31E11100 - Microeconomics: Pricing

Pauli Murto

Aalto University

Part 4: Auctions Lectures on 13.10., 18.10. and 20.10.2021

P.Murto (Aalto)

Plan for Part 4: Auctions

• Lecture 13.10.: Introduction to auctions

- Why auctions?
- Different auction formats
- Auction design in real world: reading assignment
- Lecture 18.10: Formal analysis of auctions
 - Auctions as Bayesian games
 - Envelope formula
 - Revenue equivalence theorem
- Lecture 20.10.: Common value auctions
 - Winner's curse
 - How prices aggregate dispersed information

Why auctions?

- Suppose a seller has a single item to sell and a number of potential buyers. How to sell?
 - So far in this course: seller sets a price (or menu)
 - Buyer: take it or leave it
- Why use an auction?
 - What is the right price? If too high, no one buys. If too low, excess demand.
 - Auction is a mechanism for price discovery
 - Buyers know what they would pay, but why should they tell?
 - ★ Auction *induces competition* between buyers
 - Auctions can also aggregate dispersed information in prices (e.g. markets for financial assets)
- Important applications
 - Telecommunication licences, electricity markets, public procurement, online ad auctions, etc.
 - How to design an auction?

Today's agenda

- Theoretical Example: selling one object to two buyers with unknown valuations
 - What is the best way to sell?
 - For revenues? For efficiency?
- Discussing reading assignment: auction design in real world
- Theoretical Example continues: auction design
 - Additional elements: reserve prices, handicaps
 - Additional concerns: collusion, entry
- Key learning point of today: how to think about *efficiency* and *revenue* in auctions

Most common auction formats (1)

Sealed bid auctions

- Seller asks for a single bid from each participant
- Highest bid wins and pays her bid
- Common in selling real estate and different commodities
- Also very common in procuring services
 - ★ Governments and public sector procures services through competitive tendering
 - * Suppliers make bids for service contracts and lowest bid wins
 - ★ This is a "reverse" auction, since buyer seeks the lowest price from competing suppliers
- An important variant: second price auction.
 - Highest bidder wins but pays the second highest bid.

Most common auction formats (2)

Ascending price auction

- Price starts low and increases gradually.
- Bidders drop out.
- The bidder who stays longest wins and pays the price where second last bidder drops out
- Common for art, antique, company take-overs, ...
- A variant: descending price auction
 - Price starts high and falls until someone buys
 - Also called Dutch auction (as in Dutch flower auctions)

Simple example

- A seller with a single object to sell and two possible buyers.
- Valuation of the object is zero for the seller, and v₁ and v₂ to the buyers.
- Valuations v_1 and v_2 are
 - ▶ Independently drawn from uniform distribution [0, 1].
 - Private information of the buyers.
- What is the best way for the seller to sell the object?

What is the best way to sell in terms of revenue?

- Posted price?
- First-price auction?
- Second-price auction?
- Ascending auction?
- Something else (what?)

What is the best way to sell in terms of efficiency?

- Posted price?
- First-price auction?
- Second-price auction?
- Ascending auction?
- Something else (what?)

Posted price

- Seller posts a price and buyers announce whether or not to buy
- If both want to buy, object allocated randomly (rationing)
- If none wants to buy, seller keeps the object
- What is the optimal price?
- What is the expected revenue?
- Is allocation efficient?

Second price auction

- Let us next consider second-price sealed bid auction.
- Both bidders submit simultaenously a sealed bid (e.g. write it on a paper and submit to the seller).
- Bidder who submitted the highest bid wins, but pays the second highest bid.
- This is a game between buyers:
 - The strategy for each bidder is simply the bid.
 - How should you bid?

Second price auction

- Claim: irrespective of the other bidder's strategy, it is optimal to bid one's valuation.
- In the terminology of game theory: bidding own valuation is a *dominant strategy*

• Why?

- Consider an alternative strategy (bid above/below your valuation).
- Would such a deviation affect what you pay if you win?
- Would such a deviation affect whether or not you win? If so, when? Would you be happy about that effect?
- As a result, in equilibrium every bidder bids their true value.
 - Bidder with the highest value wins.
 - Pays an amount equal to the the second highest value.
 - Allocation is efficient

- What is the expected revenue by the seller?
 - Revenue is equal to the second highest valuation (i.e., with two bidders, the lowest valuation).
 - Hence, expected revenue is the expectation of the second highest value.
 - How to compute this? Derive the probability distribution for the second-highest valuation (second order statistic), and compute its expectation.
- Let *G*(*b*) denote the cumulative distribution function (c.d.f.) of the second order statistic:

$$G(b) = 1 - (1 - b)^2$$

• Can you derive this? How to compute expected revenue from here?

• With two bidders, expected revenue is

$$\mathbb{E}\min\{v_1,v_2\}=\frac{1}{3}.$$

(can you compute this?)

• Expected value of the winner is

$$\mathbb{E}\max\{v_1,v_2\}=\frac{2}{3}.$$

• Hence, surplus is split equally between seller and winning bidder (on expectation)

- What if there are more bidders?
 - With 3 bidders, it is easy to show that expected revenue is 1/2
 - Expected value of the winner is 3/4
 - Hence, total surplus increases, but the share that goes to seller increases too
- This generalizes: as *N* increases, the seller gets a larger and larger share of the total surplus
 - ▶ With 10 bidders, expected price is 9/11 and expected value of winner is 10/11

First price auction

- Next, consider the first price sealed bid auction.
- As above, bidders submit bids simultaneously.
- Highest bid wins, but now the winner pays her own bid, i.e. the highest bid.
- Does this imply a higher revenue to the seller?

- Is it now optimal to pay your own bid?
 - Clearly you should bid less.
 - But how much less?
- Submitting a lower bid will
 - Increase the surplus if winning.
 - Decrease chances of winning.
- Optimal bid will depend on what you think the other(s) will do (unlike with second price auction).
- We need to consider a full equilibrium analysis.

