Statistical Mechanics
FO415

Fall 2021, lecture 3
Correlations & Dissipation



2.t

Let us turn this into an exercise in gambling. You play heads and tails (toss a coin, and

T k h 2 guess the outcome: win or lose the coin). Three questions: you start with 10 coins. Give
a e O m e an argument how the distribution of times it takes for you to lose all your coins looks like.
What happens if you play till you have zero, or until you won all the 10 coins of your

friend? Let us now consider the case where the coin is not fair: the fractional Brownian

motion, where the subsequent outcomes are correlated (positively or negatively). How does
that influence qualitatively those outcomes?

"-- the distribution of times it takes to lose all the money, must be zero when the number of
tosses is less than 10, because it is impossible to lose 10 coins in less than 10 tosses. The
distribution must also be zero when the number of tosses is odd."

"For random walk, the expectation value of distance from starting point after N steps is sqrt(N)*L_step. This
would mean that the most likely number of throws and guesses would be N = 100."

“If we were to forcefully play the game to an end, the game might in reality end much sooner, or much later
than after 100 throws. The RMS relation is just a statistical estimate, and in reality the number of throws can
vary a lot."

"Weighted coin has a considerable effect on the probability distribution especially in the no-win-
scenario where long games allows even small correlations to be noticeable. If a win is more probable,
then games without a win condition tend to go on way longer and to infinity perhaps. If loses are
more probable, then long games tend to happen a lot less often."

"This problem is known as the “Gambler’s ruin” in stochastics. It can be modelled using
Markov chains to calculate e.g., mean passage times through certain states of interest. "



Comments:

The first question is actually a so-called First Passage problem. For an
unbounded domain (your friend is immensely rich so you can win ad
infinitum) the average time is... infinite. That Is b/c the first passage
time (to reach zero) t scales with an exponent of -3/2 (is a power-law).
You may note that this is related to the Gaussian distribution of -1/2
exponent, and the FP time is its derivative. “Diffusive flux”.

fBm: trends and anti-trends



Correlation functions

“Fields” s(x,y): how to find
regularities?

O (p) = (§(x,1)S(x +1,1))

Clr,7) = {5(x,t)S(x+r,t+7)).

s: height, magnetization, activity..

Limiting behaviors (1, x —)!

Scale-free behavior (2"9 order
phase transitions).

Check Google Maps for s(x,y)...
Retkeilypaikka...

ig. 10.1 Phnse separation m
an lming model, gquenched (abruptly
conled) from high temperatures to zero
temperature [124]. The model quickly
separates mto local blobs of up- and
down-spins, which grow and merge,
coarsening to larger blob sizes (Sec-

tion 11.4.1).
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Fig. 10.5 Power-law correlations.
The schematic correlation function of
figure 10.4 on a log—log plot, both at T:
(straight line, rq“prmﬂning the power
law € ~ r={d=2+0)) and above T
(where the dependence shifts to ' ~
e*_"“'-j ! at distances beyond the cor-
relation length £(77)). See Chapter 12.

Fig. 10.2 Surface annealing. An
STM image of a surfuce, created by
bombarding a close-pac krd gold sur-
face with nrblml.x atoms, and then
allowing the ir rrgu.u‘ surf; ther-

m Lll\ C ax ] L)ana
bara H. Cooper [{
mdividual atomic
rows each show a single step pit inside
another pit. The charactenstic mzes of
the pits and islands grow as the surface
evolves and Hattens

.



Experimental measures

X-rays, neutrons scatter (from what? Electrons,
Nuclear spins...) and produce... the Fourier Transform of the equal-time
Correlation function. How?

1p(k)|* = plk)*p(k) = fclx'(rik'xfp{x'}fclxtr‘ik'xlﬂfx}
— fdx dx’ e ") 5(x") p(x)
= fdr Ez'ik"’fdx’ pl(x )p(x" + 1)

= fdr g ikry (p(x)p(x+T1)) = -"fdr Ez‘ik"'f_'f{r}

=VC(k).

le

Fig. 10.68 X-ray scattering. A beam
of wavevector kg scatters off a density
variation p(x) with wavevector k to a
final wavevector kp + k; the intensity
of the scattered beam is proportional
to |@(k)[? [9, chapter 6]




|deal gases: equal time correlations

Easiest, illustrative case (with no Fen () T) = plx)kT [log(p(INY) — 1]
correlations). We need to compute  Hemholtz’ e |
from the FE free energy and and its derivative a= 5% = kT/m =R/

density the fluctuations, and then

consider what happens if we break Fio = Lo . e
. \P) = 5alf—po), F{p(x)} oce 7/ I%F )
the system into many sub-volumes .
(un-correlated). Distributions of free energy and
(p— o)) = — density fluctuations in equilibrium
WP P = B AV
videal ; - l -
Dirac’ delta-function: no correlations. C (r,0) = —4d(r).

