ELEC-E5510 Speech Recognition

Recurrent Neural Networks in Language Modeling

Tamas Grész

Department of Signal Processing and Acoustics

Introduction

Why not just n-grams?

The french boy lived in the capital city, ?

Why not just n-grams?

The french boy lived in the capital city, Paris

Why not just n-grams?

The french boy lived in the capital city, Paris

Why not just n-grams?

The french boy lived in the capital city, Paris

e We would need at least 8-grams to cover this context

Why not just n-grams?

The french boy lived in the capital city, Paris

e We would need at least 8-grams to cover this context

e High order n-grams are rare

Why not just n-grams?

The french boy lived in the capital city, Paris

e We would need at least 8-grams to cover this context
e High order n-grams are rare

e Using large n-grams is inefficient

Why not just n-grams?

The french boy lived in the capital city, Paris

e We would need at least 8-grams to cover this context

High order n-grams are rare

Using large n-grams is inefficient

Google's English n-grams: 24 GB, up to 5-grams (that appear at
least 40 times)

Neural Language Models

e Neural Networks could be used for LM

Neural Language Models

e Neural Networks could be used for LM

e The issues that we need to solve:

Neural Language Models

e Neural Networks could be used for LM

e The issues that we need to solve:

1. How to input words to the network

Neural Language Models

e Neural Networks could be used for LM

e The issues that we need to solve:

1. How to input words to the network
2. How to remember long sequences/ distant words?

Neural Language Models

e Neural Networks could be used for LM

e The issues that we need to solve:
1. How to input words to the network
2. How to remember long sequences/ distant words?
3. How to train is efficiently?

Neural LM, input words

One-hot Encoding

Idea: Let's convert the word-id to a one-hot vector!

One-hot Encoding

Idea: Let's convert the word-id to a one-hot vector!

Paris

Fiome\ \ word V

Rome =i [[; O @ 0 0z O .5 \O]
Paris = [y 1; 8; 0 U U - @]
Italy = [0, O, 1, 0O, O, 0, .., 0]
Pranice= [0, D, O, 1; Uz Uy s 0]

Picture by Marco Bonzanini

Exercise 1.

We have a simple neural network, which knows 100K words, and contains
2 hidden layers with 100 neurons. This network uses the one-hot
embedding to process words.

Exercise 1.

We have a simple neural network, which knows 100K words, and contains
2 hidden layers with 100 neurons. This network uses the one-hot
embedding to process words.

e Question 1. What percentage of the parameters are in the input and
output layers?

Exercise 1.

We have a simple neural network, which knows 100K words, and contains
2 hidden layers with 100 neurons. This network uses the one-hot
embedding to process words.

e Question 1. What percentage of the parameters are in the input and
output layers?

e Question 2. If we want to cover 10 past words with this network
how would the percentage change?

Exercise 1.

We have a simple neural network, which knows 100K words, and contains
2 hidden layers with 100 neurons. This network uses the one-hot
embedding to process words.

e Question 1. What percentage of the parameters are in the input and
output layers?

e Question 2. If we want to cover 10 past words with this network
how would the percentage change?

e Question 3. How would you change this model to reduce its size and
increase its speed?

Exercise 1.

We have a simple neural network, which knows 100K words, and contains
2 hidden layers with 100 neurons. This network uses the one-hot
embedding to process words.

e Question 1. What percentage of the parameters are in the input and
output layers?

e Question 2. If we want to cover 10 past words with this network
how would the percentage change?

e Question 3. How would you change this model to reduce its size and
increase its speed?

e Don't forget to submit the answers in MyCourse!

