Programming 3:

Debugging and more inputs

Wearable technology and functional wear
Antti Salovaara

Debugging
= trouble-shooting errors (=bugs) in your code
Using the console for tracing the logic of your program

Iterative programming style
Writing programs in small pieces to verify their correctness

Pressure sensor as input
Using a timer instead of delay()

Debugging

= trouble-shooting errors (=bugs) in your code

Using the console for tracing the logic of your program

Start narrowing down the reason for error
Is the wiring correct and components working correctly?
Does the code work correctly?

® Space of all the possible problems ®
[o0 Electric errors 00 Programming errors @
Arduino @- \\jiring —@@— Compon @ @— ... —@@— Syntax errors -@@— Logical —@®— ... —@

board has ents errors
broken

Etc.

Syntax errors are rather easy because they are not hidden:
compiler reports them and tries to give a helpful error message

Missing semicolon ;

! void loop() { . :
int buttonState = digitalRedd(2) Compiler says that it expected to see , or

| L& chuttonstate — LO) { ; before keyword “if” in line 17
£ ChuttonState ==

userAlreadyPressesbutten-=.false;

} To find line 17, move your cursor and
else { find its line number in the bottom row
expected '," or ';' before 'if
This
message is
a side-effect

of the earlier
error

Arduino Uno on /dev/cu.usbmodem14101

Logical errors are hidden:
Compiler does not report errors, but its actions are not those that

you want
Quick checks: i€ (value—=—8)
Have you used = instead of == in if() tests? if (value == 0)

Are the curly brackets { } balanced correctly?

In harder cases:

We can trace the actions of the program by printing information to
a “console” (see next slide)

This helps you find out where your program’s logic goes wrong

Printing to console

Serial Monitor

Two alternative ways to
open the console

Console:

A text window in your
computer to which Arduino
can print

Printing:

Use Serial.print() to print
information to the console

Let’s try that out!

Example 1:
Reading
button

state

without GND

L E D (ground)

void setup(Q) {
pinMode(2,INPUT); // we'll use pin 2 as button input
Serial.begin(9600); // initialization of the console

d

void loop() {
// detect if user is pressing the button:
int buttonState = digitalRead(2);

if (buttonState == HIGH) {

Serial.print("Button is pr‘ess@);
3

else {
Serial.print("Button is NOT press >
}
3

\n is a “new line” character

console-read-button-state.ino

abcde T Y
n“ T & =« = = = - =« s & =
ﬁ 24 &« & « = “«- & = & =2 g
" " u
e &« & &« = - = = &« &3
" "o
4@ &« «a u = - &« = =« =4
- S5 &« & & = “- & & = =5 <
5 6-----.-----6 5
7@ @« a « = “« & &« & a7
- "
8w &« & & = “- = a =« &3
- -
- Q@ & = = = - = = = =9
- 10-----'-----10 e
a 11@a =« &« = = - = & = =1 e
2 = &« = = - - .. =12 -
E. 3@ = = = = - = & = =13 R -
™ - = & =14
15 = =« « =« | @ -
= m -
- "
- - - III.III - 17
18 = = & = - = = 18 =
- 19 =« « = = - - - 19
20w =« =« = = - - o= 20 - -
- - .
21w - 21
1 2@ = = & = - - " . w2 ot
P|n2 e 2% = =« = = - = = o= w23 -"
- LI
20m - = - - - mow w2
~ i, e

8

Once the console is open:
what happens when you

press the button?

1@ @ console-read-button-state | Arduino 1.8.13

console-read-button-state §
void setupQ) {
pinMode(2,INPUT); // we'll use pin 2 as button input
‘ Serial.begin(960@); // initialization of the console
}
|

| void loopQ) {
| // detect if user is pressing the button:
int buttonState = digitalRead(2);

if (buttonState == HIGH) {
Serial.print("Button is pressed\n");

}
else {

j Serial.print("Button is NOT pressed\n");
L3

Sketch uses 1800 bytes (5%) of program storage space. Maximum

Global variables use 226 bytes (11%) of dynamic memory, leaving

Arduino Uno on /dev/cu.usbmodem14101

/dev/cu.usbmodem14101
Send

button
button
button
button
button
button
button
button
button
button
button

pressed!
pressed!
pressed!
pressed!
pressed!
pressed!
pressed!
pressed!
pressed!
pressed!
pressed!

