <i>x</i> , <i>x</i> , <del>§</del>         | x,x,ł                                                               | <i>I</i> , <i>x</i> , <del>]</del> | $X, \overline{X}, \frac{1}{2}$                                                                   |                                                            |          | no extra conditions                                     |
| 4 /                                   | m.2m                         | x,x,0                                      | 5,7,7                                                               | <i>1,1,0</i>                       | x,x,0                                                                                            |                                                            |          | no extra conditions                                     |
| 4 1                                   | 200.00.                      | 0,1,2                                      | 1.0,z                                                               | 0,1.7                              | 1,0,5                                                                                            |                                                            |          | hkl: h+k=2n                                             |
| 2 h                                   | 4.m.m                        | 1,1,2                                      | 1.1.2                                                               |                                    |                                                                                                  |                                                            |          | no extra conditions                                     |
| 2 g                                   | 4 <i>m</i> m                 | 0,0,2                                      | 0,0,7                                                               |                                    |                                                                                                  |                                                            |          | no extra conditions                                     |
| 2 f                                   | mmm.                         | $0, \pm, 0$                                | ±,0,0                                                               |                                    |                                                                                                  |                                                            |          | hkI: h+k=2n                                             |
| 2 e                                   | mmm.                         | 0,1,1                                      | ±,0,±                                                               |                                    |                                                                                                  |                                                            |          | hkl: h+k=2n                                             |
| 1 d                                   | 4/m.m.m                      | 1.1.1                                      |                                                                     |                                    |                                                                                                  |                                                            |          | no extra conditions                                     |
| 1 c                                   | 4/m m m                      | ±.±.0                                      |                                                                     |                                    |                                                                                                  |                                                            |          | no extra conditions                                     |
| l b                                   | 4/mmm                        | 0,0,1                                      |                                                                     |                                    |                                                                                                  |                                                            |          | no extra conditions                                     |
| 1 a                                   | 4/ <i>m</i> m m              | 0,0,0                                      |                                                                     |                                    |                                                                                                  |                                                            |          | no extra conditions                                     |
| ymmeti                                | ry of spec                   | ial proje                                  | ctions                                                              |                                    |                                                                                                  |                                                            |          |                                                         |
|                                       | 001] $p 4m$<br>b'=b<br>0,0,z |                                            |                                                                     | 4                                  | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                             | = c                                                        |          | Along [110] $p 2mm$<br>a'=i(-a+b) $b'=cOrigin at x,x,0$ |

### **EXAMPLES of INFORMATION**

- Space group number: 123
- Name: P4/mmm
- Complete name: P 4/m 2/m 2/m; showing the symmetry elements (4-fold rotation axis, mirror planes)
- Crystal system: tetragonal
- Lattice type: P (primitive)
- Site symmetry of the highest-symmetry site: D<sub>4h</sub>
- Asymmetric unit: smallest closed part of space the entire space is filled by applying all symmetry operations

CONTINUED

Origin at 0,0,z

(Continued on preceding page)

P4/mmm

#### On the second page:

- List of **possible** sites for the atoms
- These are indicated/named by: multiplicity, Wyckoff letter & site symmetry
- Not all sites are actually occupied by an atom
- On the top: general site (16u)
- At the bottom: the highest symmetry site (1a)
- Multiplicity: number of identical sites