B o



Enter Onsager...



Lars Onsager

Lars Onsager (November 27, 1903
— October 5, 1976): Norvegian
physicist/chemist.

Known for: electrolytes... phase
transitions... Onsager relations....

Nobel prize (in Chemistry) in 1968.




Enter Onsager...

How to treat deviations from the |
equilibrium (read: correlations)?

equilibrium decays according to the same laws as one that F]g 1D 7 Noisy decay of a fluctu-

has been produced artificially. ation. An unusual fluctuation at t = 0
will slowly decay to a more typical ther-
mal configuration at a later time 1.

Average over initial conditions, C(r,7) = {(p(x + 1, +7) = po) (p(%.1) = o))y :
. {ar-'—,ljl;l:lﬂn—,l]n___ —izY
thermal history. We get for the C T e

’ . . 5 p(x,t)],, = DV* [p(x,1)] , .
O’s regression hypothesis:

. . . . = “15" [p(r, 7] o — Po)(pi(0) — .fi'n,.}m : ;’ﬁx.l
the diffusion equation, again:
[,
b T
A rideal A 0 . . __/f \\__ .
T <df olr, T o WAL —.{J-:],I>“ Examp|8. 3D |dea| gas from the DE Fig. '1[].8.1 Detern::inisticldecui&' of
an initial state. An initial condition

with the same density will slowly decay
3 Lo Fero.

— 72 [ \
= R,DV p(r.0)],, (m(0) — r*n‘}m

ide : 1 | 1 .
_ 2 \ (0) — \H r_—u-.cﬂ]. ) = —G(r,7) = =— ( —r= fdil| .
=DV ‘.\I_Pu‘"-f’] (pi(0) '””]fm (r,T) 7=Gl(r, o VI ¢
= DV?{(p(r.t) — py)(p(0,0) — £0)) oy
= DV2CHesl(r, 1),




Susceptibility and linear response

The idea: define a measure for the
response to a perturbation.

We assume that this can be Fr(t) = — / dx f(x,t)s(x.t).
measured “based on the past” via a
response function y. Note how and

why this is linear (in f). s(x.) = [dx“ [’ dt' x(x — X't — ) F (" ).
Then FT everything, and call y as the | ST

AC susceptibility (language of
magnets).

sk, w) = vik,w)fk,w),
(Electricity: polarizability,

Magnetism: susceptibility again)



Dissipation

v splits into real and
Irr:|ggégatr(‘)yt%aeraslaagrldolfr?hXe vk, w) = [-:1:-: dt e“te Xy (x, 1) = ' (k,w) + iy (k, w)
response and to the

dissipation per cycle o wlfl? /ldl_ WP
(oscillatory force). AT B

T [y (w)]

bl
"
) 2
U.-lf_ﬂ_

)

—

I )
Y (w).

The zero-frequency limit

(electrical analogue) relates

the conductivity to limit of o= lim w2d(w)
the polarizability. W0



Static susceptibility

Define via perturbed equilibrium
(no time-dependence).

Fluctuation-dissipation relation:
susceptibility vs. correlation
function in the zero frequency
limit.

Relation of these to fluctuations in
equilibrium and their (non-
extensive) scaling.

s{x) = /clx’\.;.::x — X" f(x").
yolr) = 8C(r,0).

volk) = yik.w = 0).

keTyolk=0)= {'.:":jk =0t =10) = [dr (s(r +x)s(x))

= /clr i f[-:lx s(r + x':.*s::xj}
=V f [dr 8 ,[clx ﬁs::x':}

—13*,



Fluctuation-dissipation theorem

Susceptibility y relates to the
correlations, thus the field and its
fluctuations.

In frequency domain, the
imaginary part does the same.