Autoscroll

Show timestamp

Newline 9600 baud Clear output

bool 1ledIsOn; @ @ /dev/cu.usk

void setupQ {
pinMode(2,INPUT);
pinMode(13,0UTPUT); Button pressed! LED was OFF => now turning it ON.
Button pressed! LED was ON => now turning it OFF.
Button pressed! LED was OFF => now turning it ON.
Button pressed! LED was ON => now turning it OFF.

digitalWrite(13,L0W);
ledIsOn = false;

Serial.begin(9600);
}

void loop(Q) {

int buttonState = digitalRead(2); ¢

if (buttonState == HIGH) {
Serial.print("Button pressed! ");
if (ledIsOn == true) {
Serial.print("LED was ON => now turning it OFF.\n");
digitalWrite(13,L0W);

ledIsOn = false; :
}

elzsrfal.print("LED was OFF => now turning it ON.\n");
e e Observation: the LED turns on/off in a rapid
4 sequence when the button is being pressed.
d This is why the simple solution did not work
: and we needed the new userlsPressingButton
Lines that help us variable.

understand what is going on

Add Serial.print() commands to those parts of the
code that you want to track

Print variable values to the console too
You can use Serial.print() for printing values too

Code

Serial.print("User has now pushed the button, because buttonState = ");
Serial.print(buttonState);
Serial.print("\n");

Console

User has now pushed the button, because buttonState = 1

Iterative programming style

Writing programs in small pieces to verify their correctness

12

7~ N

And Write Write Verify Verify
SO more simple that it that it
on code program works works

N

We’'ll follow this style in our last project

Pressure sensor as input

Putting together all the things that we have learned

14

Pressure level indicator;

CUNN | —

Zero (all LEDs turned off)

A more sophisticated version

1. Creating LED traffic lights
Wiring them
Testing from Arduino that they work
2. Creating the pressure sensor
Creating the sensor
Wiring it
Testing from Arduino that they work

int redPin = 13;
- int yellowPin = 12;
int greenPin = 11;

void setup(Q) {
pinMode(redPin,QUTPUT);
pinMode(yellowPin,QUTPUT);

GND pinMode(greenPin,QUTPUT);

Pins 13,12,11

digitalWrite(greenPin,HIGH);
digitalWrite(yellowPin,HIGH);
digitalWrite(redPin,HIGH);

}

void loop() {
// empty because we only test the lights

}

Write this code and upload it. If the lights turn on, then you know
that their wiring does not have faults.

To have the pressure
measurement on a
suitable level, we split
the voltage and measure
only a small part of it:
VOLTAGE D &

e o » Acduiac

SaNsor

—
¥

%‘»\FL

AO

S

gl {
t (o Simtlac Lo Swcer o) vaw

J%Ua)/u <C i OL£\< i (MQ,

Valtteri’'s drawing 17 Oct 2020
Thanks Valtteri!

330 Ohm resistor

BROWN
»
joseus
[{iE=nss
Pins 13,12,11 o
5V Sl Tel
GND T
Pin AO

\

\

1 kOhm resistor
BROWN BLACK RED

int redPin = 13;
int yellowPin = 12;
int greenPin = 11;

I int pressurePin = 0;

void setup() {
// Lights:
pinMode(redPin,OUTPUT);
pinMode(yellowPin,QUTPUT);

This code Only prints pinMode(greenPin,OUTPUT);
digitalWrite(redPin,LOW);

measurements to the console digitalWriteCyellowPin,LOW);
digitalWrite(greenPin,LOW);
Serial.begin(9600);

We can test the pressure value | Serial.print("Start\n");

range y

void loop() {
int val = analogRead(pressurePin);

Serial.print(val);
The LEDs are not used yet Seridl.printC™\n"y;

delay(500);
}

t

New lines

'Y 38 /dev

v

_ 41

No finger 41
40

60

66

Finger touch < 62
7

Now with steps 1 > |77
and 2 we have elség
Soft press < 595

verified that the oo
wiring for both the > 607

LEDs (step 1) and gg%
the pressure (step Heavy press < o
2) work! ~
lAutoscroll . Show timestamp -

We only have to
write the code
that links suitable
pressure levels to
the lights.