| Gen             | erat | ors selected                                                                                          | (1);                                                                         | t(1,0,0);                                                                          | t (0,1,0)                                             | ; t(0,0                                                                     | ,1); (2);                                                | (3);                               | (5); | (9)                   |                                                |
|-----------------|------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------|------|-----------------------|------------------------------------------------|
| Wyckoff letter, |      |                                                                                                       |                                                                              | ordinates                                                                          |                                                       |                                                                             |                                                          |                                    |      | Reflection conditions |                                                |
| Site s          | u    | $ \begin{array}{cccc}  & (1) & x \\  & (5) & \bar{x} \\  & (9) & \bar{x} \\  & (13) & x \end{array} $ | , y , <del>Z</del><br>, ÿ , <del>Z</del>                                     | (2) $\vec{x}, \vec{y},$<br>(6) $x, \vec{y},$<br>(10) $x, y,$<br>(14) $\vec{x}, y,$ | $ \bar{z} = (7)  \bar{z} = (11) $                     |                                                                             | (4) y,<br>(8) $\bar{y}$ ,<br>(12) $\bar{y}$ ,<br>(16) y, | <i>x</i> , <i>z</i><br>x, <i>z</i> |      |                       | General:<br>no conditions                      |
|                 |      | (15) x                                                                                                | ,,,,                                                                         | (1.) ,,,,,,                                                                        | . ()                                                  | <i>,</i> ,, <b>,</b>                                                        | ()))                                                     | ,-                                 |      |                       | Special:                                       |
| 8               | t    | . <i>m</i> .                                                                                          | $\begin{array}{c} x,\frac{1}{2},z\\ \bar{x},\frac{1}{2},\bar{z} \end{array}$ | $\overline{x}, \frac{1}{2}, z$<br>$x, \frac{1}{2}, \overline{z}$                   |                                                       | $\frac{1}{2}, \overline{x}, z$<br>$\frac{1}{2}, \overline{x}, \overline{z}$ |                                                          |                                    |      |                       | no extra conditions                            |
| 8               | \$   | . <i>m</i> .                                                                                          | x,0,z<br>x,0,z                                                               | $\bar{x},0,z$<br>$x,0,\bar{z}$                                                     |                                                       | $0, \bar{x}, z$<br>$0, \bar{x}, \bar{z}$                                    |                                                          |                                    |      |                       | no extra conditions                            |
| 8               | r    | <i>m</i>                                                                                              | x,x,z<br>x,x,z                                                               | x,x,z<br>x,x,z                                                                     |                                                       | x, x, z<br>x, x, z                                                          |                                                          |                                    |      |                       | no extra conditions                            |
| 8               | q    | <i>m</i>                                                                                              | $\begin{array}{c} x, y, \frac{1}{2} \\ \bar{x}, y, \frac{1}{2} \end{array}$  | $\overline{x}, \overline{y}, \frac{1}{2}$<br>$x, \overline{y}, \frac{1}{2}$        | $\overline{y}, x, \frac{1}{2}$<br>$y, x, \frac{1}{2}$ | y, <del>x</del> , ½<br>ÿ, x, ½                                              |                                                          |                                    |      |                       | no extra conditions                            |
| 8               | p    | <i>m</i>                                                                                              | x,y,0<br>x̄,y,0                                                              | x̄,ȳ,0<br>x,ȳ,0                                                                    | ÿ,x,0<br>y,x,0                                        | y,x,0<br>ÿ,x,0                                                              |                                                          |                                    |      |                       | no extra conditions                            |
| 4               | о    | m 2m .                                                                                                | $x, \frac{1}{2}, \frac{1}{2}$                                                | $\bar{x}, \frac{1}{2}, \frac{1}{2}$                                                | $\frac{1}{2}, x, \frac{1}{2}$                         | $\frac{1}{2}, \bar{x}, \frac{1}{2}$                                         |                                                          |                                    |      |                       | no extra conditions                            |
| 4               | n    | m 2m .                                                                                                | $x, \frac{1}{2}, 0$                                                          | $\bar{x}, \frac{1}{2}, 0$                                                          | $\frac{1}{2}, x, 0$                                   | $\frac{1}{2}, \bar{x}, 0$                                                   |                                                          |                                    |      |                       | no extra conditions                            |
| 4               | m    | m 2m .                                                                                                | x,0,½                                                                        | $\bar{x}, 0, \frac{1}{2}$                                                          | $0, x, \frac{1}{2}$                                   | $0, \bar{x}, \frac{1}{2}$                                                   |                                                          |                                    |      |                       | no extra conditions                            |