Bayesian Nash equilibrium

- This is a game of incomplete information: each bidder knows privately her own value.
- Each bidder's equilibrium strategy must maximize her expected payoff accounting for the uncertainty about other bidders' values:

Definition

A set of bidding strategies is a Bayesian Nash equilibrium if each bidder's strategy maximizes her expected payoff given the strategies of the other bidder(s).

• We will analyze this thoroughly in the next lecture, but for now it suffices to note that since each bidder know privately her valuation, a strategy must determine what a bidder bids as a function of her valuation.

Finding the equilibrium bid function

- This example with two players and uniform value distributions can be solved easily by a simple trick (we will analyze the more general model later).
- Suppose bidder 2 uses bidding strategy $b_2(v_2) = \beta v_2$ for some $\beta > 0$.
- What is then the optimal bid for bidder 1? Suppose bidder 1 has value v₁, and consider payoff of bidding b:

$$\pi (b; v_1) = \Pr (win) (v_1 - b)$$

$$= \Pr (\beta v_2 < b) (v_1 - b)$$

$$= \Pr \left(v_2 < \frac{b}{\beta} \right) (v_1 - b)$$

$$= \frac{b (v_1 - b)}{\beta}.$$

• This is maximized by choosing $b = \frac{1}{2}v_1$.

P.Murto (Aalto)

Finding the equilibrium bid function

- So, if bidder 2 uses a linear bidding strategy, the best response of bidder 1 is to use a linear bidding strategy b₁ (v₁) = ¹/₂v₁.
- Hence, if both bidders bid half of their value, they are both best-responding to each other.
- In other words, this is a Bayesian Nash equilibrium. In this equilibrium, both bidders use strategy

$$b_i(v_i) = \frac{1}{2}v_i, i = 1, 2.$$

Efficiency and revenue

• How do the properties of the equilibrium contrast with second price auction?

- Bidder with the highest value wins here too: auction is efficient.
- How about expected revenue? Let us compute:
 - ▶ Remember, expected highest value is E (max {v₁, v₂}) = ²/₃
 ▶ Therefore, expected price is E (max {b₁ (v₁), b₂ (v₂}) = ¹/₂ ²/₃ = ¹/₃.

 - This is the same as with second price auction!
- Is this a coincidence?

Ascending auction

- Finally, consider the ascending auction.
- Price starts ascending from 0 and bidders indicate their willingness to buy by staying in the game.
- As soon as one bidder drops out (e.g. say "I give up"), the remaining bidder wins and pays the standing price.
- This is a game, where the strategy of each bidder is to decide when to "stop" (i.e. drop out).
- When should you stop?

Ascending auction

- The optimal strategy is: stay in the game until price hits your valuation.
- This strategy is optimal *irrespective of the strategy of the other player.* (Why?)
- Bidder with the highest valuation wins and pays the second highest value.
 - Outcome is equivalent to the second-price auction.

Revenue equivalence theorem

- The equivalence of expected revenue in first price auction and ascending/second price auction is a manifestation of so called *Revenue equivalence theorem.*
- As we will see formally in the next lecture, it holds to any auction format where highest value bidder always wins.
- For example, the expected revenue would be the same in All-pay auction
 - Bidders submit bids, high bidder wins, and everyone has to pay their own bid.
 - Winner pays on average less than in standard formats, but expected total payment is the same since also losers pay.
 - Not commonly seen as an auction format, but used as a stylized model of contests (e.g. political lobbying or R&D race).

Reserve price

- Is there any way for the seller to increase expected revenue?
- Suppose the seller sets a reserve price r, i.e. minumum accepted price.
- Is it a good idea?
 - Potential benefit: higher price.
 - ▶ Drawback: maybe no sale (if all bidders have value below *r*).
- Consider second-price auction with reserve price $r = \frac{1}{2}$ and compute expected revenue. Note:
 - if min $\{v_1, v_2\} > r$, then price is min $\{v_1, v_2\}$.
 - if min $\{v_1, v_2\} < r < \max\{v_1, v_2\}$, then price is p = r.
 - if $\max\{v_1, v_2\} < r$, then there is no trade.

- Can you compute the expected revenue? (it is indeed higher than without reserve price)
- One can show that $r = \frac{1}{2}$ is the optimal reserve price in this case
- The auction is not efficient: sometimes there is no trade at all even when bidders have positive values.
- Standard lesson about monopoly power applies in auctions too:
 - Monopolist distorts allocation (causes inefficiency) in order to transfer consumer surplus into profit.

Auction design

- We saw that the seller can increase profits by using a reserve price
- Are there other instruments that the seller could use?
- Are there other issues that should be taken into account in designing the auction?
- In real world, auction design is often a complicated problem:
 - Think about your reading assignment. What makes things complicated there?
- We consider next three important issues thorough examples:
 - How to treat asymmetric bidders?
 - How to ensure sufficient entry?
 - How to deter collusion?

Bidder subsidies and set-asides

- In real auction it is common that seller treats some bidders preferentially. Why?
- Distributional reasons:
 - Government favoring domestic bidders, municipal favoring local producers in procurement, etc.
 - Favoring of small businesses by subsidies or restricting entry (exclusions, or set-asides)
- Competition, or other post-auction market reasons:
 - Make sure there is sufficient competition in the market after auction
- Is it possible to increase revenue by subsidies?
- Let us look at a specific example with asymmetric bidders

Example of bid subsidies

- Two bidders with private values v_1 and v_2 .
- Suppose the bidders are ex-ante asymmetric in the following sense:
 - Valuations are independently drawn from

$$egin{array}{rcl} v_1 &\sim & U\left[0,1
ight], \ v_2 &\sim & U\left[0,2
ight]. \end{array}$$

- Consider an ascending auction (or equivalently, second price auction)
 - Both bidders bid up to their values and the higher value bidder wins.
 - This is more likely to be bidder 2.
- What is the expected price?