Combining the LEDs and pressure

e0e

e (O —

41
41
40
60
66
69
74
Al
115
600
595
601
607
801
937
944
945

Y

400700

70400 0

v

0-70 (all LEDs turned off)

Autoscroll | Show timestamp

21

Combining the
LEDs and
pressure

o0+ @

_

400700

v

0-70

70400 L

(all LEDs turned off)

int redPin = 13;
int yellowPin = 12;
int greenPin = 11;

int pressurePin = 0;

void setup() {
pinMode(redPin,OUTPUT);
pinMode(yellowPin,OUTPUT);
pinMode(greenPin,OUTPUT);

digitalWrite(redPin,HIGH);
digitalWrite(yellowPin,HIGH);
digitalWrite(greenPin ,HIGH);

Serial.begin(9600);
Serial.print("Start\n");
}

void loop(Q) {
int val = analogRead(pressurePin);
Serial.print(val);
Serial.print("\n");

if (val > 700) {
digitalWrite(redPin,HIGH);
digitalWrite(yellowPin,HIGH);
digitalWrite(greenPin ,HIGH);

}

else if (val > 400) {
digitalWrite(redPin,LOW);
digitalWrite(yellowPin,HIGH);
digitalWrite(greenPin ,HIGH);

}

else if (val > 70) {
digitalWrite(redPin,LOW);
digitalWrite(CyellowPin,LOW);
digitalWrite(greenPin,HIGH);

}

else {
digitalWrite(redPin,LOW);
digitalWrite(yellowPin,LOW);
digitalWrite(greenPin,LOW);

}

L,

New lines

Using a timer instead of delay()

= keeping your Arduino responsive (“alive”) all the time

23

What can you do with timers?
‘Do the following things 10 seconds from now”
“Do the following things every 10 seconds”
... While also doing other things in the meanwhile

In other words, timers enable simple parallel processing:
Wait for the right moment
Do other things at the same time

Arduino community has created lots of code for everyone
to use

We’'ll use a simple timer library (arduino-timer) that | found by
Googling “arduino timer”

It can be installed from Arduino community’s libraries

Udbdb

pressed

blink

O0000000e0e000000

We work iteratively:
Let’s first create a blinking LED without any button logic
Only when that works, we add the button

Blinking a LED when a button is down

We use the same
wiring as in our
toggling LED
project

GND Button

(ground)

What we’ll do:

Make a blinking LED that only blinks when user is pressing the
button

Solve the project one step at a time
Program without hard-coding

26

1. Go to Manage Libraries in
Arduino’s top menu:

l Auto Format BT

Archive Sketch
I Fix Encoding & Reload

Manage Libraries... |

Serial Monitor 4 8M
| Serial Plotter 4L |
| WIFi101 / WiFiNINA Firmware Updater I
i

Board: "Arduino Uno" >

Port: "/dev/cu.usbmodem14101 (Arduino Uno)" >

Get Board Info

Programmer: "AVRISP mkII" >

Burn Bootloader

'

2. Write “arduino-timer” to search box
3. Scroll until you find the library

| BON | Library Manager

| Type All Topic Al E arduino-timer

ADC_SAmpler

by Nitrof /github.com/NitrofMtI>

Enabl log with timer on SAM3x DUE Use the PDC capability on SAM3x arduino DUE to do fast analog reading at a define
sample rate.

More info

arduino-timer-

|

4. Select newest version.
5. Press Install
DONE!

by Michael Contreras Version 2.3.0 INSTALLED

Timer library for delaying function calls Simple non-blocking timer library for calling functions in / at / every specified units of time.
Supports millis, micros, time rollover, and compile time configurable number of tasks.

