TENTATIVE LECTURE SCHEDULE

		Date	Торіс
1.	Mon	13.09.	Course Introduction & Short Review of the Elements
2.	Wed	15.09.	Periodic Properties & Periodic Table & Main Group Elements (starts)
3.	Fri	17.09.	Short Survey of the Chemistry of Main Group Elements (continues)
4.	Mon	20.09.	Zn + Ti, Zr, Hf & Atomic Layer Deposition (ALD)
5.	Wed	22.09.	Transition Metals: General Aspects & Pigments
6.	Mon	27.09.	Ag, Au, Pt, Pd & Catalysis (Antti Karttunen)
7.	Wed	29.09.	Redox Chemistry
8.	Mon	04.10.	Crystal Field Theory
9.	Wed	06.10.	V, Nb, Ta & Metal Complexes & MOFs
10.	Fri	08.10.	Cr, Mo, W & 2D materials
11.	Mon	11.10.	Mn, Fe, Co, Ni, Cu & Magnetism & Superconductivity
12.	Wed	13.10.	EXTRA
13.	Fri	15.10.	Resources of Elements & Rare/Critical Elements & Element Substitutions
14.	Mon	18.10.	Lanthanoids + Actinoids & Luminescence (Down/Upconversion)
15.	Wed	20.10.	Inorganic Materials Chemistry Research

EXAM: Thu Oct. 28, 2021

PRESENTATION TOPICS/SCHEDULE

- Wed 06.10. Nb: Toivonen Fri 08.10. Mo: Ahmed, Shamshad, Svinhufvud Mon 11.10. Majaniemi, Thakur, Ahkiola Mn: Ichanson, Locqueville, Olsio Ru: Wed 13.10. Co: Ekholm, Olander, Syväniemi Cu: Kolawole, Nguyen, Munib Kovanen, Ogunyemi Fri 15.10. In:
 - Te: Huhtakangas, Wallin, Kaarne
- Mon 18.10. Eu: Sonphasit, Tuisku
 - Nd: Jussila, Siuro, Perttu
 - U: Sinkkonen, Wennberg, Partanen

INSTRUCTIONS for SEMINAR PRESENTATIONS

- Presentation (~20 min) is given in a group of two or three persons
- It is evaluated in the scale: 15 ~ 25 points
- Presentation is given in English, and the slides are put up in MyCourses afterwards (by Maarit)
- Content of the presentation:
 - ELEMENT: discovery, origin of name, abundancy, world production, special features if any, etc.
 - CHEMISTRY: position in Periodic Table, electronic configuration, oxidation states, metal and ionic sizes, reactivity, etc.
 - **COMPOUNDS:** examples of important compounds, their properties and applications, etc.

- SPECIFIC FUNCTIONALITIES/APPLICATIONS: Two or three examples of exciting topics/functionalities/applications related to the element or its compounds. If possible, please try to clarify/discuss why this chosen topic/functionality/application is specific to the element. For this, you will be given one or two scientific articles for a reference, and you should search from literature couple of more (recent) articles to be discussed in the presentation.

QUESTIONS: Lecture 8

- In octahedral crystal field, transition metal cations with the electron configurations of d⁴, d⁵, d⁶ and d⁷ have the choice of showing two different spin states, high-spin state or low-spin state. Give the electron configurations for which the same applies in tetrahedral crystal field.
- How many unpaired electrons the following ions have in high-spin state in
 (a) octahedral, and (b) tetrahedral crystal fields: Cr³⁺, Mn²⁺, Fe²⁺ and Co⁺²?
- For which of the following ions (assume high-spin) would you expect to see (strong) Jahn-Teller distortion: Cr³⁺, Mn³⁺, Fe³⁺, Co³⁺, Cu²⁺. Explain why!

Crystal (or ligand) field **SPLITTING of d** (or f) **ORBITAL** energies

COLOURS of d-BLOCK METAL IONS

- partly filled *d*-orbitals
- electrons can transfer from one *d*-orbital to another
- energy needed for the transfer is small
- corresponds to visible light wavelengths
- ions absorb certain wavelengths within the visible light spectrum
- if ion absorbs certain colour (e.g. red) the transmitted or reflected light contains relatively more other colours (blue and green), and the ion looks coloured (bluish green)
- ions with empty or full orbitals (d⁰ ja d¹⁰) are colourless
 - ions with half-filled orbitals (*d*⁵) are colourless or faintly coloured

CRYSTAL (or LIGAND) FIELD THEORY

- Electron configuration of n-period transition metal (T): ns² (n-1)d^x
- For free T atom: all d-orbitals degenerated (= have the same energy)
- For T surrounded by neighbours (crystal, molecule or solution):
 ns² electrons and possibly also a portion of the d-electrons (y) participate in the formation of the chemical bond

