Problem Set 2

Hung Le
12/10/2021

Exercise 1-PS2

For each of the following sets of vectors, determine whether they are linearly dependent or independent:

$$
\begin{aligned}
& \text { (a) }\left(\begin{array}{l}
1 \\
3 \\
4
\end{array}\right),\left(\begin{array}{c}
-2 \\
-7 \\
3
\end{array}\right),\left(\begin{array}{c}
3 \\
-2 \\
5
\end{array}\right),\left(\begin{array}{c}
-2 \\
4 \\
2
\end{array}\right) ; \\
& \text { (b) }\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right),\left(\begin{array}{c}
-3 \\
2 \\
-4
\end{array}\right) ; \\
& \text { (c) } \quad\left(\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
2 \\
5 \\
4 \\
3
\end{array}\right),\left(\begin{array}{c}
-1 \\
2 \\
7 \\
3
\end{array}\right)
\end{aligned}
$$

Exercise 1 - Solution

Proposition

If $k>n$, any set of k vectors in \mathbb{R}^{n} is linearly dependent.
(a) Linearly dependent
$A=\left(\begin{array}{cccc}1 & -2 & 3 & -2 \\ 3 & -7 & -2 & 4 \\ 4 & 3 & 5 & 2\end{array}\right)$

Exercise 1 - Solution

Proposition

A set of n vectors $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}$ in \mathbb{R}^{n} is linearly independent if and only if $\operatorname{det}\left(\begin{array}{lll}\boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{n}\end{array}\right) \neq 0$
(b) Linearly independent

$$
\begin{aligned}
& B=\left(\begin{array}{ccc}
1 & 2 & -3 \\
2 & 5 & 2 \\
3 & -1 & -4
\end{array}\right) \\
& \operatorname{det}(B)=61
\end{aligned}
$$

Exercise 1 - Solution

Proposition

Vectors $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}$ in \mathbb{R}^{n} are linearly dependent if and only if the linear system

$$
A\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{m}
\end{array}\right)=0
$$

has a nonzero solution $\left(a_{1}, \ldots, a_{m}\right)$, where A is the $n \times m$ matrix whose columns are the vectors $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}$.
(c) Linearly dependent (form the system $C x=0$, which turns out to have infinitely many nonzero solutions).
Transform C $=\left(\begin{array}{ccc}1 & 2 & -1 \\ 2 & 5 & 2 \\ 1 & 4 & 7 \\ 1 & 3 & 3\end{array}\right)$ into $\left(\begin{array}{ccc}2 & 5 & 2 \\ 0 & 1.5 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ $C x=0$

Exercise 1 - Solution

$$
\left(\begin{array}{ccc}
2 & 5 & 2 \\
0 & 1.5 & 6 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{ccc}
2 * x_{1} & 5 * x_{2} & 2 * x_{3} \\
0 & 1.5 * x_{2} & 6 * x_{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Therefore, there are infinitely many non-zero solutions.
Alternative explanation: because rank $=2<3$, there are infinitely many non-zero solutions.

Exercise 2

Consider the following subset of \mathbb{R}^{3}

$$
U:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}=x_{2}=x_{3}\right\}
$$

and the following three vectors in \mathbb{R}^{3}

$$
\boldsymbol{u}_{1}=\left(\begin{array}{l}
4 \\
1 \\
0
\end{array}\right), \quad \boldsymbol{u}_{2}=\left(\begin{array}{l}
1 \\
4 \\
0
\end{array}\right), \quad \boldsymbol{u}_{3}=\left(\begin{array}{l}
0 \\
0 \\
2
\end{array}\right)
$$

(a) Show that $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}$ and \boldsymbol{u}_{3} are linearly independent.
(b) Show that $U \subseteq \mathcal{L}\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right]$, i.e. every element of U is a linear combination of $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}$ and \boldsymbol{u}_{3}.
(c) Show that $\mathcal{L}\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right] \nsubseteq U$, i.e. not every linear combination of $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}$ and \boldsymbol{u}_{3} is an element of U.
(d) In light of the previous questions, $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}$ and \boldsymbol{u}_{3} are not a basis of U. Find a basis of U and determine the dimension of U.