Issues with the one-hot embedding

e |f we have 10M words, and 1000 hidden neurons, what is the
#parameters="7

Issues with the one-hot embedding

e |f we have 10M words, and 1000 hidden neurons, what is the
#parameters=? (10M*1000 = 10B)

e The one-hot vectors have no relation to each other (everything is
equally different)

Issues with the one-hot embedding

e |f we have 10M words, and 1000 hidden neurons, what is the
#parameters=? (10M*1000 = 10B)

e The one-hot vectors have no relation to each other (everything is
equally different)

e Solution: word2vec

Issues with the one-hot embedding

e |f we have 10M words, and 1000 hidden neurons, what is the
#parameters=? (10M*1000 = 10B)

e The one-hot vectors have no relation to each other (everything is
equally different)

e Solution: word2vec
e Basic idea: create a small continuous vector representations

Issues with the one-hot embedding

e |f we have 10M words, and 1000 hidden neurons, what is the
#parameters=? (10M*1000 = 10B)
e The one-hot vectors have no relation to each other (everything is
equally different)
e Solution: word2vec
e Basic idea: create a small continuous vector representations
e Autoencoder-based solutions (word in, same word out)

Issues with the one-hot embedding

e |f we have 10M words, and 1000 hidden neurons, what is the
#parameters=? (10M*1000 = 10B)
e The one-hot vectors have no relation to each other (everything is
equally different)
e Solution: word2vec
e Basic idea: create a small continuous vector representations

e Autoencoder-based solutions (word in, same word out)
e Similar words will have similar representation

Issues with the one-hot embedding

e |f we have 10M words, and 1000 hidden neurons, what is the
#parameters=? (10M*1000 = 10B)
e The one-hot vectors have no relation to each other (everything is
equally different)
e Solution: word2vec
e Basic idea: create a small continuous vector representations

e Autoencoder-based solutions (word in, same word out)
e Similar words will have similar representation

, Woman girl

father 4‘
won Slow

queen boy

ma slower

at king
faster slowest

dog \. mother 4‘
\ cts daughter fast
dogs Fronce
/‘ England longer
he fastest
Paris / Italy \ she long
I.ondor/ \

himself
I st
herself S
Rome

Picture by Samy Zafrany

To reduce the size of the input layer, one can switch to using sub-words
or characters.

To reduce the size of the input layer, one can switch to using sub-words
or characters.
| saw a girl with a telescope : | saw a girl with a te+le+s+c+o+pe

To reduce the size of the input layer, one can switch to using sub-words
or characters.
| saw a girl with a telescope : | saw a girl with a te+le+s+c+o+pe

There are several ways of getting the sub-word units:

To reduce the size of the input layer, one can switch to using sub-words
or characters.
| saw a girl with a telescope : | saw a girl with a te+le+s+c+o+pe

There are several ways of getting the sub-word units:

e Byte pair encoding (BPE)

To reduce the size of the input layer, one can switch to using sub-words
or characters.
| saw a girl with a telescope : | saw a girl with a te+le+s+c+o+pe

There are several ways of getting the sub-word units:

e Byte pair encoding (BPE)

e Morfessor

To reduce the size of the input layer, one can switch to using sub-words
or characters.
| saw a girl with a telescope : | saw a girl with a te+le+s+c+o+pe

There are several ways of getting the sub-word units:
e Byte pair encoding (BPE)

e Morfessor

e Sentence/word-piece

To reduce the size of the input layer, one can switch to using sub-words

or characters.
| saw a girl with a telescope : | saw a girl with a te+le+s+c+o+pe

There are several ways of getting the sub-word units:

e Byte pair encoding (BPE)
e Morfessor
e Sentence/word-piece

e All uses the basic idea of building a subword vocabulary that covers

some training text well

To reduce the size of the input layer, one can switch to using sub-words
or characters.
| saw a girl with a telescope : | saw a girl with a te+le+s+c+o+pe

There are several ways of getting the sub-word units:

e Byte pair encoding (BPE)

e Morfessor

Sentence/word-piece

All uses the basic idea of building a subword vocabulary that covers

some training text well

Using a few thousand units could cover a large vocabulary

Neural LM, long context

Using context with NNLM

Naive solution:

Using context with NNLM

Naive solution: just connect all words to the first hidden layer.

Using context with NNLM

Naive solution: just connect all words to the first hidden layer.

| word, I

Hidden layer(s)

Using context with NNLM

Naive solution: just connect all words to the first hidden layer.

| word, I

Hidden layer(s)

e Too many parameters:
#words*#neurons*context

Using context with NNLM

Naive solution: just connect all words to the first hidden layer.

| word, I
e Too many parameters:

#words*#neurons*context

Hidden layer(s) e Increasing the context grows the

network!

Using context with NNLM

Naive solution: just connect all words to the first hidden layer.

| word, I
e Too many parameters:

#words*#neurons*context

Hidden layer(s) e Increasing the context grows the

network!

e We lose the temporal info (not
time-shift invariant)

Using context with NNLM

Naive solution: just connect all words to the first hidden layer.

| word, I
e Too many parameters:

#words*#neurons*context

Hidden layer(s) e Increasing the context grows the

network!

e We lose the temporal info (not
time-shift invariant)

Recurrent neurons

Recurrent neurons: new type of neurons to handle time series through a
"recurrent” connection.

Recurrent neurons

Recurrent neurons: new type of neurons to handle time series through a
"recurrent” connection.

: Unfold I I I

-
TU T T TU

® ® ©® ®

Picture by Wikipedia

E
il

E]
G]

LSTM cell

Having a recurrent connection is not enough, we need long-term memory!

LSTM cell

Having a recurrent connection is not enough, we need long-term memory!
RNNs are vulnerable to the "vanishing gradient”. (the long-term
gradients could get close to 0, or explode)

LSTM cell

Having a recurrent connection is not enough, we need long-term memory!
RNNs are vulnerable to the "vanishing gradient”. (the long-term
gradients could get close to 0, or explode)

Layer ComponentwiseCopy Concatenate

Legend:; P

Picture by Wikipedia

Having a recurrent connection is not enough, we need long-term memory!

RNNs are vulnerable to the "vanishing gradient”. (the long-term
gradients could get close to 0, or explode)

Long Short-Term Memory

Gates (forget, input, output)

Long-term memory

Updated
C1 —>C; long-term
memory
Short-term memory
ht-l ht Output
Xt

Input word

Layer ComponentwiseCopy Concatenate

Legend: P

Picture by Wikipedia

Attention

e Recurrent models are slow and hard to train.

10

Attention

e Recurrent models are slow and hard to train.
e In LSTMs the long-term memory could be forgotten or overwritten.

10

Attention

e Recurrent models are slow and hard to train.
e In LSTMs the long-term memory could be forgotten or overwritten.
e Alternative solution: use feed-forward models with attention.

10

Attention

e Recurrent models are slow and hard to train.

e In LSTMs the long-term memory could be forgotten or overwritten.

e Alternative solution: use feed-forward models with attention.
Attention mechanism
The core idea is that the model should have access to all inputs instead
of just the last one and learn to " pay attention” to the relevant

parts/words.

10

Attention

e Recurrent models are slow and hard to train.

e In LSTMs the long-term memory could be forgotten or overwritten.

e Alternative solution: use feed-forward models with attention.
Attention mechanism
The core idea is that the model should have access to all inputs instead
of just the last one and learn to " pay attention” to the relevant
parts/words.

I'he FBI is chasing a criminal on the run .

e Bl is chasing a criminal on the run .

The HBI is chasing a criminal on the run .

The FBI ® chasing a criminal on the run.

The FBI is chasimg = criminal on the run.

The FBI 8 chasing @& criminal on the run .

The FBI is chasing a criminal on the run.
The FBI ® chasing a criminal @ the run.
The FBI is chasing @ criminal @ the run.

The FBI is chasing a criminal on the mn 10

Atte

How can we calculate the attention values?

11

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Atte

How can we calculate the attention values?

e We need 3 component: Query, Key, Value

11

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Attention

How can we calculate the attention values?

e We need 3 component: Query, Key, Value
e Query: the embedding of the last word

11

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Attention

How can we calculate the attention values?
e We need 3 component: Query, Key, Value
e Query: the embedding of the last word

e Key: the embedding of other words

11

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Attention

How can we calculate the attention values?

e We need 3 component: Query, Key, Value

Query: the embedding of the last word
e Key: the embedding of other words

Value: additional transformation of the words.

11

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Atte

How can we calculate the attention values?

e We need 3 component: Query, Key, Value

Query: the embedding of the last word
e Key: the embedding of other words

Value: additional transformation of the words.

We use Q and K to get the attention values:

Dot-product
~ =

. QK™
Attention(Q, K, V') = softmax

sum is 1
N~

Vi

MatMul

Mask (opt.)

Q K Vv

Picture from Attention is

all you need

11

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Atte

How can we calculate the attention values?

e We need 3 component: Query, Key, Value

Query: the embedding of the last word MatMul
e Key: the embedding of other words

Value: additional transformation of the words.

Mask (opt.)

We use Q and K to get the attention values:

Dot-product
A
: QKT
Attention(Q, K, V) = softmax | ————=——— [V Q K Vv
e v/ di Picture from Attention is
sum is 1 \ , all you need

Note: this it the dot-product attention variant. There are several other
ways to compute the scores (for more see Attention-Tutorial)

11

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Efficient NNLM Training

Training RNNLMs

Backpropagation through time (BPTT) is a gradient-based training
algorithm for RNNs.

12

Training RNNLMs

Backpropagation through time (BPTT) is a gradient-based training
algorithm for RNNs.

softmax _ softmax oftmax

unfold

b/ Wyn) by Wy b;v_/ Wy < by
4 Whn Whn Whn
Whn
_/ w, w, _/ w,
b Win by xhl by xhl by xh 1

Picture by Mustafa Murat Arat

softmax

A

12

Issues with training an NNLM

e Training NNLMs is a slow process.

13

Issues with training an NNLM

e Training NNLMs is a slow process.

e One huge issue is the softmax activation.

13

Issues with training an NNLM

e Training NNLMs is a slow process.
e One huge issue is the softmax activation.

e The expected/correct output is quite sparse (only one correct word)

13

Issues with training an NNLM

Training NNLMs is a slow process.

One huge issue is the softmax activation.

The expected/correct output is quite sparse (only one correct word)

e We can exploit this to reduce the required number of computations!

13

14

Select a few non-target words (negative samples).

14

Select a few non-target words (negative samples).

Pretend that the target word and the negative samples represent the
entire vocabulary.

14

Select a few non-target words (negative samples).

Pretend that the target word and the negative samples represent the
entire vocabulary.

Update only these output units.

14

Select a few non-target words (negative samples).

Pretend that the target word and the negative samples represent the
entire vocabulary.

Update only these output units.

14

Select a few non-target words (negative samples).

Pretend that the target word and the negative samples represent the
entire vocabulary.

Update only these output units.

Very similar to negative sampling.

14

Select a few non-target words (negative samples).

Pretend that the target word and the negative samples represent the
entire vocabulary.

Update only these output units.

Very similar to negative sampling.

NCE uses a Logistic Regression to determine which words are real
and which are noise (negative sample).

14

Select a few non-target words (negative samples).

Pretend that the target word and the negative samples represent the
entire vocabulary.

Update only these output units.

Very similar to negative sampling.

NCE uses a Logistic Regression to determine which words are real
and which are noise (negative sample).
Main differences:

Sigmoid transformation instead of softmax

14

Select a few non-target words (negative samples).

Pretend that the target word and the negative samples represent the
entire vocabulary.

Update only these output units.

Very similar to negative sampling.

NCE uses a Logistic Regression to determine which words are real
and which are noise (negative sample).

Main differences:

Sigmoid transformation instead of softmax
Binary Cross Entropy Loss

14

Using NNLM in ASR

How to use NNLMs?

How can we use the NNLMs in an ASR system?

15

How to use NNLMs?

How can we use the NNLMs in an ASR system?

1. By replacing the n-gram model

15

How to use NNLMs?

How can we use the NNLMs in an ASR system?

1. By replacing the n-gram model

e Possible, but complicated (the search space could explode)

15

How to use NNLMs?

How can we use the NNLMs in an ASR system?