| 4               | ı    | m 2m .                                                                                                | x,0,0                                                                        | <b>x</b> ,0,0                                                                      | 0, <b>x</b> ,0                                        | 0, <b>x</b> ,0                                                              |                                                          |                                    |      |                       | no extra conditions                            |
| 4               | k    | <i>m</i> .2 <i>m</i>                                                                                  | $x, x, \frac{1}{2}$                                                          | $\bar{x}, \bar{x}, \frac{1}{2}$                                                    | $\bar{x}, x, \frac{1}{2}$                             | $x, \overline{x}, \frac{1}{2}$                                              |                                                          |                                    |      |                       | no extra conditions                            |
| 4               | j    | <i>m</i> .2 <i>m</i>                                                                                  | x,x,0                                                                        | <i>x</i> , <i>x</i> ,0                                                             | $\bar{x}, x, 0$                                       | x, <del>x</del> , 0                                                         |                                                          |                                    |      |                       | no extra conditions                            |
| 4               | i    | 2 <i>m m</i> .                                                                                        | $0, \frac{1}{2}, z$                                                          | $\frac{1}{2}, 0, z$                                                                | $0, \frac{1}{2}, \bar{z}$                             | $\frac{1}{2},0,\bar{z}$                                                     |                                                          |                                    |      |                       | hkl: h+k=2n                                    |
| 2               | h    | 4 <i>m</i> m                                                                                          | $\frac{1}{2}, \frac{1}{2}, z$                                                | $\frac{1}{2}, \frac{1}{2}, \overline{z}$                                           |                                                       |                                                                             |                                                          |                                    |      |                       | no extra conditions                            |
| 2               | 8    | 4 <i>m m</i>                                                                                          | 0,0, <i>z</i>                                                                | 0,0, <i>ī</i>                                                                      |                                                       |                                                                             |                                                          |                                    |      |                       | no extra conditions                            |
| 2               | f    | mmm.                                                                                                  | 0, <u>1</u> ,0                                                               | ¥,0,0                                                                              |                                                       |                                                                             |                                                          |                                    |      |                       | hkl: h+k=2n                                    |
| 2               | e    | mmm.                                                                                                  | $0, \frac{1}{2}, \frac{1}{2}$                                                | $\frac{1}{2},0,\frac{1}{2}$                                                        |                                                       |                                                                             |                                                          |                                    |      |                       | hkl: h+k=2n                                    |
| 1               | d    | 4/ <i>m m m</i>                                                                                       | $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$                                      |                                                                                    |                                                       | •                                                                           |                                                          |                                    |      |                       | no extra conditions                            |
| 1               | с    | 4/ <i>m m m</i>                                                                                       | ½,½,0                                                                        |                                                                                    |                                                       |                                                                             |                                                          |                                    |      |                       | no extra conditions                            |
| 1               | b    | 4/ <i>m m m</i>                                                                                       | $0, 0, \frac{1}{2}$                                                          |                                                                                    |                                                       |                                                                             |                                                          |                                    |      |                       | no extra conditions                            |
| 1               | а    | 4/ <i>m m m</i>                                                                                       | 0,0,0                                                                        |                                                                                    |                                                       |                                                                             |                                                          |                                    |      |                       | no extra conditions                            |
| Alc             |      | try of spec<br>[001] p 4n<br>b' = b                                                                   |                                                                              | jections                                                                           |                                                       |                                                                             | )] p2mr<br>b'=c                                          | n                                  |      |                       | Along [110] $p 2n$<br>$a' = \frac{1}{2}(-a+b)$ |