Exercise 2 - Solution

(a) The determinant of $A=\left(\begin{array}{lll}\boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \boldsymbol{u}_{3}\end{array}\right)$ is different from zero.
$\operatorname{det}\left(\begin{array}{lll}4 & 1 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 2\end{array}\right)=30$
(b) Any element in U has the form

$$
\left(\begin{array}{l}
a \\
a \\
a
\end{array}\right)
$$

for some $a \in \mathbb{R}$. We need to find $c 1, c 2, c 3$ such that

$$
\left(\begin{array}{lll}
4 & 1 & 0 \\
1 & 4 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
a \\
a \\
a
\end{array}\right)
$$

Exercise 2 - Solution

$$
\begin{aligned}
&\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{lll}
4 & 1 & 0 \\
1 & 4 & 0 \\
0 & 0 & 2
\end{array}\right)^{-1}\left(\begin{array}{l}
a \\
a \\
a
\end{array}\right) \\
&=\left(\begin{array}{ccc}
4 / 15 & -1 / 15 & 0 \\
-1 / 15 & 4 / 15 & 0 \\
0 & 0 & 1 / 2
\end{array}\right)\left(\begin{array}{l}
a \\
a \\
a
\end{array}\right)
\end{aligned}
$$

After finding c1, c2, c3, we have

$$
\left(\begin{array}{l}
a \\
a \\
a
\end{array}\right)=\frac{a}{5} \boldsymbol{u}_{1}+\frac{a}{5} \boldsymbol{u}_{2}+\frac{a}{2} \boldsymbol{u}_{3}
$$

Exercise 2 - Solution

(c) It is enough to observe that $\boldsymbol{u}_{1} \in \mathcal{L}\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right]$ but $\boldsymbol{u}_{1} \notin U$. There are infinitely many correct answers for this question.
(d) Any vector of the form

$$
\left(\begin{array}{l}
a \\
a \\
a
\end{array}\right)
$$

for some $a \in \mathbb{R}$ with $a \neq 0$ is a basis of U. Clearly, U has a dimension of 1

Exercise 3

Consider the following functions and determine if they are injective, surjective or bijective.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=e^{x}$
(b) $f: \mathbb{R} \rightarrow \mathbb{R}_{++}$such that $f(x)=e^{x}$, where \mathbb{R}_{++}is the set of strictly positive real numbers
(c) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f(x, y)=x+y$
(d) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f(x, y)=x y$
(e) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f(x, y)=\min \{x, y\}$
(f) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $f\left(x_{1}, \ldots, x_{n}\right)=17$

Exercise 3 - Solution

- A function $f: A \longrightarrow B$ is one-to-one or injective if, for every $x, y \in A$,

$$
x \neq y \Longrightarrow f(x) \neq f(y)
$$

- Example: $f: \mathbb{R}_{+} \longrightarrow \mathbb{R}$ such that $f(x)=x^{2}$
- A function $f: A \longrightarrow B$ is onto or surjective if, for every $y \in B$, there exists an element $x \in A$ such that $f(x)=y$.
- Example: $f: \mathbb{R} \longrightarrow \mathbb{R}_{+}$such that $f(x)=x^{2}$
- A function $f: A \longrightarrow B$ is bijective if it is both injective and surjective.
- Example: $f: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$such that $f(x)=x^{2}$

Exercise 3 - Solution

Exercise 3 - Solution

(a) $f(x)=e^{x}$ is injective but not surjective on $\mathrm{R} \rightarrow \mathbb{R}$

Why injective? Because if $a \neq b, e^{a} \neq e^{b}$ (Further explanation: function $f(x)=e^{x}$ is increasing in x)
Why not surjective? Because what if $f(x)=e^{x}<0$, then we cannot find any x.
(b) $f(x)=e^{x}$ is bijective on $\mathbb{R} \rightarrow \mathbb{R}$

Now that we have $f(x)>0$, we can always find an x for every $f(x)$. In particular, $x=\ln (f(x))$.

