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Plan for Part 4: Auctions

Lecture 13.10.: Introduction to auctions
I Why auctions?
I Different auction formats
I Auction design in real world: reading assignment

Lecture 18.10: Formal analysis of auctions
I Auctions as Bayesian games
I Envelope formula
I Revenue equivalence theorem

Lecture 20.10.: Common value auctions
I Winner’s curse
I How prices aggregate dispersed information
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Why auctions?

Suppose a seller has a single item to sell and a number of potential
buyers. How to sell?

I So far in this course: seller sets a price (or menu)
I Buyer: take it or leave it

Why use an auction?
I What is the right price? If too high, no one buys. If too low, excess

demand.
I Auction is a mechanism for price discovery
I Buyers know what they would pay, but why should they tell?

F Auction induces competition between buyers

I Auctions can also aggregate dispersed information in prices (e.g.
markets for financial assets)

Important applications
I Telecommunication licences, electricity markets, public procurement,

online ad auctions, etc.
I How to design an auction?
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Today’s agenda

Theoretical Example: selling one object to two buyers with unknown
valuations

I What is the best way to sell?
I For revenues? For efficiency?

Discussing reading assignment: auction design in real world

Theoretical Example continues: auction design
I Additional elements: reserve prices, handicaps
I Additional concerns: collusion, entry

Key learning point of today: how to think about efficiency and
revenue in auctions
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Most common auction formats (1)

Sealed bid auctions
I Seller asks for a single bid from each participant
I Highest bid wins and pays her bid
I Common in selling real estate and different commodities
I Also very common in procuring services

F Governments and public sector procures services through competitive
tendering

F Suppliers make bids for service contracts and lowest bid wins
F This is a ”reverse” auction, since buyer seeks the lowest price from

competing suppliers

An important variant: second price auction.
I Highest bidder wins but pays the second highest bid.
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Most common auction formats (2)

Ascending price auction
I Price starts low and increases gradually.
I Bidders drop out.
I The bidder who stays longest wins and pays the price where second last

bidder drops out
I Common for art, antique, company take-overs, ...

A variant: descending price auction
I Price starts high and falls until someone buys
I Also called Dutch auction (as in Dutch flower auctions)
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Simple example

A seller with a single object to sell and two possible buyers.

Valuation of the object is zero for the seller, and v1 and v2 to the
buyers.

Valuations v1 and v2 are
I Independently drawn from uniform distribution [0, 1] .
I Private information of the buyers.

What is the best way for the seller to sell the object?
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What is the best way to sell in terms of revenue?

Posted price?

First-price auction?

Second-price auction?

Ascending auction?

Something else (what?)
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What is the best way to sell in terms of efficiency?

Posted price?

First-price auction?

Second-price auction?

Ascending auction?

Something else (what?)
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Posted price

Seller posts a price and buyers announce whether or not to buy

If both want to buy, object allocated randomly (rationing)

If none wants to buy, seller keeps the object

What is the optimal price?

What is the expected revenue?

Is allocation efficient?
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Second price auction

Let us next consider second-price sealed bid auction.

Both bidders submit simultaenously a sealed bid (e.g. write it on a
paper and submit to the seller).

Bidder who submitted the highest bid wins, but pays the second
highest bid.

This is a game between buyers:
I The strategy for each bidder is simply the bid.
I How should you bid?
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Second price auction

Claim: irrespective of the other bidder’s strategy, it is optimal to bid
one’s valuation.

In the terminology of game theory: bidding own valuation is a
dominant strategy
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Why?
I Consider an alternative strategy (bid above/below your valuation).
I Would such a deviation affect what you pay if you win?
I Would such a deviation affect whether or not you win? If so, when?

Would you be happy about that effect?

As a result, in equilibrium every bidder bids their true value.
I Bidder with the highest value wins.
I Pays an amount equal to the the second highest value.
I Allocation is efficient
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What is the expected revenue by the seller?
I Revenue is equal to the second highest valuation (i.e., with two

bidders, the lowest valuation).
I Hence, expected revenue is the expectation of the second highest value.
I How to compute this? Derive the probability distribution for the

second-highest valuation (second order statistic), and compute its
expectation.

Let G (b) denote the cumulative distribution function (c.d.f.) of the
second order statistic:

G (b) = 1− (1− b)2

Can you derive this? How to compute expected revenue from here?
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With two bidders, expected revenue is

Emin{v1, v2} =
1

3
.

(can you compute this?)

Expected value of the winner is

Emax{v1, v2} =
2

3
.

Hence, surplus is split equally between seller and winning bidder (on
expectation)
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What if there are more bidders?
I With 3 bidders, it is easy to show that expected revenue is 1/2
I Expected value of the winner is 3/4
I Hence, total surplus increases, but the share that goes to seller

increases too

This generalizes: as N increases, the seller gets a larger and larger
share of the total surplus

I With 10 bidders, expected price is 9/11 and expected value of winner is
10/11
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First price auction

Next, consider the first price sealed bid auction.

