31C01100 Taloustieteen matemaattiset menetelmät - Mathematics for Economists
Aalto University - Fall 2021
Michele Crescenzi
TA: Hung Le

Solutions to Problem Set 0

Exercise 1

Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is discontinuous at $x=1$ and $x=0$ but continuous at every other point of its domain.
Answer. An example is the following:

$$
f(x)= \begin{cases}2 & \text { if } x=0,1 \\ 0 & \text { otherwise }\end{cases}
$$

Exercise 2

Calculate the first derivative of each of the following functions:

1. $f(x)=x^{a}$, with $a>0$;
2. $f(x)=e^{a x}$, with $a>0$;
3. $f(x)=(3 x+2)^{3}$;
4. $f(x)=\frac{3 x}{x^{2}+1}$;
5. $f(x)=4 e^{-3 x}$;
6. $f(x)=x \ln x$.

Answer.

1. $f^{\prime}(x)=a x^{a-1}$
2. $f^{\prime}(x)=a e^{a x}$
3. $f^{\prime}(x)=3(3 x+2)^{2} \times 3=9(3 x+2)^{2}$
4. $f^{\prime}(x)=\frac{3\left(x^{2}+1\right)-3 x(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{3\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{2}}$
5. $f^{\prime}(x)=-12 e^{-3 x}$
6. $f^{\prime}(x)=\ln x+1$

Exercise 3

Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=x-x^{3}$. Find all the points at which the function attains:

1. a local maximum;
2. a local minimum;
3. a global maximum;
4. a global minimum.

Answer.

1. Local maximum: $f(x)=\frac{2}{3 \sqrt{3}}$ at $x=\frac{1}{\sqrt{3}}$;
2. Local minimum: $f(x)=-\frac{2}{3 \sqrt{3}}$ at $x=-\frac{1}{\sqrt{3}}$
3. No global maximum;
4. No global minimum.

Exercise 4

Let $f: I \rightarrow \mathbb{R}$ be a function defined over an interval $I \subseteq \mathbb{R}$. We say that f is convex if, for all $x, y \in I$, and all $a \in[0,1]$, we have

$$
f(a x+(1-a) y) \leq a f(x)+(1-a) f(y)
$$

Furthermore, we say that f is concave if, for all $x, y \in I$, and all $a \in[0,1]$, we have

$$
f(a x+(1-a) y) \geq a f(x)+(1-a) f(y)
$$

For each of the following functions, determine whether it is convex or concave.

1. $f(x)=3 x^{2}$
2. $f(x)=e^{x}$
3. $f(x)=2+x$
4. $f(x)=-e^{x}$
5. $f(x)=\log x$
6. $f(x)=x^{3}-3 x$

Answer.

1. Convex
2. Convex
3. Both concave and convex
4. Concave. Recall that if $f(x)$ is convex, then $-f(x)$ is concave

5. Concave

6. If we consider the entire domain \mathbb{R}, the function is neither concave nor convex. However, we can find regions of the domain over which the function is either concave or convex. Specifically, $f(x)$ is concave over the interval $(-\infty, 0]$, and convex over $[0,+\infty)$