Thus also dissipated power:
fluctuations are related to
dissipation.

[FYI: there is a large universe of attempts to
use this in out of equilibrium systems:

measure y and C, in order to define an
effective temperature . ]

vix,t)=—/4

(t = (0]).




Role of causality

The FT (frequency-dependent) susceptibility
has real and imaginary parts: two functions
instead of one (y(t)).

This can used (Kramers-Konig —relation) to
relate these to each other. The derivation
follows from Cauchy’s theorem in complex
analysis (with the K-K contour).

: ~ L = Imfx(w)]
X (w) = Re[X(w)] = = / t.-].lh _f

>
i

Fig. 10.12 Kramers—Krinig con-
tour. A contour O, in the complex w'
plane. The horizontal axis is Refw'] and
the vertical axis is Im[w']. The inte-
gration contour runs along the real axis
from —oo to oo with a tiny semicircu-
lar detour near a pole at w. The con-
tour is closed with a semicircle back at
infinity, where y{w') vanishes rapidly.

The contour encloses no singularities,
g0 Cauchy's theorem tells us the inte-
gral around it is zero.



2.3 Generating random walks (Sethna 2.6 p. 28) HOMEWORK (5 points)

Plesss note thet this exercize is computstional, so in order to get help with possible prob-

O I I . e W O r lems, take a laptop to the exercise session or alternatively send your code and problem
in advance to the TA. The preferred programming tool to use (from the point of view of
debugging and getting TA help) is Python, but also others are acceptable.

fa) Wrife a roufine fo generdfe an V-sfep rondom walk in d dimensions, with cach step
urdformly distribufed in the ronge (—1,/2 1/2) in coch dimension. (Generole the steps
first as an [V x d| army, then do o cumuladive sum.] Ploi 1, versus { for a few 10
ik siep random walks. Plof © versuz y for o few fwodimensional mndom walks, with
N = 10, 1000, 100000, (Try fo keep the aspect rofio of the XY plot cqual fo one.) Does
mulfiplying the number of #eps by one hundred roughly increase the nod didance by fen?

Esch random walk s different and unpredictable, but the ensemble of random walks hes
elegant, predictable properties.

(b} Write o rouline fo calculsfe the endpointz of W random walks with V sfeps each in d
dimengons. Do a scafler plof of the endpoinis of 10000 random walks wiEh N = 1 and
10, superimposed on the same plof. Nofice thef the longer random walks are disbribuled
in o arcwlaly symmetnic poffon, cven though the single sfep rondom walk N = 1 hos o
square probabilify distribufion fanzsing from the single scp range, zee Fig 210 from Seihna
p- 28}

This 15 an emergent svmmetry; even though the welker steps longer distances along the
diagonals of a square, & random walk several steps long has nearly perfect rotational
symmetry. The most useful property of random walks 15 the central limit theorem. The
endpoints of an ensemble of N step one-dimensional random walks with root-mean-square
[RMS) step-stwe a has a Gaussian or normal probability distribution as N — oo,

1
plz) = mmt—fﬁaﬁ: (1)

with & = +Na.

) Caleulafe the RMS step-size a for one-dimensional steps uniformily distribaded in (172, 1/2).
Wrife o routine thaf plots g hisfogram of the cndpoinds of W one-dimensional random walks
uith N steps and 50 Wns, along with the prediction of above squation for © in (-3, 30). Do

o kistogrom wath W = 10000 and ¥ = 1,2, 3,5, How guickly docs the Goussian disiribulion
become o good appromimation fo the random walk?



Take home

This lecture looks at the classical measures of correlations and their decay. We shall
get back to these topics later on, but you should read thrOUﬁh the chapter and think
of conditional probabilities. Read first the Chapter and check then the lecture slides
again.

The take home consists of answering to the following three questions:

Give an example of X and Y that are correlated but there is no causal relation (X
because of Y or X because of Y happened before) between them.

Take a (time) series of the binary kind 0110110011000111.... (or subtract -1/2 from
all th? va!ju?es so that the average might become zero). When would this be
correlated:

Take instead a series like this: ...00001111111(...)111000.... This is clearly not a
random one. Now start tossing a coin (0/1) and replace according to each toss one of
the values with the new one. Does this correS\oond to the Onsager h\épothesis and
why? If the coin is biased, does the process relate to linear response:



