Statistical Mechanics
FO415

2021, summary 4

Ising model, 2nd order phase transitions



I'hiz lecture looks at the classical measures of correlations and their decay. We shall

ret back to these topics later on, but you should resd through the chapter and think of

conditional probabilities. Read first the Chepter and check then the lecture slides again.

I'he take home consists of answering to the following questions:

Give an exemple of X and Y that are correlated but there 5 no causal relation (X because
E ) e O m e of ¥ or X because of ¥ happened before) between them.

I'eke a (time) series of the binary kind 01101100011000111.... {or subtract -1/2 from all the

values so that the sverage might becoms zero). When would this be correlated?

I'eke instead & series like this: . 0000111111L(.. )111000.... This is clearly not a random

one. Now start tossing a coin (0/1) and replace according to esch toss one of the values

with the new one. Does this correspond to the Onsager hypothesis and why? If the coin

is biased, does the process relate to linear response?

As a finsl remark, try playing the game found at https://www . expunctis. com/2019/03/
07/ Not-so-random.btal. How random were you able to be?

Give an example of X and Y that are correlated but there is no causal relation:

"Number of firemen putting out a fire correlates with the amount of damage done by the fire. ."

"Amount of universities and amusement parks. Both are results of the living standard rising higher, which means
that there is more demand for universities and possibilites to build amusement parks (and also demand for them)."

Take a (time) series of the binary kind...:

"The series would be correlated, if you could predict some later part of the series based on the eariler part of the series.'

"Correlation in the given time series could be found by specifying an approriate correlation func-
tion and examining that.



Take...

Take instead a series like this...:

"Let’s say the replaced binary digit is chosen at random and that flips are independent. Over time
we would expect this action to result in random equilibrium state with zero correlation --. Any
random fluctuations from the equilibrium state caused by coin flips would be expected to decay in
the same manner as the initial state and therefore the Onsager’s hypothesis would hold. One way to
think of this is to assume that eventually all coins will be flipped and therefore the initial state has
no influence on the end state”

"In the case of biased, there is much stronger impact on the series; you could basically
manipulate the series to become what you want, with each toss causing noticeable change, thus at
least approacing linear response "

As a final remark, try playing the game..:



Step aside: Nobel Prize Physics 2021

Today, we celebrate the recent news of the
Nobel — to statistical mechanics: Giorgio
Parisi.

So what did Zio Giorgio (nickname at La
Sapienza in Rome) get his prize for?

The answer is, for many things, for
developing and applying theoretical physics
and (really) high performance computing to
various problems.

In detail?

THE NOBEL PRIZE

IN PHYSICS 2021

Syukuro Klaus Giorgio
Manabe Hasselmann Parisi

“for the physical modelling “for the discovery of the
of Earth’s climate, quantifying interplay of disorder and
variability and reliably fluctuations in physical
predicting global warming” systems from atomic
to planetary scales”

THE ROYAL SWEDISH ACADEMY OF SCIENCES



Google Scholar and the Nobel Prize
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Example, the Kardar-Parisi-Zhang equation

d:h(x,t) = vW?h + A(Vh)? + n(x, t)
An equation for a "field” h, with a linear, a non-linear, and a noise term.

Growing
interfaces, density
fluctuations of the
universe...
(Burgers’ equation
of fluid turbulence)

Image from K. A Takewchi et al. Sci. Rep. 1, 34 (2017)




ABC of phase transitions

Today’s main topics:

* The paradigmatic statistical mechanics model: the Ising model

* How to solve statistical mechanics on the computer — yet another
connection to stochastics (of/or Markov chains)

e Coarse-grain the Ising: simplest Ginzburg-Landau theory, the phase
transition in GL.

Material: Sethna, Chaikin-Lubensky, Principles of Condensed Matter
Physics, Ch 4 (start) and Ch 10 (early part).



Meet the Ising model

 Lattice model, with Hamiltonian

H=-— Z Js;5; — HZ 8;.

* These details dictate the physics: J
(coupling), H (external field), sum over (NN)
Interactions, geometry.

e Sign of J: (anti)ferromagnetic. Trees, 1D
(solvable), 2D (barely solvable), 3D (not
solvable).

» Add disorder (RF [H] (GP...), RB (J), SG (J)),
make J long-ranged, AF in a triangular lattice
(frustration)....




Ising model: (some) uses

Magnetism (parameters from
microscopic detail!).

Binary alloys: understand the
energy from the atomistic
configuration (NN, NNN...).

Liquid-gas transition: what
happens in the phase diagram
close to the critical point (liquid-

gas).
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Fig. 8.4 P-T phase diagram for
a typical material. The solid-liquid
phase boundary corresponds to a
change in symmetry, and cannot end.
The liquid-gas phase boundary typi-
cally does end; one can go continuo
from the liquid ph: to the gas pl
by increasing the pressure above
creasing the temperature above T., and
then lowering the pressure again.

Fig. 8.3 The Ising model as a bi-
nary alloy. Atoms in crystals natu-
rally sit on a lattice. The atoms in al-

loys are made up of different clements
(here, types A and B) which can ar-
range in many configurations on the
lattice.
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Fig. 8.5 H-T phase diagram for
the Ising model. Below the critieal
temperature T, there is an an up-spin
and a down-spin ‘phase’ separated by
a jump in magnetization at H = 0.
Above T, the behavior is smooth as a
function of H.



How to solve the Ising model?

Emulate the thermal evolution on
a computer: Heat Bath algorithm.

Pick a spin (at random).

Compute the cost in energy for
having it up/down AE/yown-

Pick the direction at random using
the right Boltzmann weights.

(This means we do a Markov
Chain over the spin states).

Advanced numerical methods:
Cluster algorithmes...
Parallel tempering...

Ground-state methods for
disordered systems (low
temperatures: unique ground
state for each system)...

Special computers (!).



Markov chains/fields (in general)

Properties of (memoryless)
processes for the evolution of the
occupation probabilities, p(n),.

¢ Time evolution. The probabhility vector at step n + 1 1s

pan+1)= Z Fa.p,(n), pin+1)=P-.p(n). (8.6)
]

¢ Positivity. The matrix elements are probabilities, so

Require a steady-state, and 0P <t -
conse rvation Of prOba bi | ity, ¢+ Conservation of probability. The state & must go somewhere,
Ergodic (finite convergence time) 2 Fpo =1. =

chains have a single steady-state « Not symmetric! Typically Ps # Fas.
(Frobenius-Perron theorem).

Detailed balance: convergence P.ap% = Paap?®
assured.



Example #1 of cluster algorithms

Beginning with an arbitary configuration s;, one SW cluster update cycle

* Swendsen and is:
Wang 1989 [PRL 1. Inspect all nn-states s;, s;. If s; = s;, create a bond between sites
56 (87)’ 86]: i, 7 with probability p = 1 — exp(—24) (otherwise no bond).
| 2. Construct clusters = sets of points connected by bonds.
update clusters

. . 3. Set each cluster to a random value +1.
not single spins.

)
oy

* Does this give the s
correct i oy
thermodynamics? o0

(J AV N R N

1

Thx to K. Rummukainen, HY



Check it out

Showing that the SW
algorithm exhibits
detailed balance
(between A and B)
follows essentially
from the fact that the
intermediate "C” after
the flip is arbitary and
compatible with both.

Is this a valid update? It satisfies

a) ergodicity (obvious)

P(A— B)

b) detailed balance: ————— = exp —3(Ep — E4)7?

P(B— A)

Proof. consider A — C — B, where C is some bond configuration
compatible with both A and B. Since the clusters in C are indepen-
dent, P(C — A) = P(C — B) = 1/2N-.
Now,

P(A—C) pP(1—p)ia

P(B+—C) pb(1—p)is
where d4 g are the numbers of similar nn-states which are not con-
nected by a bond. The last step comes from Ey = dimxV —2(b+d4).
Thus A — C — Band B — C — A satisfy detailed balance for arbi-
trary C, and the total transition probabilities A — B, B +— A must do
it also.