General
Function
B can have many A

Injective (not surjective)
B can't have many A

Surjective (not injective) (injective, surjective)
Every B has some $A \quad A$ to B, perfectly

Exercise 3 - Solution

(c) $f(x, y)=x+y$ is surjective but not injective on $\mathbf{R}^{2} \rightarrow \mathbb{R}$

Why not injective? For example $f(2,3)=f(4,1)=5$ although $(2,3) \neq(4,1)$. Why surjective? Because for example, we have $f(x, y)=5$. We can find infinitely many pairs of (x, y) that satisfies the condition such as $(2,3)$, (2.5,2.5), etc

When we compare the definitions of injectivity and surjectivity to this question, x (in the definitions) is (x, y). y (in the definitions) is $f(x, y)$.

General Function
B can have many A

Injective
(not surjective)
B can't have many A

Surjective
(not injective)
Every B has some A

Bijective (injective, surjective)
A to B, perfectly

Exercise 3 - Solution

(d) $f(x, y)=x y$ is surjective but not injective on $\mathbb{R}^{2} \rightarrow \mathbb{R}$ Why not injective? For example $f(2,3)=f(6,1)=6$ although $(2,3) \neq(6,1)$. Why surjective? Because for example, we have $f(x, y)=6$. We can find infinitely many pairs of (x, y) that satisfies the condition such as $(2,3)$, $(-2,-3)$, etc

General
Function
B can have many A

Injective (not surjective)
B can't have many A

Surjective
(not injective)
Every B has some A

Bijective (injective, surjective)

A to B, perfectly

Exercise 3 - Solution

(e) $f(x, y)=\min \{x, y\}$ is surjective but not injective on $\mathbb{R}^{2} \rightarrow \mathbb{R}$ Why not injective? For example $f(2,3)=f(2,4)=2$ although $(2,3) \neq(2,4)$. Why surjective? Because for example, we have $f(x, y)=2$. We can find infinitely many pairs of (x, y) that satisfies the condition such as $(2,3)$, $(2,4)$, etc

General
Function
B can have many A

Injective (not surjective)
B can't have many A

Surjective
(not injective)
Every B has some A

Bijective (injective, surjective)
A to B, perfectly

Exercise 3 - Solution

(f) $f\left(x_{1}, \ldots, x_{n}\right)=17$ is neither injective nor surjective on $\mathbb{R}^{n} \rightarrow \mathbb{R}$

Basically, no matter what point $\left(x_{1}, \ldots, x_{n}\right)$ we have,the function f gives us the result of 17 .
Why not injective? For example $f(1,1 \ldots, 1)=f(2,2 \ldots, 2)=17$ although $(1,1 \ldots, 1) \neq(2,2 \ldots, 2)$.
Why not surjective? For example, when we are given a value of $f(x)$ equal 18 , we cannot find any point x. Remember, the range of $f(x)$ in this question is R.

Exercise 4

(a) Consider the example at p .17 in the slides from Lecture 5. Use the same type of argument as in the example to show that

$$
\lim _{n \rightarrow \infty} \frac{n+2}{5 n}=\frac{1}{5}
$$

(b) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be such that

$$
f(x)= \begin{cases}x^{2} & \text { if } x \neq 4 \\ 1 & \text { if } x=4\end{cases}
$$

Show that f is not continuous at $x=4$. [Hint: Have a look at the example at p .22 in the slides from Lecture 5.]