- Consider two equally likely events:
 - Bidder 2 has value $v_2 > 1$
 - Bidder 2 has value $v_2 < 1$
- In the former case, bidder 2 wins and pays on expectation 1/2
- In the latter case, each bidder as likely to win, and expected price 1/3
- So, bidder 2 wins with probability $\frac{3}{4}$ and the expected revenue is $\frac{1}{2}\frac{1}{2} + \frac{1}{2}\frac{1}{3} = \frac{5}{12}$.

- Suppose the seller gives 50% discount to the weaker bidder (bidder 1)
- What is the optimal bidding strategy of bidder 1?
 - Bid up to 2v₁
- Behavior of bidders is as if both bidders have values drawn uniformly from [0, 2]
- As a result, both bidders are as likely to win
- Expected "clock price" is now $\frac{2}{3}$
- But taking into account the subsidy payment, the expected revenue of the seller is

$$R = \frac{1}{2}\frac{2}{3} + \frac{1}{2}\frac{1}{3} = \frac{1}{2}.$$

- Effect of subsidies:
- With no subsidy
 - Strong bidder is more likely to win $\left(\frac{3}{4} \text{ against } \frac{1}{4}\right)$
 - Expected revenue is $\frac{5}{12}$
 - Auction is efficient: higher value bidder always wins
- With subsidy:
 - Both bidders equally likely to win
 - Expected revenue is $\frac{1}{2} > \frac{5}{12}$
 - Auction is inefficient
- Again: seller gives up on efficiency to increase revenue

Entry of bidders

- A common problem in organizing auctions: how to ensure there are enough bidders participating?
- More bidders guarantees more competition
- But if bidders expect tough competition, why would they participate if entry is costly?
- This is a typical problem for example in procurement auctions, where it takes some work and effort for the participants to prepare offers
- Asymmetries can also be problematic

• Take the same example as above. Two bidders with independently drawn valuations:

$$egin{array}{rcl} v_1 &\sim & U\left[0,1
ight], \ v_2 &\sim & U\left[0,2
ight]. \end{array}$$

- Second price auction / ascending auction
- Ex-ante expected payoffs of the two bidders (before they learn their valuations):

 - Bidder 1 expects to get ¹/₁₂ (why?)
 Bidder 2 expects to get ¹/₂ + ¹/₁₂ (why?)

- Suppose now that there is a cost of $\frac{1}{10}$ to enter
 - Think of this as the cost of learning how much you value the good (cost of inspecting the procurement contract, cost of learning the production cost of service, etc.)
- Given this, bidder 1 should not enter at all
- Therefore, bidder 2 is the only one to enter and bids zero
- Not good for the seller...

How to promote entry of bidders in practice?

- Subside weaker bidders
 - Increase their payoff of entering, hence encourage entry
- Subsidize the entry costs directly
 - E.g. reimburse costs of preparing documentation for procurement contract offers
- Restrict the strong bidders from participating: set-asides
 - Excluding a strong incumbent may increase profits by inducing more competitive entry
- How about auction format?
 - In ascending price auction, the strong bidders can always respond in real time to weaker bidders.
 - Not good for entry (see your reading assignment).

Collusion

- Collusion occurs if bidders agree in advance or during the auction to let price settle at some low level.
 - This is illegal, but happens anyway.
- This occurs most naturally in situations, where there are multiple items for sale.
 - All bidders get a fair share, why raise price?
 - In extreme situations, incentives for price competition can be very low, even without formal collusion.
 - E.g. three similar objects, three bidders. Each bidder gets one, why raise prices?
 - Spectrum auctions?
- With a single object, collusion may rely on:
 - Side agreements: you win and share profits with me.
 - Intertemporal arrangement: you win today, I win tomorrow.

How to deter collusion?

- Tougher law enforcement?
- What about the auction format?
- Ascending auction
 - Suppose bidders 1 and 2 agree in advance that 1 should win.
 - What happens if bidder 2 deviates the agreement, and keeps on bidding as price increases?
 - Bidder 1 can bid back makes deviation unprofitable and helps the collusion.
- Sealed bid auction
 - Again, suppose bidders 1 and 2 agree on bids such that bidder 2 wins.
 - But then bidder 1 can secretly outbid and steal the auction.
 - Deviation from agreement more tempting makes it harder to sustain collusion.

Lecture 18.10.: Formal analysis of auctions

• So far, we have worked through simple examples.

- Two bidders, independent private values drawn from uniform distribution.
- Ascending price auction, second-price auction, first-price auction.
- It turned out that all these formats resulted in the same expected revenue for the seller.
- We also saw that a reserve price can increase seller's revenue.
- The goal now is to understand these findings better.
- In particular, we look for an explanation of the revenue equivalence theorem.
- To do that, we start by defining games of incomplete information.

- Harsanyi: a game of incomplete information is given by
 - set of players: $i \in \{1, 2, ..., N\}$
 - ② actions available to player *i*: A_i for *i* ∈ {1, 2, ..., N}. Let a_i ∈ A_i denote a typical action for player *i*
 - Sets of possible types for all players: Θ_i for i ∈ {1, 2, ..., N}. Let θ_i ∈ Θ_i denote a typical type of player i
 - let $a = (a_1, ..., a_N)$, $\theta = (\theta_1, ..., \theta_N)$, $a_{-i} = (a_1, ..., a_{i-1}, a_{i+1}, ..., a_N)$, $\theta_{-i} = (\theta_1, ..., \theta_{i-1}, \theta_{i+1}, ..., \theta_N)$ etc.
 - **3** natures move: θ is selected according to a joint probability distribution $p(\theta)$ on $\Theta = \Theta_1 \times \cdots \times \Theta_N$
 - strategies: $s_i : \Theta_i \to A_i$, for $i \in \{1, 2, ..., N\}$. $s_i(\theta_i) \in A_i$ is then the action that type θ_i of player *i* takes
 - **O** payoffs: $u_i(a_1, ..., a_N; \theta_1, ..., \theta_N)$