= {.‘}{p[—-j(EB - Eﬂl)]



Wolff cluster algorithm (PRL 62 (89), 361)

Autocorrelation function of |M]

1.0 . . .
08 b\ 1
Principle: do the cluster decomposition as in S-W, but invert (‘flip’) only “‘\\
one randomly chosen cluster! In practice: 0.6 \L \\ Metropolis: 1
1. Choose random site 7. 04 1 \\\ |
2. Study neighbouring sites ;. If s; = s;, join site ; to cluster with ' 1| AN
probability p = 1 — exp(—2/3). X ||
3. Repeat step 2 for site j, if it was joined to the cluster. Keep on doing 02 H Cluster
this as long as the cluster grows. \ A )
4. When the cluster is finished, invert the spins which belong to it. 0.0 "b“’“i?‘f"“"rd\"’t""*ﬁ%:,f”“&?m“”‘b
e Usually slightly more effective than S-W (the average size of the clus- o2 , , ,

ters is larger. Why?). 0 100 200 300 400

e The minimum cluster size = 1, maximum = volume. T

¢ Nicely recursive.

¢ Satisfies detailed balance. _ L5004
Autocorrelation function C(t) = N=t=—

' {()2}



Order parameters & Ginzburg-Landau

Inside a phase, an OP varies slowly but
how do we detect the phase changes?
(Example: magnetization for the Ising
model in the FM phase).

GL: coarse-grain the system into patches | 1
of “large” size though smaller thanthe  m(X) = 7> _; si

correlation length. Look, at what the FE

looks like (and find the right Ll

normalization or partition function to

get the FE right). Ll




What is GL theory?

Z sum over all configurations m,
thus a path integral. / Din(x) e~#Fimt

Conditions on the FE: locality (in

m), symmetries (rotation, —BE[m(x)
translation: original lattice), Z,- plmx)] = ——
symmetry (spin flips, we do now

the Ising model), analyticity

Result (H breaks the parity 1 1 1
o - ad . 2 iy 4 (TN (YT 0\ 2
SymmEtry, u_Hmn) readS then: Flm(x)] = /r/ a [5(12(T)m + l(q(f)m + 3 /(T (Vm)* +

See Chaikin and Lubensky



Consequences:

Mean-field solution (m constant):
a 2"d order phase transition
(continuous) related a, and the
critical temperature. m(T,H) (B in
the figure).

Similar arguments are used
(applying the GL-theory) to
superconductivity and to liquid
crystals (nematic-isotropic
transition, where different
symmetry gives an extra a; term).

one—phase|region

M~

/ two—phase|region
e




Application of GL: domain wall

In the ordered phase

o Ny J | o -
v OF , a, 9 ,
%CC)) ;LC()) Thce) rr]eDg rcr)] r:I?] IN / (5-;:1()() = agm(x) + aym’(x) — yV>m(x)
Wall. GL gives the _ )
energy and Sha pe E . =0 = -';Vzi'n = (om + (141‘123
Applications: disorder,
roughening... Lower VS = m + g

critical dimension for

order to be present. r— X
Warning: KPZ round ””’”““‘llh( W )
the corner!

W =.




What did we learn?

GL model: some “critical exponent” describing the
behavior of quantities close to the critical temperature.

On general grounds, these are all not independent.
Rescaling of time, space (correlation time, length),
response to an external field is why.

How does one now compute the exponents?
“Renormalization group” is the answer (K. Wilson, Nobel).