Exercise 4 - Solution

- Example. $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$
- How to check that 0 is actually the limit of this sequence?
(1) Fix a small number $\epsilon>0$
(2) Choose any positive integer N such that $N>\frac{1}{\sqrt{\epsilon}}$
(3) For any $n \geq N$, we have

$$
\left|x_{n}-L\right|=\left|\frac{1}{n^{2}}-0\right| \leq\left|\frac{1}{N^{2}}-0\right|<\left|\frac{1}{(1 / \sqrt{\epsilon})^{2}}-0\right|=\epsilon .
$$

(a) $\lim _{n \longrightarrow \infty} \frac{n+2}{5 n}=\frac{1}{5}$

For any given $\epsilon>0$, it suffices to choose $N>\frac{2}{5 \epsilon}$
$\left|x_{n}-L\right|=\left|\frac{n+2}{5 n}-\frac{1}{5}\right|=\left|\frac{2}{5 n}\right| \leq\left|\frac{2}{5 * \frac{2}{5 e}}\right|=\epsilon$

Exercise 4 - Solution

- An example of a discontinuous function is $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$
f(x)= \begin{cases}1 & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

- To see why this function is discontinuous at $x=0$, take the sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ in \mathbb{R}. This sequence converges to zero, but the sequence $\left\{f\left(\frac{1}{n}\right)\right\}_{n=1}^{\infty}$ converges to 1
(b) To prove that the function is discontinuous at $x=4$, it is sufficient to point out a sequence of x_{n} that converges to 4 but the sequence of $f\left(x_{n}\right)$ does not converge to $f(4)$. Take the sequence $\left\{4+\frac{1}{n}\right\}$. This sequence converges to 4 as n goes to infinity. Now, the sequence $\left\{\left(4+\frac{1}{n}\right)^{2}\right\}=\left\{16+\frac{1}{n^{2}}+\frac{8}{n}\right\}$ converges to 16 . But then we have $16 \neq f(4)=1$. This shows the discontinuity at $x=4$.

Exercise 5

Calculate all the partial derivatives of the following functions:
(a) $f(x, y)=a x^{b} y^{c}$
(b) $f(x, y)=a \ln (1-x)+b \ln (y)$
(c) $f(x, y)=\frac{a y^{d}}{b x^{c}}$
(d) $f(x, y, z)=e^{a x-b y}-z$
(e) $f(x, y, z)=\sqrt{x^{\frac{1}{2}}+y^{\frac{1}{3}}+5 z^{2}}$.

Exercise 5 - Solution

(a)

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=a b x^{b-1} y^{c} \\
& \frac{\partial f}{\partial y}=a c x^{b} y^{c-1}
\end{aligned}
$$

(b)

$$
\begin{gathered}
\frac{\partial f}{\partial x}=-\frac{a}{1-x} \\
\frac{\partial f}{\partial y}=\frac{b}{y}
\end{gathered}
$$

(c)

$$
\begin{gathered}
\frac{\partial f}{\partial x}=\frac{-a y^{d} b c c^{c-1}}{b^{2} x^{2 c}}=\frac{-a y^{d} c}{b x^{c+1}} \\
\frac{\partial f}{\partial y}=\frac{a d y^{d-1}}{b x^{c}}
\end{gathered}
$$

Exercise 5 - Solution

(d)

$$
\begin{gathered}
\frac{\partial f}{\partial x}=a e^{a x-b y} \\
\frac{\partial f}{\partial y}=-b e^{a x-b y} \\
\frac{\partial f}{\partial z}=-1
\end{gathered}
$$

(e)

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\frac{1}{2} \frac{1}{\sqrt{x^{\frac{1}{2}}+y^{\frac{1}{3}}+5 z^{2}}} \frac{1}{2} x^{-\frac{1}{2}} \\
\frac{\partial f}{\partial y} & =\frac{1}{2} \frac{1}{\sqrt{x^{\frac{1}{2}}+y^{\frac{1}{3}}+5 z^{2}}} \frac{1}{3} y^{-\frac{2}{3}} \\
\frac{\partial f}{\partial z} & =\frac{1}{2} \frac{1}{\sqrt{x^{\frac{1}{2}}+y^{\frac{1}{3}}+5 z^{2}}} 10 z
\end{aligned}
$$