1. By replacing the n-gram model

e Possible, but complicated (the search space could explode)
e Requires special decoders and a lot of work

15

How to use NNLMs?

How can we use the NNLMs in an ASR system?

1. By replacing the n-gram model

e Possible, but complicated (the search space could explode)
e Requires special decoders and a lot of work

2. N-best re-scoring

15

How to use NNLMs?

How can we use the NNLMs in an ASR system?

1. By replacing the n-gram model

e Possible, but complicated (the search space could explode)
e Requires special decoders and a lot of work

2. N-best re-scoring

e Easiest option, after decoding with an n-gram generate the n most
probable texts

15

How to use NNLMs?

How can we use the NNLMs in an ASR system?

1. By replacing the n-gram model

e Possible, but complicated (the search space could explode)
e Requires special decoders and a lot of work

2. N-best re-scoring

e Easiest option, after decoding with an n-gram generate the n most
probable texts
e Score n-best alternatives with NNLM to get the most probable one

15

How to use NNLMs?

How can we use the NNLMs in an ASR system?

1. By replacing the n-gram model

e Possible, but complicated (the search space could explode)
e Requires special decoders and a lot of work

2. N-best re-scoring

e Easiest option, after decoding with an n-gram generate the n most
probable texts
e Score n-best alternatives with NNLM to get the most probable one

3. Lattice re-scoring

15

How to use NNLMs?

How can we use the NNLMs in an ASR system?

1. By replacing the n-gram model

e Possible, but complicated (the search space could explode)
e Requires special decoders and a lot of work

2. N-best re-scoring

e Easiest option, after decoding with an n-gram generate the n most
probable texts
e Score n-best alternatives with NNLM to get the most probable one

3. Lattice re-scoring

e Generate a decoded lattice with n-gram

15

How to use NNLMs?

How can we use the NNLMs in an ASR system?

1. By replacing the n-gram model

e Possible, but complicated (the search space could explode)
e Requires special decoders and a lot of work

2. N-best re-scoring

e Easiest option, after decoding with an n-gram generate the n most
probable texts
e Score n-best alternatives with NNLM to get the most probable one

3. Lattice re-scoring

e Generate a decoded lattice with n-gram
e Replace the LM probabilities with NNLM estimates

15

How to use NNLMs?

How can we use the NNLMs in an ASR system?

1. By replacing the n-gram model

e Possible, but complicated (the search space could explode)
e Requires special decoders and a lot of work

2. N-best re-scoring
e Easiest option, after decoding with an n-gram generate the n most
probable texts
e Score n-best alternatives with NNLM to get the most probable one
3. Lattice re-scoring

e Generate a decoded lattice with n-gram
e Replace the LM probabilities with NNLM estimates
e Could be slow if the lattice is large

15

How to use NNLMs?

How can we use the NNLMs in an ASR system?

1. By replacing the n-gram model

e Possible, but complicated (the search space could explode)
e Requires special decoders and a lot of work

2. N-best re-scoring
e Easiest option, after decoding with an n-gram generate the n most
probable texts
e Score n-best alternatives with NNLM to get the most probable one
3. Lattice re-scoring

e Generate a decoded lattice with n-gram
e Replace the LM probabilities with NNLM estimates
e Could be slow if the lattice is large

15

What is a lattice?

A lattice could be quite simple:

16

What is a lattice?

A lattice could be quite simple:

probably 0.5 understand 1.0

this 1.0
understand 1.0

16

What is a lattice?

A lattice could be quite simple:

probably 0.5 understand 1.0

this 1.0
understand 1.0

But reality is often ugly:

16

What is a lattice?

A lattice could be quite simple:

probably 0.5 understand 1.0

this 1.0
understand 1.0

But reality is often ugly:

16

The main topics briefly explained in this presentation:

1. NNLM

2. Recurrent models
3. Attention
4

. Techniques to make the training efficient

17

	Introduction
	Neural LM, input words
	Neural LM, long context
	Efficient NNLM Training
	Using NNLM in ASR