 \rightarrow T^{(2+y)+}: d^{x-y}

- Portion of d-electrons (x-y) remain non-bonded
- These remaining d-electrons are the source of exciting properties

WHEN the T atom is BONDED:

• Each T atom (cation) likes simultaneously to:

(1) get the nearest-neighbour anions (e.g. O²⁻) as close as possible (such that the bond can form)

(2) keep the non-bonded d-electrons as far as possible from the nearest-neighbour anions (to minimize electron-anion repulsion)

 $\rightarrow\,$ this repulsion determines the orientation of the d-orbitals related to the nearest-neighbour anions

- All the five d-orbitals feel the repulsion → energy increased in comparison to the energy level in free T atom
- d-orbitals that are closest to the nearest-neighbour anions feel the strongest repulsion and are with the highest energy, while those that are farther are with the lower energy
- d-orbitals have different shapes and spatial orientations

 → energies of the orbitals split (△) when the T cation is
 surrounded by anions (i.e. degeneration of the d orbitals disappears)

Octahedral crystal / ligand field

- three d orbitals (d_{xy}, d_{yz} ja d_{zx}) orient towards the empty spaces between the anions \rightarrow lower energy (2/5 Δ_o) t_{2g} orbitals
- two d-orbitals (d_{z2} ja d_{x2-y2}) orient towards the anions \rightarrow higher energy (3/5 Δ_o) e_g orbitals

- 4 anions/ligands around transition metal T cation
- compared to octahedral case, splitting is less: typically $\Delta_{tet} = 4/9 \Delta_{oct}$ for the same metal/anion pair

How the d electrons occupy the splitted orbitals?

Two contadictory goals:

(1) Minimum energy \rightarrow low spin (if large Δ)

(2) Hund's rule (avoid electron pairs) \rightarrow high spin (if small Δ)

As $\Delta_{tet} = 4/9 \Delta_{oct}$, tetrahedral case almost always high-spin

Let's consider the OCTAHEDRAL case

(in your lecture exercise you will consider the tetrahedral case)

SPECTROCHEMICAL SERIES Empirically found order for ligands/anions Ligands in the order of the magnitude of splitting Δ they produce Below is just part of the series $CO > CN^{-} > NO^{2-} >> O^{2-} >> H_2O > OH^{-} > F^{-} > N^{3-} > NO^{3-} > CI^{-} > SCN^{-} > S^{2-} > Br^{-} > I^{-}$ π donors π acceptors **EXAMPLE:** For O^{2-} : Δ is still relatively small \rightarrow high-spin configurations common in oxide materials EXAMPLE: Fe²⁺: d⁶ - $[Fe(H_2O)_6]^{2+}$: high-spin \rightarrow paramagnetic - $[Fe(CN)_6]^4$: low-spin \rightarrow diamagnetic

Magnitude of the splitting energy depends also on:

(1) Transition metal T itself

- 50% larger for 4d metals than for 3d metals
- 25% larger for 5d metals than for 4d metals \rightarrow 4d and 5d metals almost always: low-spin

(2) Oxidation state of T

- With increasing oxidation state of T
 - \rightarrow anions become closer
 - \rightarrow larger repulsion between d electrons and anions \rightarrow larger Δ
- 3d metals: when $T^{2+} \rightarrow T^{3+}$, Δ is doubled

(3) Number of anions/ligands

- The more ligands the larger Δ : $\Delta_{tet} \approx$ 4/9 x Δ_{oct}

Crystal Field Stabilization Energy (CFSE)

For example: octahedral crystal field

- each t_{2q} electron stabilizes (relatively) the compound
- each eg electron destabilizes (relatively) the compound

Number of d electrons

How CFSE is seen in ionic radius

- FOR EXAMPLE: 3d metals in octahedral coordination
- At a fixed oxidation state, ionic radius decreases from left to right
- HOWEVER: each electron in e_g orbital increases the ionic radii
- Ionic radius depends on spin state !

Jahn–Teller Effect (or Distortion)

- 1937: Hermann Arthur Jahn & Edward Teller
- Important in explaining: spectroscopy, stereochemistry, crystal chemistry, solid-state physics and materials science
- All is explained by the repulsions between ligands/anions and electrons at outer-most orbitals
- Crystal field effect: ligands raise the (closer) orbital energy
- Jahn-Teller effect: electrons at the higher-energy orbital push the ligand/anion farther
- JT effect is most visible in octahedral environment when there is different electron occupancies at the two e_g orbitals (as the ligands/anions come closest to these orbitals)
 → Distortion (typically elongation) of the octahedron

Distorted

We come back to this when we discuss high-temperature superconducting copper oxides later in this course