- Game proceeds as follows
 - Nature chooses θ according to $p(\theta)$.
 - Each player *i* observes realized type $\hat{\theta}_i$ and updates her beliefs.
 - ★ Each player comes up with conditional probability on remaining types conditional on $\theta_i = \hat{\theta}_i$.
 - ★ Denote distribution on θ_{-i} conditional on $\hat{\theta}_i$ by $p_i(\theta_{-i}|\hat{\theta}_i)$.
 - ★ Recall Bayes' rule:

$$p_i(\widehat{\theta}_{-i}|\widehat{ heta}_i) = rac{p_i\left(\widehat{ heta}_i, \widehat{ heta}_{-i}
ight)}{\sum\limits_{ heta_{-i}\in\Theta_{-i}}p_i\left(\widehat{ heta}_i, heta_{-i}
ight)}.$$

Players take actions simultaneously.

- Important special cases:
- Private values: for all a, i, θ_i and all $\theta_{-i}, \theta'_{-i}$ we have:

$$u_i(a; \theta_i, \theta_{-i}) = u_i(a; \theta_i, \theta'_{-i}).$$

- In words, player i's payoff in the game depends on her own information and the actions chosen by all players, but not on the information of the others.
- In all other cases, we say that we have interdependent values.
- Come up with examples where private values make sense and where interdependent values make sense.
- Independent values: for all i, θ_i and θ'_i we have:

$$p_i(\theta_{-i}|\theta_i) = p_i(\theta_{-i}|\theta'_i).$$

- In words, your own type contains no information on the types of the others.
- ► Hence $p(\theta) = p_1(\theta_1) \cdot p_2(\theta_2) \cdot ... \cdot p_N(\theta_N)$, where $p_i(\theta_i)$ is the marginal distribution on θ_i .

P.Murto (Aalto)

• Solution Concept: Bayesian Nash Equilibrium:

Definition: A strategy profile $(s_1(\theta_1), ..., s_N(\theta_N))$ is a (pure strategy) Bayesian Nash Equilibrium if $s_i(\theta_i)$ is a best response to $s_{-i}(\theta_{-i})$ for all iand all $\theta_i \in \Theta_i$.

- Action specified by strategy of any given player has to be optimal given strategies of all other players and beliefs of player.
- To compute the expected payoff, note:
 - Given strategy $s_i(\cdot)$, type θ_i of player *i* plays action $s_i(\theta_i)$
 - With vector of types θ = (θ₁,...,θ_N) and strategies (s₁,...,s_N), realized action profile is (s₁(θ₁),...,s_N(θ_N))
 - Player i of type θ̂_i has beliefs about types of other players given by conditional probability distribution p_i(θ_{-i}|θ̂_i)

• The expected payoff from action s_i is

$$\sum_{\boldsymbol{\theta}_{-i}} u_i(s_i, s_{-i}(\boldsymbol{\theta}_{-i}), \boldsymbol{\theta}) p_i(\boldsymbol{\theta}_{-i} \mid \widehat{\boldsymbol{\theta}}_i)$$

Best Response: action s_i(θ̂_i) is a best response to s_{-i}(θ_{-i}) if and only if for all a'_i ∈ A_i

$$\sum_{\boldsymbol{\theta}:_{-i}} u_i(s_i(\widehat{\theta}_i), s_{-i}(\theta_{-i}), \theta) p_i(\theta_{-i} \mid \widehat{\theta}_i)$$

$$\geq \sum_{\boldsymbol{\theta}:_{-i}} u_i(a'_i, s_{-i}(\theta_{-i}), \theta) p_i(\theta_{-i} \mid \widehat{\theta}_i)$$

- An auction is a particular Bayesian game.
- A seller with an indivisible item for sale, zero cost.
- *N* bidders: *i* = 1, ..., *N*.
- Each bidder *i* has private information $\theta_i \in \Theta_i$.
- Given the profile $\theta = (\theta_i, \theta_{-i})$, bidder *i*'s valuation is $u_i(\theta_i, \theta_{-i})$ if he gets the item and zero otherwise.
- The prior distribution over Θ ≡ ×^N_{i=1}Θ_i is F (θ). After knowing one's own θ_i, bidder i forms the posterior distribution of others' valuation payoff as F_i (θ_{-i}|θ_i).
- All bidders and seller are risk-neutral expected utility maximizers.

- B_i: (pure) action space for bidder i (b_i ∈ B_i the amount i can bid in auction, most typically B_i = ℝ₊).
- Pure strategies: $s_i : \Theta_i \to B_i$.
- Let $P_i(b_1, \dots, b_N)$ be the probability that bidder *i* wins.
- Let T_i (b₁,..., b_N) be the monetary payment that bidder i transfers to seller (no matter i wins or not) if (b₁,..., b_N) is the vector of bids.
 - $T_i(b_i, b_{-i})$ can even be negative.
- Payoffs to *i* if *θ* is the realized type vector and *b* is the realized bid vector:

$$P_i(b_1,...,b_N) u_i(\theta_i,\theta_{-i}) - T_i(b_i,b_{-i}).$$

- Private values: if for all $\theta_i, \theta'_{-i}, \theta_{-i}, u_i(\theta_i, \theta_{-i}) = u_i(\theta_i, \theta'_{-i})$.
- Interdependent values: if the above condition is violated.
- **Common values**: For all i, j and $\theta \in \Theta \equiv \times_{i=1}^{N} \Theta_i$,

$$u_{i}\left(heta
ight) =u_{j}\left(heta
ight) .$$

- Independent value model: if θ_i, i = 1, ..., N, are independently drawn.
- Symmetric case: if $f_i(\theta) = f_j(\theta)$ and $u_i = u_j$ for any *i* and *j*.

- We work today with the independent, symmetric and private value model in which all θ_is are i.i.d. drawn from a common distribution.
- We also assume that all bidders and seller are risk neutral.
- Hence, given the bid profile (b_i, b_{-i}) , bidder *i*'s payoff is

$$\theta_i P_i(b_i, b_{-i}) - T_i(b_i, b_{-i}).$$

• First Price Auction (High-bid Auction)

- buyers simultaneously submit bids
- the highest bidder wins (tie broken by flip coin)
- winner pays bid (losers pay nothing)

 $P_i(b_i, b_{-i}) = \begin{cases} 1 & \text{if } b_i > b_j, \forall j \neq i \\ \frac{1}{K} & \text{if } b_i \text{ ties for highest with } K - 1 \text{ others } . \\ 0 & \text{otherwise} \end{cases}$

 $T_i(b_i, b_{-i}) = \begin{cases} b_i & \text{if } i \text{ wins} \\ 0 & \text{otherwise} \end{cases}.$

۰

۲

- Dutch Auction (Open Descending Auction)
 - Auctioneer starts with a high price and continuously lowers it until some buyer agrees to buy at current price
 - the highest bidder wins (tie broken by flip coin)

$$P_i(b_i, b_{-i}) = \begin{cases} 1 & \text{if } b_i > b_j, \forall j \neq i \\ \frac{1}{K} & \text{if } b_i \text{ ties for highest with } K - 1 \text{ others } . \\ 0 & \text{otherwise} \end{cases}$$

$$T_i(b_i, b_{-i}) = \begin{cases} b_i & \text{if } i \text{ wins} \\ 0 & \text{otherwise} \end{cases}$$

- This is the same as the case in FPA.
- Dutch Auction and First Price Auction are *strategically* equivalent.

• Second Price Auction (Vickrey Auction)

- same rules as FPA except that winner pays second highest bid
- proposed in 1961 by William Vickrey

•
$$P_i(b_i, b_{-i}) = \begin{cases} 1 & \text{if } b_i > b_j, \forall j \neq i \\ \frac{1}{K} & \text{if } b_i \text{ ties for highest with } K - 1 \text{ others } . \\ 0 & \text{otherwise} \end{cases}$$

• $T_i(b_i, b_{-i}) = \begin{cases} \max_{j \neq i} b_j & \text{if } i \text{ wins} \\ 0 & \text{otherwise } \end{cases}$

Second-price auction (SPA)

- Claim: It is optimal for each player *i* to bid according to $b_i(\theta_i) = \theta_i$.
- Proof: Let V_i (θ_i, b_i, b_{-i}) be the payoff to i of type θ_i when the others bid vector is b_{-i}. Then

$$V_i(\theta_i, b_i, b_{-i}) = \begin{cases} \theta_i - \max_{j \neq i} b_i \text{ if } b_i \geq \max_{j \neq i} b_i, \\ 0 \text{ otherwise.} \end{cases}$$

Hence it is optimal to set $b_i \ge \max_{j \neq i} b_i$ if and only if $\theta_i - \max_{j \neq i} b_i \ge 0$. Clearly setting $b_i (\theta_i) = \theta_i$ accomplishes exactly this.

 We say that b_i (θ_i) = θ_i is a dominant strategy since the optimal bid amount does not depend on the strategies of the other players.

- English Auction (Ascending Price Auction)
 - buyers announce bids, each successive bid higher than previous one
 - the last one to bid the item wins at what he bids
- As long as the current price p is lower than θ_i, bidder i has a chance to get positive surplus. He will not drop out until p hits θ_i.
- Only when anyone else drops out before bidder i, i.e., p = max_{j≠i} θ_j can he win by paying p, the second highest valuation.
- This shows that English Auction and Second Price Auction are equivalent.

First-price auction (FPA)

- Deriving the equilibrium bid function for the first-price auction is more tricky, since there is no dominant strategy
- The equilibrium is derived in a direct way at the end of this slide set (Additional material)
- Instead, we next derive the Revenue Equivalence Theorem and use that to derive the equilibrium of the first-price auction

- How to explain the revenue equivalence between first and second price auctions that we observed in the example last week?
- Consider an IPV auction with symmetric type distributions (do not yet specify auction format)
- Suppose that *i* with type θ_i bids b_i .
- Her probability of winning P_i and her expected payment T_i are then determined by b_i, and not by θ_i.

• We write the expected payoff then as:

$$V_i(\theta_i, b_i) = \theta_i P_i(b_i) - T_i(b_i).$$

• The expected maximized payoff to *i* of type θ_i is then:

$$U_{i}(\theta_{i}) = \max_{b_{i}} \theta_{i} P_{i}(b_{i}) - T_{i}(b_{i}).$$

• The envelope theorem tells us that $U'(\theta_i) = P_i(b_i(\theta))$, where $b_i(\theta)$ is the optimally chosen bid for type θ (Check that you know what envelope theorem says).

 If we look for equilibria in symmetric increasing strategies, we must have:

$$P_i(b_i(\theta_i)) = F(\theta_i)^{N-1}$$

• Using envelope theorem, we have:

$$U_{i}\left(heta_{i}
ight)=\int_{0}^{ heta_{i}}F\left(s
ight)^{N-1}ds.$$

 This is really remarkable since we have not said anything about the auction format at this stage.

- The expected payoff to each bidder is the same in all auctions that result in the same probability of winning.
- Hence expected payoff is the same in FPA and SPA.
- But this means that the expected payments that the bidders make must be equal in SPA and FPA.
- But then the expected revenue to the seller must be the same: Revenue Equivalence Theorem

Auctions and Envelope Theorem

- Now we can also use this result to derive equilibria in different auctions
- For FPA,

$$U_{i}(\theta_{i}) = (\theta_{i} - b(\theta_{i})) F(\theta_{i})^{N-1}.$$

• But the envelope formula says:

$$U_i(heta_i) = \int_0^{ heta_i} F(s)^{N-1} ds.$$

• Combining these, we get:

$$b(\theta_i) = \theta_i - \frac{\int_0^{\theta_i} F(s)^{N-1} ds}{F(\theta_i)^{N-1}}.$$

• See additional material at the end of this slide set for a direct derivation of the same formula.

P.Murto (Aalto)

Pricing Lectures part 3

Auctions and Envelope Theorem

- We can also compute equilibria for other auctions using this.
- In an all pay auction, all bidders pay their bid and the highest bidder wins the object.
- In a symmetric equilibrium then,

$$U_{i}(\theta_{i}) = \theta_{i}F(\theta_{i})^{N-1} - b(\theta_{i}).$$

• Using the envelope formula, we get:

$$b(\theta_i) = \theta_i F(\theta_i)^{N-1} - \int_0^{\theta_i} F(s)^{N-1} ds.$$

• So in the case with $F(\theta_i) = \theta_i$, we get

$$b\left(\theta_{i}\right)=\frac{N-1}{N}\theta^{N}$$

Discussion

- The Revenue Equivalence Theorem shows that whenever two auction formats lead to the same allocation, the expected revenue of the seller is the same
- In particular, this holds for standard first-price and second price auctions, where allocation is efficient (highest valuation bidders gets the object)
- Recall the example in the last lecture with a reserve price:
 - A positive reserve price leads to inefficient allocation
 - But improves expected revenue of the seller
 - Revenue Equivalence also implies that two different auctions with the same distortion lead to the same revenue
- How to design auctions optimally from the seller's perspective?
 - In a significant paper, Myerson (1981): "Optimal Auction Design" (Mathematics of Operations Research) gives the full answer
 - In our environment, an optimally chosen reserve price is indeed the best the seller can do

P.Murto (Aalto)

Further readings

- For a very elegant presentation of the theory of auctions (at advanced MSc/PhD level), see the book Krishna: Auction Theory (Academic Press)
- Another excellent, but a bit advanced book, is Milgrom: Putting Auction Theory to Work (Cambridge University Press)

ADDITIONAL MATERIAL (For completeness): direct derivation of equilibrium bids for the first-price auction

- Let all bidders' valuations are independent and have the same cumulative distribution $F(\theta_i)$ an [0, 1].
- Let $f(\theta_i)$ be the associated density function.
- Consider symmetric equilibria where all bidders use the same bidding strategy $b(\theta_i)$.
- Assume furthermore that $b(\theta_i)$ is a strictly increasing function so that

$$\theta_i < \theta'_i \Rightarrow b(\theta_i) < b(\theta'_i).$$

• Since $F(\cdot)$ has a density ties happen with probability zero and they can be ignored in the analysis.

- To find equilibrium, consider optimal bid of bidder *i* if others use b(θ_j)
- Bidder *i* wins with bid β_i if and only if

$$b_j = b(\theta_j) < \beta_i$$
 for all $j \neq i$.

• Hence *i* wins with bid β_i if and only if

$$\theta_j < b^{-1}(\beta_i), \text{ for all } j \neq i,$$

where $b^{-1}(\cdot)$ is the inverse function of the bid function.

 We can then calculate the expected payoff to bidder *i* with valuation θ_i from bid β_i:

$$(\theta_i - \beta_i) \left(F\left(b^{-1}\left(\beta_i \right) \right) \right)^{N-1}$$

• Optimal bid for θ_i is then found by

$$\max_{\beta_i} \left(\theta_i - \beta_i\right) \left(F\left(b^{-1}\left(\beta_i\right)\right) \right)^{N-1}.$$

• First-order condition for optimal β_i :

$$\left(heta_i-eta_i
ight)\left(extsf{N}-1
ight)\left(extsf{F}\left(b^{-1}\left(eta_i
ight)
ight)
ight)^{ extsf{N}-2}rac{deta\left(b^{-1}\left(eta_i
ight)
ight)}{deta_i}=\left(extsf{F}\left(b^{-1}\left(eta_i
ight)
ight)
ight)^{ extsf{N}-1}$$

• By chain rule,

$$\frac{dF\left(b^{-1}\left(\beta_{i}\right)\right)}{d\beta_{i}}=f\left(b^{-1}\left(\beta_{i}\right)\right)d\frac{b^{-1}\left(\beta_{i}\right)}{d\beta_{i}},$$

and by inverse function rule,

$$\frac{dF\left(b^{-1}\left(\beta_{i}\right)\right)}{d\beta_{i}} = \frac{f\left(b^{-1}\left(\beta_{i}\right)\right)}{b'\left(b^{-1}\left(\beta_{i}\right)\right)}$$

• Since in equilibrium, $\beta_i = b(\theta_i)$ must be optimal, we have:

$$\left(\theta_{i}-b\left(\theta_{i}\right)\right)\left(N-1\right)\left(F\left(\theta_{i}\right)\right)^{N-2}\frac{f\left(\theta_{i}\right)}{b'\left(\theta_{i}\right)}-F\left(\theta_{i}\right)^{N-1}=0.$$

• Multiplying both sides by $b'(\theta_i)$, we get

$$(\theta_i - b(\theta_i))(N-1)(F(\theta_i))^{N-2}f(\theta_i) - b'(\theta_i)F(\theta_i)^{N-1} = 0,$$

or

$$\frac{d}{d\theta_i} \left(\theta_i - b\left(\theta_i \right) \right) F\left(\theta_i \right)^{N-1} - F\left(\theta_i \right)^{N-1} = 0,$$

or by integrating:

$$(\theta_i - b(\theta_i)) F(\theta_i)^{N-1} = \int_0^{\theta_i} F(\theta)^{N-1} d\theta.$$

• Hence the symmetric equilibrium bid function is:

$$b(\theta_i) = \theta_i - \frac{\int_0^{\theta_i} F(\theta)^{N-1} d\theta}{F(\theta_i)^{N-1}}$$

- Properties of the bid function:
 - $b(\theta_i) < \theta_i$ for all $\theta_i > 0$
 - $b(\theta_i) > 0$ for all $\theta_i > 0$
 - Increasing in θ_i (i.e. $b'(\theta_i) > 0$, can you see this?)
 - How does $b(\theta_i)$ depend on N?
 - * Look at special case $F(\theta_i) = \theta_i$.
 - ***** Then $b(\theta_i) = \theta_i \frac{1}{N}\theta_i$.
 - Hence the equilibrium bid is increasing in the number of competing bidders.

- We know by revenue equivalence theorem that FPA and SPA lead to the same allocation and the same expected revenue to the seller
- This can of course be checked also directly:
- For simplicity, assume uniform distribution here: $F(\theta_i) = \theta_i$.
- The revenue in SPA is simply the second highest θ_i .
- In FPA, revenue is $\left(\frac{N-1}{N}\right)$ times highest θ_i .
- Which one is greater?

- Let $\theta^{(2)}$ be the second highest valuation.
 - ▶ It has density function $N(N-1)\theta^{N-2}(1-\theta)$ for $\theta \in [0,1]$.
 - Hence it has expected value

$$\mathbb{E}\left(\theta^{(2)}\right) = \int_{0}^{1} N\left(N-1\right) \left(\theta^{N-1}-\theta^{N}\right) d\theta = \frac{N-1}{N+1}$$

- The highest valuation $\theta^{(1)}$ has density $N\theta^{N-1}$ for $\theta \in [0, 1]$.
 - Hence

$$\mathbb{E}\left(heta^{(1)}
ight)=\int_{0}^{1}N heta^{N}d heta=rac{N}{N+1}.$$

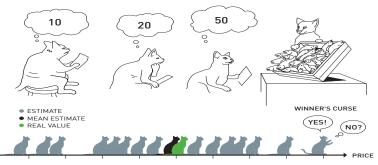
Expected revenue is then

$$\mathbb{E}\left(b(\theta^{(1)})\right) = \frac{N-1}{N+1}.$$

• We observe that the expected revenue is the same in the two auctions (as it should be revenue equivalence theorem).

Lecture 20.10.: Common value auctions

- So far we have considered models, where
 - each bidder's value depends on his/her own signal only (private values), and
 - signals are independently drawn
- Recall the example: how much would you bid for a jar of coins?
- Here the value of the object is common to all the bidders, but different bidders have a different estimate about the value
- Do you care about the estimates of the other bidders?



©Johan Jarnestad/The Royal Swedish Academy of Sciences

Winner's curse

- Winning means that all the other bidders were more pessimistic about the value than you.
- Winning is "bad news".
- Equilibrium bidding should take this into account.
- But how exactly?
- Do bidders take it into account in reality?
 - If not, then selling jars of coins is a money printing business
 - Experienced/inexperienced bidders

A simple model of common value auction

- Suppose that there is a common value v for the good, but its value is unknown.
- Formally, v is a random variable with some known probability distribution (e.g. Normally distributed)
- Both bidders observe a private signal that is correlated with the true value v. For example, we might have

$$\begin{aligned} \theta_1 &= \mathbf{v} + \varepsilon_1, \\ \theta_2 &= \mathbf{v} + \varepsilon_2, \end{aligned}$$

where ε_1 and ε_2 are some i.i.d. random variables (e.g. Normally distributed noise terms)

• Then a high signal indicates that it is likely that also v is high

A simple model of common value auction

- This model is often called mineral-rights model
 - think of v as the true value of an mineral right, such as oil field
- Note: θ_1 and θ_2 are independently drawn, conditional on v
- But because v is unkonwn, θ_1 and θ_2 are correlated with each other through v
- Signals provide information about v (but only imperfect):
 - The expected value for bidder i based on her own signal is $\mathbb{E}(v | \theta_1)$
 - The expected value based on both signals is $\mathbb{E}(v | \theta_1, \theta_2)$
- It is natural to assume that these are increasing in signal values (a high signal predicts a high value)

A simple model of common value auction

- Recall from the previous lecture, we can specify an auction environment by defining the utility for a bidder if he wins as $u_i(\theta_i, \theta_{-i})$.
- In this case, we have:

$$u_i(\theta_i, \theta_{-i}) = \mathbb{E}(v | \theta_1, \theta_2).$$

- Hence, the utility of winning depends on both signals
- Moreover, the signals are correlated
- Hence, this is an auction with *interdependent values* and *correlated signals*

How to bid in a common value auction?

- Assume second price auction format
- Suppose bidder 2 uses strategy $b_2(\theta_2)$
- Bidder 1 has signal θ_1 . How to bid?
- Consider bidding some *p*, or slightly more or less:
 - Makes no difference if $b_2(\theta_2) \ll p$, or if $b_2(\theta_2) \gg p$
 - Only matters if $b_2(\theta_2) \approx p$
- The only situation where p is "pivotal" is when $b_2(\theta_2) = p$, i.e. $\theta_2 = b_2^{-1}(p)$.

How to bid?

• If bidder 1 wins being pivotal, her expected value for the object is

$$\mathbb{E}\left(v\left|\theta_{1},\theta_{2}=b_{2}^{-1}\left(p\right)\right.\right)$$

To be indifferent between winning and not means

$$p = \mathbb{E}\left(v \mid \theta_1, \theta_2 = b_2^{-1}(p)\right).$$

 Bidding more or less than p would lead to expected loss, so a best response strategy b₁ (θ₁) for bidder one is to bid b₁ (θ₁) that satisfies:

$$b_1\left(heta_1
ight) = \mathbb{E}\left(v\left| heta_1, heta_2=b_2^{-1}\left(b_1\left(heta_1
ight)
ight)
ight).$$

How to bid?