mm b' = cOrigin at x, x, 0

Origin at x,0,0

### EXAMPLE: Potassium tetrachloroplatinate(II): K<sub>2</sub>PtCl<sub>4</sub>

Space group: P4/mm (No. 123) Lattice parameters: a = b = 7.023Å, c = 4.1486Å Atomic positions: Pt 1a: 0,0,0 K 2e: 0, $\frac{1}{2}$ , $\frac{1}{2}$ CI 4j: x,x,0 ; x = 0.23247

- (a) Draw the unit cell with the atoms.
- (b) Draw the projection of the unit cell in *c*-axis direction.
- (c) Theoretical density is 3.37 g/cm<sup>3</sup>. Calculate Z? ( $N_A = 6.022 \times 10^{23}$ ; atomic weights: K 39.098; Pt 195.22; Cl 35.453)
- (d) Calculate the distances: Pt-Pt, Pt-K, Pt-Cl.
- (e) What is the coordination number of platinum?
- (f) What is the site symmetry of platinum ?

| P 4/m m n                                                                                                                                                                                                                                                                                         | $n D_{4h}^1$                                                                                                                                                                                                          | 4/m m m                                                                                                                                                       | Tetragonal    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| No. 123                                                                                                                                                                                                                                                                                           | P 4/m 2/m 2/m                                                                                                                                                                                                         | Patterson sy                                                                                                                                                  | mmetry P4/mmm |
| 4                                                                                                                                                                                                                                                                                                 | 1945                                                                                                                                                                                                                  |                                                                                                                                                               |               |
| 4<br>-                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                       |                                                                                                                                                               |               |
| Origin at centre (4/m                                                                                                                                                                                                                                                                             | m.m)                                                                                                                                                                                                                  |                                                                                                                                                               |               |
| Asymmetric unit 0                                                                                                                                                                                                                                                                                 | $\leq x \leq i;  0 \leq y \leq i;  0 \leq z \leq i;  x \leq y$                                                                                                                                                        |                                                                                                                                                               |               |
| Symmetry operations                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                       |                                                                                                                                                               |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                              | 2) 2 0,0,z (3) 4* 0,0,z<br>6) 2 x,0,0 (7) 2 x,x,0<br>0) m x,y,0 (11) 4* 0,0,z; 0,0                                                                                                                                    | $(4) 4^{-} 0,0,z$<br>(8) 2 x, x, 0<br>$(12) 4^{-} 0,0,z; 0,0,0$                                                                                               |               |
| (13) m x,0,z (1                                                                                                                                                                                                                                                                                   | 4) m 0,y,z (15) m x,π,z                                                                                                                                                                                               | ,0 (12) 4 <sup>-</sup> 0,0,z; 0,0,0<br>(16) m x,x,z                                                                                                           |               |
| (13) m x,0,z (1<br>Maximal non-isomorpl<br>I [2]P422<br>[2]P4m m<br>[2]P4m m<br>[2]P4m 2<br>[2]P2m 2/m 1(P                                                                                                                                                                                        | <pre>4) m 0.y.z (15) m x.x.z  hic subgroups 1; 2; 3; 4; 5; 6; 7; 8 u) 1; 2; 3; 4; 9; 10; 11; 12 1; 2; 3; 4; 13; 14; 15; 16 1; 2; 5; 6; 11; 12; 15; 16 1; 2; 7; 8; 11; 12; 13; 14 mmm) 1; 2; 5; 6; 9; 10; 13; 14</pre> | .0 (12) 4 <sup>-</sup> 0.0.2; 0.0.0<br>(16) m x,x,z                                                                                                           |               |
| (13) m x,0,z (1<br>Maximal non-isomorph<br>I [2]P 422<br>[2]P 4/m 11 (P 4/n<br>[2]P 42m<br>[2]P 42m<br>[2]P 42m<br>[2]P 24m 2<br>[2]P 2/m 2/m 1 (P,<br>[2]P 2/m 12/m (C                                                                                                                           | 4) m 0.y.z (15) m x.x.z<br>hic subgroups<br>1; 2; 3; 4; 5; 6; 7; 8<br>u) 1; 2; 3; 4; 9; 10; 11; 12<br>1; 2; 3; 4; 13; 14; 15; 16<br>1; 2; 5; 6; 11; 12; 15; 16<br>1; 2; 7; 8; 11; 12; 13; 14                          | .0 (12) 4 <sup>-</sup> 0.0.2; 0.0.0<br>(16) m x,x,z                                                                                                           |               |
| Maximal non-isomorpi<br>I [2]P 422<br>[2]P 4/m 11 (P 4/r<br>[2]P 4 2m<br>[2]P 4 2m<br>[2]P 4 2m<br>[2]P 4 2m<br>[2]P 4 2m<br>[2]P 2/m 2/m 1 (P<br>[2]P 2/m 2/m 1 (P<br>[2]P 2/m 2/m 1 (P<br>[2]P 4/m cc (c'=:)<br>[2]C 4/m m d (a'=)                                                              | <pre>4) m 0.y.z (15) m x.x.z  hic subgroups</pre>                                                                                                                                                                     | (16) $m = x_i x_i z$<br>$m(c' = 2c); [2]C4/amd(a' = 2a_i)$<br>(a' = 2a, b' = 2b)(P4/amm);                                                                     |               |
| (13) m x,0,z (1<br>Maximal non-isomorph<br>I [2]P 422<br>[2]P 4m 11 (P 4h<br>[2]P 4m m<br>[2]P 4m 2<br>[2]P 2/m 1/P<br>[2]P 2/m 1/P<br>[2]P 2/m 1/P<br>[2]P 2/m 1/P<br>[2]P 4m cc (c'=:)<br>[2]C 4m m d (a'=<br>[2]F 4/m m (g'=)                                                                  | <pre>4) m 0.y.z (15) m x.x.z  iic subgroups</pre>                                                                                                                                                                     | (16) $m = x_i x_i z$<br>$m(c' = 2c); [2]C4/amd(a' = 2a_i)$<br>(a' = 2a, b' = 2b)(P4/amm);                                                                     |               |
| (13) m x,0,z (1<br>Maximal non-isomorph<br>I [2]P 422<br>[2]P 4/m 11 (P 4/n<br>[2]P 4 m m<br>[2]P 4 m m<br>[2]P 2/m 2/m (P<br>[2]P 2/m 12/m (C<br>Ha none<br>Hb [2]P 4/m cc (c'=1)<br>[2]C 4/m m d (a'=1)<br>[2]F 4/m in m (a'=1)<br>Maximal isomorphic si                                        | <pre>4) m 0.y.z (15) m x.x.z  hic subgroups</pre>                                                                                                                                                                     | (16) $m = x_i x_i z$<br>m(c' = 2c); [2]C 4/a m d(a' = 2a, i(a' = 2a, b' = 2b)(P 4/a m m);<br>(4/mm c(a' = 2a, b' = 2b, c' = 2c)(i(a' = 2a, b' = 2b, c' = 2c)) |               |
| (13) m x,0,z (1<br>Maximal non-isomorph<br>I [2]P 422<br>[2]P 4/m 11 (P 4/n<br>[2]P 4 m m<br>[2]P 4 m m<br>[2]P 2/m 2/m (P<br>[2]P 2/m 12/m (C<br>Ha none<br>Hb [2]P 4/m cc (c'=1)<br>[2]C 4/m m d (a'=1)<br>[2]F 4/m in m (a'=1)<br>Maximal isomorphic si                                        | <pre>4) m 0.y.z (15) m x.x.z  iic subgroups</pre>                                                                                                                                                                     | (16) $m = x_i x_i z$<br>m(c' = 2c); [2]C 4/a m d(a' = 2a, i(a' = 2a, b' = 2b)(P 4/a m m);<br>(4/mm c(a' = 2a, b' = 2b, c' = 2c)(i(a' = 2a, b' = 2b, c' = 2c)) |               |
| (13) m x,0,z (1<br>Maximal non-isomorph<br>I [2]P 422<br>[2]P 4/m 11 (P 4/1<br>[2]P 4 m m<br>[2]P 4 m m<br>[2]P 4 m m<br>[2]P 2/m 2/m 1 (P<br>[2]P 2/m 2/m 1 (P)<br>[2]P 2/m 2/m (Q' = 1)<br>[2]C 4/m m d (a' = 1)<br>[2]F 4/m im m (g' = 1)<br>Maximal isomorphic st<br>II (2]P 4/m m m (c' = 1) | <pre>4) m 0.y.z (15) m x.x.z  iic subgroups</pre>                                                                                                                                                                     | (16) $m = x_i x_i z$<br>m(c' = 2c); [2]C 4/a m d(a' = 2a, i(a' = 2a, b' = 2b)(P 4/a m m);<br>(4/mm c(a' = 2a, b' = 2b, c' = 2c)(i(a' = 2a, b' = 2b, c' = 2c)) |               |

| CONTI                                 | NUED                        |                                            |                                                                     |                                       |                                                                                                  | No.                                                | 123      | P 4/m m m                                               |
|---------------------------------------|-----------------------------|--------------------------------------------|---------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------|----------|---------------------------------------------------------|
| General                               | tors selecte                | ed (1);                                    | t(1,0,0                                                             | ); r(0,1                              | ,0); 1(0,                                                                                        | 0,1); (2); (3);                                    | (5); (9) |                                                         |
| Position                              | 15                          |                                            |                                                                     |                                       |                                                                                                  |                                                    |          |                                                         |
| Multiplicit<br>Wyckoff 1<br>Sile tymm | citcr.                      |                                            | C                                                                   | oordinate                             | 15                                                                                               |                                                    |          | Reflection conditions                                   |
| 16 <i>a</i>                           | (5)<br>(9)                  | x,y,z<br>X,y,Z<br>X,Y,Z<br>x,J,Z           | (2) x, j<br>(6) x, j<br>(10) x, y<br>(14) x, y                      | 1.2 (1                                | (3) <i>J</i> ,x,z<br>(7) <i>y</i> ,x,ž<br>1) <i>y</i> , <i>X</i> ,ž<br>5) <i>J</i> , <i>X</i> ,z | (4) y,x,z<br>(8) g,x,z<br>(12) f,x,z<br>(16) y,x,z |          | General:<br>no conditions                               |
|                                       |                             |                                            |                                                                     |                                       |                                                                                                  |                                                    |          | Special:                                                |
| 8 1                                   | .177.                       | X.1.7<br>X.1.7                             | 1.1.2<br>1.1.2                                                      | 3,x,z<br>3,x,ž                        | 1.X.Z<br>1.X.Z                                                                                   |                                                    |          | no extra conditions                                     |
| 8 \$                                  | . 11                        | $_{\substack{x,0,z\\ x,0,z}}^{x,0,z}$      | 1,0,2<br>1,0,2                                                      | 0,x,z<br>0,x,z                        | 0,x,z<br>0,x,z                                                                                   |                                                    |          | no extra conditions                                     |
| 8 r                                   | 81                          | x,x,z<br>X,x,ž                             | X,X,Z<br>X,X,Z                                                      | X,X,Z<br>X,X,Z                        | X,X,Z<br>X,X,Z                                                                                   |                                                    |          | no extra conditions                                     |
| 8 q                                   | т                           | $x, y, \frac{1}{2}$<br>$x, y, \frac{1}{2}$ | R, 9, 1<br>x, 9, 1                                                  | 9.x.1<br>y.x.1                        | $y, \overline{x}, \frac{1}{2}$<br>$\overline{y}, \overline{x}, \frac{1}{2}$                      |                                                    |          | no extra conditions                                     |
| 8 p                                   | 10                          | $\substack{x,y,0\\x,y,0}$                  | $\begin{array}{c} \vec{x}, \vec{y}, 0 \\ x, \vec{y}, 0 \end{array}$ | ÿ,x,0<br>y,x,0                        | y,£,0<br>J,£,0                                                                                   |                                                    |          | no extra conditions                                     |
| 4 0                                   | m 2m .                      | x.†.†                                      | 8.1.1                                                               | $\frac{1}{2}$ , $\pi$ , $\frac{1}{2}$ | 1.8.1                                                                                            |                                                    |          | no extra conditions                                     |
| 4 л                                   | m 2m .                      | x,±,0                                      | 8,1,0                                                               | 9,x,§                                 | 0.t.j                                                                                            |                                                    |          | no extra conditions                                     |
| 4 m                                   | m 2m .                      | x,0,±                                      | $_{x,0,\frac{1}{2}}$                                                | 0,x,±                                 | 0,£,‡                                                                                            |                                                    |          | no extra conditions                                     |
| 4 1                                   | m 2m .                      | x,0,0                                      | 1,0,0                                                               | 0,x,0                                 | 0,1,0                                                                                            |                                                    |          | no extra conditions                                     |
| 4 k                                   | m.2m                        | <i>x</i> , <i>x</i> , <del>§</del>         | x,x,ł                                                               | <i>I</i> , <i>x</i> , <del>]</del>    | $X, \overline{X}, \frac{1}{2}$                                                                   |                                                    |          | no extra conditions                                     |
| 4 /                                   | m.2m                        | x,x,0                                      | 5,7,7                                                               | <i>1,1,0</i>                          | x,x,0                                                                                            |                                                    |          | no extra conditions                                     |
| 4 1                                   | 200.00.                     | 0,1,2                                      | 1.0,z                                                               | 0,1.7                                 | 1,0,5                                                                                            |                                                    |          | hkl: h+k=2n                                             |
| 2 h                                   | 4mm                         | 1,1,2                                      | 1.1.2                                                               |                                       |                                                                                                  |                                                    |          | no extra conditions                                     |
| 2 g                                   | 4 <i>m</i> m                | 0, 0, z                                    | 0,0,7                                                               |                                       |                                                                                                  |                                                    |          | no extra conditions                                     |
| 2 f                                   | mmm.                        | $0, \frac{1}{2}, 0$                        | ±,0,0                                                               |                                       |                                                                                                  |                                                    |          | hkI: h+k=2n                                             |
| 2 e                                   | mmm.                        | $0, \frac{1}{2}, \frac{1}{2}$              | ±,0,±                                                               |                                       |                                                                                                  |                                                    |          | hkl: h+k=2n                                             |
| 1 d                                   | 4/m.m.m                     | 1.1.1                                      |                                                                     |                                       |                                                                                                  |                                                    |          | no extra conditions                                     |
| 1 c                                   | 4/m m m                     | ±.±.0                                      |                                                                     |                                       |                                                                                                  |                                                    |          | no extra conditions                                     |
| l b                                   | 4/mmm                       | 0,0,1                                      |                                                                     |                                       |                                                                                                  |                                                    |          | no extra conditions                                     |
| 1 a                                   | 4/ <i>m</i> m m             | 0,0,0                                      |                                                                     |                                       |                                                                                                  |                                                    |          | no extra conditions                                     |
| ymmeti                                | ry of spec                  | ial proje                                  | ctions                                                              |                                       |                                                                                                  |                                                    |          |                                                         |
|                                       | 01] $p 4m$<br>b'=b<br>0,0,z |                                            |                                                                     | 11                                    | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                             | = c                                                |          | Along [110] $p 2mm$<br>a'=i(-a+b) $b'=cOrigin at x,x,0$ |







Site symmetry of Pt: D<sub>4h</sub>

Bond lengths: Pt-Pt:  $(1-0)^{2} \cdot 4.15$ Å Pt-K:  $\sqrt{[(0.5-0)^{2} \cdot 7.023$ Å +  $(0.5-0)^{2} \cdot 4.149$ Å] = 4.08Å Pt-Cl:  $\sqrt{[(0.232-0)^{2} \cdot 7.023$ Å +  $(0.232-0)^{2} \cdot 7.023$ Å] = 2.30Å



*ab*-projectio (seen from *c*-direction)



## K<sub>2</sub>PtCl<sub>4</sub>

- $\rho = 3.37 \text{ x } 10^6 \text{ g/m}^3$
- V = 7.023 Å x 7.023 Å x 4.1486 Å = 204.62 x 10<sup>-30</sup> m<sup>3</sup>
- M = (2 x 39.098 + 195.22 + 4 x 35.453) g/mol = 415.228 g/mol
- $Z = (V \times \rho \times N_A) / M = 1$
- Distances: Pt-Pt: 4.15 Å
  - Pt-K: 4.08 Å
  - Pt-CI: 2.31 Å ( $\rightarrow$  chemical bond)
- CN(Pt) = 4
- Pl site symmetry: D<sub>4h</sub>

## **EXAMPLE: Chromium oxychloride CrOCI**

Space group *Pmmn* (No. 59)

Lattice parameters: a = 3.88 Å, b = 3.20 Å, c = 7.72 Å (Z = 2)

| Atomic positions: | Cr | 2 <i>a</i> | <i>z</i> = 0.109 |
|-------------------|----|------------|------------------|
| -                 | CI | 2b         | <i>z</i> = 0.327 |
|                   | 0  | 2b         | <i>z</i> = 0.960 |

(a) Draw the unit cell.

- (b) Give for chromium: bond lengths
  - coordination numbers
  - site symmetry

(c) Calculate BVS for chromium. [R<sup>0</sup> values: Cr<sup>III</sup>-O<sup>-II</sup>: 1.724, Cr<sup>III</sup>-Cl<sup>-I</sup>: 2.08]



[2]Amma(Cmcm); [2]Bmmb(Cmcm); [2]Cmmm; [2]Immm; [2]Pmmb(2a'=a)(Pmma); [2]Pmma(2b'=b)

Pmmn



#### **Chromium bonding**

2xCr-Cl:  $\sqrt{\{(0.891-0.673)x7.72 \text{ Å}\}^2 + \{0.5x3.20 \text{ Å}\}^2 = 2.3222 \text{ Å}$ 2xCr-O:  $\sqrt{\{(0.960-0.891)x7.72 \text{ Å}\}^2 + \{0.5x3.88 \text{ Å}\}^2 = 2.0118 \text{ Å}$ 2xCr-O:  $\sqrt{\{[(1-0.891)+0.04]x7.72 \text{ Å}\}^2 + \{0.5x3.20 \text{ Å}\}^2 = 1.9706 \text{ Å}$ 

CN(Cr) = 6

Cr site symmetry: C<sub>2v</sub>

BVS(Cr): +2.985



### **CrOCI:** simulated XRD pattern based on the structure data

