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Why not just n-grams?

The french boy lived in the capital city, Paris

e We would need at least 8-grams to cover this context

High order n-grams are rare

Using large n-grams is inefficient

Google's English n-grams: 24 GB, up to 5-grams (that appear at
least 40 times)
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Neural Language Models

e Neural Networks could be used for LM

e The issues that we need to solve:
1. How to input words to the network
2. How to remember long sequences/ distant words?
3. How to train is efficiently?



Neural LM, input words



One-hot Encoding

Idea: Let's convert the word-id to a one-hot vector!



One-hot Encoding

Idea: Let's convert the word-id to a one-hot vector!

Paris

Fiome\ \ word V

Rome =i [[; O @ 0 0z O .5 \O]
Paris = [y 1; 8; 0 U U - @]
Italy = [0, O, 1, 0O, O, 0, .., 0]
Pranice= [0, D, O, 1; Uz Uy s 0]

Picture by Marco Bonzanini



Exercise 1.

We have a simple neural network, which knows 100K words, and contains
2 hidden layers with 100 neurons. This network uses the one-hot
embedding to process words.



Exercise 1.

We have a simple neural network, which knows 100K words, and contains
2 hidden layers with 100 neurons. This network uses the one-hot
embedding to process words.

e Question 1. What percentage of the parameters are in the input and
output layers?



Exercise 1.

We have a simple neural network, which knows 100K words, and contains
2 hidden layers with 100 neurons. This network uses the one-hot
embedding to process words.

e Question 1. What percentage of the parameters are in the input and
output layers?

e Question 2. If we want to cover 10 past words with this network
how would the percentage change?



Exercise 1.

We have a simple neural network, which knows 100K words, and contains
2 hidden layers with 100 neurons. This network uses the one-hot
embedding to process words.

e Question 1. What percentage of the parameters are in the input and
output layers?

e Question 2. If we want to cover 10 past words with this network
how would the percentage change?

e Question 3. How would you change this model to reduce its size and
increase its speed?



Exercise 1.

We have a simple neural network, which knows 100K words, and contains
2 hidden layers with 100 neurons. This network uses the one-hot
embedding to process words.

e Question 1. What percentage of the parameters are in the input and
output layers?

e Question 2. If we want to cover 10 past words with this network
how would the percentage change?

e Question 3. How would you change this model to reduce its size and
increase its speed?

e Don't forget to submit the answers in MyCourse!
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Issues with the one-hot embedding

e |f we have 10M words, and 1000 hidden neurons, what is the
#parameters=? (10M*1000 = 10B)
e The one-hot vectors have no relation to each other (everything is
equally different)
e Solution: word2vec
e Basic idea: create a small continuous vector representations

e Autoencoder-based solutions (word in, same word out)
e Similar words will have similar representation
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To reduce the size of the input layer, one can switch to using sub-words
or characters.
| saw a girl with a telescope : | saw a girl with a te+le+s+c+o+pe

There are several ways of getting the sub-word units:

e Byte pair encoding (BPE)

e Morfessor

Sentence/word-piece

All uses the basic idea of building a subword vocabulary that covers

some training text well

Using a few thousand units could cover a large vocabulary
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Naive solution: just connect all words to the first hidden layer.

| word, I
e Too many parameters:

#words*#neurons*context

Hidden layer(s) e Increasing the context grows the

network!
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Recurrent neurons: new type of neurons to handle time series through a
"recurrent” connection.
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Having a recurrent connection is not enough, we need long-term memory!

RNNs are vulnerable to the "vanishing gradient”. (the long-term
gradients could get close to 0, or explode)
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Attention

e Recurrent models are slow and hard to train.

e In LSTMs the long-term memory could be forgotten or overwritten.

e Alternative solution: use feed-forward models with attention.
Attention mechanism
The core idea is that the model should have access to all inputs instead
of just the last one and learn to " pay attention” to the relevant
parts/words.
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Atte

How can we calculate the attention values?

e We need 3 component: Query, Key, Value

Query: the embedding of the last word
e Key: the embedding of other words

Value: additional transformation of the words.

We use Q and K to get the attention values:

Dot-product
~ =

. QK™
Attention(Q, K, V') = softmax

sum is 1
N~

Vi

MatMul

Mask (opt.)

Q K Vv

Picture from Attention is

all you need
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Atte

How can we calculate the attention values?

e We need 3 component: Query, Key, Value

Query: the embedding of the last word MatMul
e Key: the embedding of other words

Value: additional transformation of the words.

Mask (opt.)

We use Q and K to get the attention values:

Dot-product
A
: QKT
Attention(Q, K, V) = softmax | ————=——— [ V Q K Vv
e v/ di Picture from Attention is
sum is 1 \ , all you need

Note: this it the dot-product attention variant. There are several other
ways to compute the scores (for more see Attention-Tutorial)
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Training RNNLMs

Backpropagation through time (BPTT) is a gradient-based training
algorithm for RNNs.
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Training RNNLMs

Backpropagation through time (BPTT) is a gradient-based training
algorithm for RNNs.
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Issues with training an NNLM

Training NNLMs is a slow process.

One huge issue is the softmax activation.

The expected/correct output is quite sparse (only one correct word)

e We can exploit this to reduce the required number of computations!
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Select a few non-target words (negative samples).

Pretend that the target word and the negative samples represent the
entire vocabulary.

Update only these output units.

Very similar to negative sampling.

NCE uses a Logistic Regression to determine which words are real
and which are noise (negative sample).

Main differences:

Sigmoid transformation instead of softmax
Binary Cross Entropy Loss

14
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The main topics briefly explained in this presentation:

1. NNLM

2. Recurrent models
3. Attention
4

. Techniques to make the training efficient
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