More info

Version 2.2.0 Install

arduino-timer-api
by sadrObOt
Simple cross-platform API for multitasking on timer interrupt handlers Simple cross-platform API for multitasking on Arduino based on

timer interrupt handlers. Works with AVR/Arduino, PIC32/ChipKIT platforms.
More info

Close

// Preparations for the timer:
// https://www.arduino.cc/reference/en/libraries/arduino-timer

#include <arduino-timer.h> // Include a timer library in our project
auto timer = timer_create_default(); // Create timer object
bool lightTogglerFunction(void*); // Announcement of the function that the timer will call

// Our own soft-coded variables:

Avoiding hard coding:
We define the values
for all the parameters
here. Then we don'’t
need to touch other

void setup() {
pinMode(lightPin,OUTPUT);
digitalWrite(lightPin,LOW);

// Create a timer that toggles the light in a given pin at a given interval:

timer.every(blinkSpeed,lightTogglerFunction); par'tS Of the COde at a”
: if we wish to change
void loop() { . the pin or use a
timer.tick(Q); // Update the timer . . .
3 different blinking
speed.

bool lightTogglerFunction(void*) {

if (lightState == LOW) {
digitalWrite(lightPin,HIGH);
lightState = HIGH;

}

else {
digitalWrite(lightPin,LOW);
lightState = LOW;

}

// We keep the timer active by returning "true":
return true;

}

Step 2: LED that blinks only if button is pressed

// Preparations for the timer, based on these instructions: void loop(Q) {
// h ://www. arduino reference/en/librari rduino-timer timer.tickQ; // Update the timer

// Include a timer library:

#include <arduino-timer.h>

// Create a timer object:

auto timer = timer_create_default();)
// Announce the function that the timer will call:
bool lightTogglerFunction(void*);

int buttonState = digitalRead(buttonPin);
if (buttonState == HIGH) {
if (doingBlinking == false) {
// turn on blinking:
doingBlinking = true;
timer.every(blinkSpeed,lightTogglerFunction);

// Our own soft-coded variables: }
int lightState = LOW; else {
int lightPin = 13; // If we are dlready blinking we don't need to change anything.
int blinkSpeed = 500; }
int buttonPin = 2; }
bool doingBlinking; else {
// turn off blinking:
void setup() { doingBlinking = false;
pinMode(lightPin,OUTPUT); digitalWrite(lightPin,LOW);
digitalWrite(lightPin,LOW); i
pinMode(buttonPin, INPUT); ¥
} doingBlinking =glses bool lightTogglerFunction(void*) {

if (doingBlinking == false) {
// If blinking has been turned off, stop this timer by returning "false":
return false;
}
else {
if (lightState == LOW) {
digitalWrite(lightPin,HIGH);
lightState = HIGH;
}
else {
digitalWrite(lightPin,LOW);
lightState = LOW;

Done! }

// We keep the timer active by returning "true":
return true;

Where to learn more

30

https://www.arduino.cc/reference/en/

Arduino reference

® e <[>} @] \ & www.arduino.cc/reference/en/ < | I Ot j O |

PROFESSIONAL EDUCATION Q_ Search on Arduino.cc SIGN IN

ABOUT HARDWARE SOFTWARE ¥ DOCUMENTATION ~ COMMUNITY =

o) LanGuAGE Language Reference

FUNCTIONS
Arduino programming language can be divided in three main parts: functions, values (variables and constants

YRRIABLES and structure.

STRUCTURE

LIBRARIES
FUNCTIONS

+ IOT CLOUD API
GLOSSARY For controlling the Arduino board and performing computations.

The Arduino Reference text is

licensed under a Creative Commons Digital I/O Math Random Numbers
Attribution-Share Alike 3.0 License.

Find anything that can be improved? d|g|taIRead() abs() random()
Suggest corrections and new digitalWrite() constrain() randomSeed()
documentation via GitHub. ;

pinMode() map()
Doubts on how to use Github?
Learn everything you need to know max() _
in this tutorial. ming) Bits and Bytes

Analog 1/0 i

g pow() bit()

bitClear()

analogRead() sq()
— analogReference() sqrt() bitRead()

Thank youl!

32