• Hence, a symmetric Bayesian equilibrim is given by $b(\theta)$ that satisfies:

$$b(\theta_i) = \mathbb{E}(v | \theta_i, \theta_{-i} = \theta_i).$$

- It is optimal to bid as if the other bidder has exactly the same signal as you
- This generalizes to a symmetric model with N bidders:

$$b(\theta_i) = \mathbb{E}\left(v \left| \theta_i, \max_{-i} \{\theta_{-i}\} = \theta_i \right. \right)$$

- In other words, you should bid as if you have the highest signal, and the second highest signal within all the bidders is the same as your signal
- How would you now bid for the jar of coins?

No regret property

- The strategy that we derived shields against the winner's curse
- Suppose that bidder 1 wins:

$$b\left(heta_{1}
ight)>b\left(heta_{2}
ight) \Longleftrightarrow heta_{1}> heta_{2}$$

- Bidder 1 expected value post auction is $\mathbb{E}(v | \theta_1, \theta_2)$
- But her payment is $\mathbb{E}(v | \theta_2, \theta_2) < \mathbb{E}(v | \theta_1, \theta_2)$ (note: second price auction)
 - Bidder 1 is happy she won
- Bidder 2 expected value post auction is also $\mathbb{E}(v | \theta_1, \theta_2)$
- But to win, she should have outbid bidder 1, in which case she would have paid $\mathbb{E}(v | \theta_1, \theta_1) > \mathbb{E}(v | \theta_1, \theta_2)$
 - Bidder 2 is happy she lost!

Bidding in common value auctions

- The general idea in bidding in common value auctions: winning or losing conveys information about the information of the other bidders, so take this into account
- There is also a "loser's curse".
- Suppose that there are multiple identical objects for sale, say 10 bidders and 9 objects
- Suppose you lose. What does that tell about the value of the objects?

Winner's curse and IPO:s

- Winner's curse may have implications in other environments too
- Consider an initial public offering (IPO) of a company at price p:
 - All buyers have essentially the same value v for shares (unknown future trading price)
 - You should buy if you think v > p
 - If there is a lot of demand, then there is rationing (not every buyer gets shares)
 - What does it tell about other's information if you get shares?
 - Winner's curse?
- IPO:s are often underpriced. Why?

Revenue comparison between auction formats

- When signals are not independent, the Revenue equivalence theorem does not hold
- There is another principle called *Linkage Principle*, which allows for revenue comparison between different formats
- This important result is due Milgrom and Weber (1982): "A Theory of Auctions and Competitive Bidding", Econometrica.
- It turns out that second price auction is better for revenue than first price auction.
- The linkage principle also suggests that it is typically beneficial for the seller to release additional information about the object for sale (if she has any)

- Where do asset prices come from?
- One view: prices reflect all the information that the traders have about asset values
- But how does price get to reflect that information?
- To investigate this question, we can model a financial market using an auction model
- The question is: can equilibrium price in an auction *aggregate* the bidders' information?

- What is information aggregation?
- Suppose the value of an asset is v
- *N* bidders have an independent signal $\theta_i = v + \varepsilon_i$
- If N is large, then the median signal gives a very precise estimate of v:

$$Median(\theta_i) = v + median(\varepsilon_i) \approx v$$

if for example $\varepsilon_i \sim N\left(0, \sigma^2\right)$

- "Wisdom of the crowds"
- But can the price in an auction aggregate information?
- If there is only one object, then not likely.

- Assume a common value auction, with N bidders and K identical objects (think of N as a very large number)
- For simplicity, assume K = N/2
- Think of this as a market for an asset (*K* units, e.g. shares, and *N* bidders)
- The value of the asset is v and each bidder has a signal $\theta_i = v + \varepsilon_i$
- Auction format is a generalization of second price auction: ${\cal K}+1^{st}$ price auction
- Equilibrium bidding function can be shown to be

 $b(\theta_i) = \mathbb{E}(v | \theta_i \text{ ties with the } K + 1^{st} \text{ highest signal}).$

• Intuitively: bid as if you were just pivotal

But then

$$b(\theta_i) \approx \mathbb{E}(v | \theta_i \text{ is median signal})$$

= $\mathbb{E}(v | v + median(\varepsilon_i) = \theta_i)$
= θ_i

• Price will be $b(\theta^{(K+1)})$, where $\theta^{(K+1)}$ is the $K + 1^{st}$ highest signal

- So the auction price will be approximately the median signal, and hence aggregates information!
- This model is a very simplified version of Pesendorfer and Swinkels (1997): "The loser's curse and information aggregation in common value auctions", Econometrica.

Conclusions

- Winning (or losing) reveals information about others' estimates
- Taking into account winner's curse requires caution in bidding
- Auction price can aggregate information

Some further readings on auctions

- A broad (but a bit old by now) survey on auctions is Klemperer (2002): "Auction Theory: A Guide to the Literature", Journal of Economic Surveys.
- An empirical analysis of collusion in auctions: Asker (2010): "A Study of the Internal Organization of a Bidding Cartel", American Economic Review.
- For discussion on practical issues on auction design, see Klemperer (2002): "What Really Matters in Auction Design", Journal of Economic Perspectives.

- For on-line auction applications, see e.g.
 - Edelman, Ostrovsky, Schwarz (2007): "Internet Advertising and the Generalized Second-Price Auction: Selling Billions of Dollars Worth of Keywords", American Economic Review.
 - Varian (2009): "Online Ad Auctions", American Economic Review (Papers and Proceedings)
 - Varian and Harris (2014): "The VCG Auction in Theory and Practice", American Economic Review (Papers and Proceedings).