Homework

3.2 Damped oscillator (Sethna 1003 p. 235) HOMEWORK (5 points)

Let us explore the Auctuating mass-on-aspring. The coupling of the macroscopic motion Find the equal-time correlafion funciion C{ﬂ]- = ({F}I and show that if safisfies the equipar-
to the internal degrees of freedom eventually damps any initial macroscopic oscillation; Hfion fheorem. I:H'i.'l:lia: COur ocecillator & in & potential well 1-"{!3]- = %MSI'F Write
the remaining motions are microscopic thermal fluctuations. These Auctuations can be [_.'_..lg - uz_]? + 0% = {wﬁ —w® :‘C’:.:}[u.§ —w? iCw) and do contour integration if

important, however, for nanomechanical and biological systems In addition, the damped

u really, resally like it. Or you can trust that the integral gives
harmonic oscillator is & classic model for many atomic-scale physical processes, such as L by by yo sgEral g

dielectric loss in insulstors. Consider a damped, simple harmonic oscillator, foroed with = i -
an external force [, obeying the squation of motion f dur —I”i_*'-'-'::'f B T {ﬂ':l
— Lt Ll T
d4i g a8 fe)
FTE —upll — Ta Tt m (7 as ¢ —+ 1. Caleulating these kinds of contour integrals is out of the scope of this course )

(o) Susceplibibify. Find the AC suscepfibilify y(w) for the oscillafor. Plof '(w) and x"|w)
forwy=m =1 and y =022 5 [Hint: Fourier transform the equation of motion, and
solve for # in terms of [

{0 Cousalify ond cntical domping. Check, for posilive damping v, that yow y(w) is consal
ity =10 for i = 0), by cramining the singulerifics in the compler w plane (Secfion 1009
in Seikna )l Af what value of v do the poles bogin fo s on the imaginary aris¥ The system
is overdamped, and the oscillations disappesr, when the poles are on the imeginary axis.

fc) Dizsipation and suscepfibilify. Given a forcing f(f) = Acos(ud), solve the equafion and
calendafe 8(t). Caleulnie the average power dissipalfed by infegrafing yow resulfing formula
Jor fdft fdi. Do your answers for the power and " agree with the general formula for power
dissipation, eqn 10.57 in Sethna (p(w) = 2ELyr(w) )7

(d) Correlafions and thermal equilibrivm. Use the fludvafion-dissipafion theorem fo calou-
lafe the correafion fundion Cfw) from y"iw) G"(w) = %C’{w}__ see ogn 1065 in Scihna

p 229), where
Clt —¢7) = (P(e)o(L')}. (8)



Take home

Take home (Sethna Chapter 10 plus additional material Ginzburg-Landau theory: Chaikin-Lubensky, Principles of
Condensed Matter Physics, Ch. 4.1-4.4 and Ch. 10.1 and 10.2.).

Read the chapter, and the parts of Ginzburg-Landau theory. Check also the cluster Monte Carlo algorithms (the web is full
of lecture notes, and Wikipedia has a good article on the S-W algorithm): do you think you understand why they work?

Here we introduce the Ising model as the paradigm of statistical physics and phase transitions. The book discusses the
model and how to study it by computational means. The CL-part tells how a "coarse-grained" theory is formed for the
Ising model (and its variants and other systems; "phase-field model" is a key concept).

The random field Ising model (RFIM) comes when you introduce the random fields to each site. The RFIM has a Iﬁ)hase
diagram like the normal Ising except that random fields can destroy ferromagnetic order at any temperature if they are
strong enough.

How would the random field affect a) a GL-theory (what is the free energy like?) and b) the physics of a domain wall?

Then check the following application of the model: https://link.springer.com/article/10.1140/epjb/e2005-00307-0

Read through the paper. How would you simulate the model - how do the random fields enter the picture? Put the model
on a 2D lattice, with a fixed set of neighbors for each "opinion" for that purpose.
What kind of transitions would you expect in this system?

(For those interested please see https://www.cfm.fr/work-with-us/#0ur%20internships for summer jobs)



https://link.springer.com/article/10.1140/epjb/e2005-00307-0
https://www.cfm.fr/work-with-us/#Our%20internships