As above, bidders submit bids simultaneously.

Highest bid wins, but now the winner pays her own bid, i.e. the
highest bid.

Does this imply a higher revenue to the seller?
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Is it now optimal to pay your own bid?
I Clearly you should bid less.
I But how much less?

Submitting a lower bid will
I Increase the surplus if winning.
I Decrease chances of winning.

Optimal bid will depend on what you think the other(s) will do
(unlike with second price auction).

We need to consider a full equilibrium analysis.
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Bayesian Nash equilibrium

This is a game of incomplete information: each bidder knows
privately her own value.

Each bidder’s equilibrium strategy must maximize her expected payoff
accounting for the uncertainty about other bidders’ values:

Definition

A set of bidding strategies is a Bayesian Nash equilibrium if each bidder’s
strategy maximizes her expected payoff given the strategies of the other
bidder(s).

We will analyze this thoroughly in the next lecture, but for now it
suffices to note that since each bidder know privately her valuation, a
strategy must determine what a bidder bids as a function of her
valuation.
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Finding the equilibrium bid function

This example with two players and uniform value distributions can be
solved easily by a simple trick (we will analyze the more general
model later).

Suppose bidder 2 uses bidding strategy b2 (v2) = βv2 for some β > 0.

What is then the optimal bid for bidder 1? Suppose bidder 1 has
value v1, and consider payoff of bidding b:

π (b; v1) = Pr (win) (v1 − b)

= Pr (βv2 < b) (v1 − b)

= Pr

(
v2 <

b

β

)
(v1 − b)

=
b (v1 − b)

β
.

This is maximized by choosing b = 1
2v1.
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Finding the equilibrium bid function

So, if bidder 2 uses a linear bidding strategy, the best response of
bidder 1 is to use a linear bidding strategy b1 (v1) = 1

2v1.

Hence, if both bidders bid half of their value, they are both
best-responding to each other.

In other words, this is a Bayesian Nash equilibrium. In this
equilibrium, both bidders use strategy

bi (vi ) =
1

2
vi , i = 1, 2.
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Efficiency and revenue

How do the properties of the equilibrium contrast with second price
auction?
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Bidder with the highest value wins here too: auction is efficient.

How about expected revenue? Let us compute:
I Remember, expected highest value is E (max {v1, v2}) = 2

3
I Therefore, expected price is E (max {b1 (v1) , b2 (v2)}) = 1

2
2
3 = 1

3 .
I This is the same as with second price auction!

Is this a coincidence?
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Ascending auction

Finally, consider the ascending auction.

Price starts ascending from 0 and bidders indicate their willingness to
buy by staying in the game.

As soon as one bidder drops out (e.g. say ”I give up”), the remaining
bidder wins and pays the standing price.

This is a game, where the strategy of each bidder is to decide when
to ”stop” (i.e. drop out).

When should you stop?
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Ascending auction

The optimal strategy is: stay in the game until price hits your
valuation.

This strategy is optimal irrespective of the strategy of the other
player. ( Why?)

Bidder with the highest valuation wins and pays the second highest
value.

I Outcome is equivalent to the second-price auction.
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Revenue equivalence theorem

The equivalence of expected revenue in first price auction and
ascending/second price auction is a manifestation of so called
Revenue equivalence theorem.

As we will see formally in the next lecture, it holds to any auction
format where highest value bidder always wins.

For example, the expected revenue would be the same in All-pay
auction

I Bidders submit bids, high bidder wins, and everyone has to pay their
own bid.

I Winner pays on average less than in standard formats, but expected
total payment is the same since also losers pay.

I Not commonly seen as an auction format, but used as a stylized model
of contests (e.g. political lobbying or R&D race).
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Reserve price

Is there any way for the seller to increase expected revenue?

Suppose the seller sets a reserve price r , i.e. minumum accepted price.

Is it a good idea?
I Potential benefit: higher price.
I Drawback: maybe no sale (if all bidders have value below r).

Consider second-price auction with reserve price r = 1
2 and compute

expected revenue. Note:
I if min {v1, v2} > r , then price is min {v1, v2} .
I if min {v1, v2} < r < max {v1, v2}, then price is p = r .
I if max {v1, v2} < r , then there is no trade.
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Can you compute the expected revenue? (it is indeed higher than
without reserve price)

One can show that r = 1
2 is the optimal reserve price in this case

The auction is not efficient: sometimes there is no trade at all even
when bidders have positive values.

Standard lesson about monopoly power applies in auctions too:
I Monopolist distorts allocation (causes inefficiency) in order to transfer

consumer surplus into profit.
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Auction design

We saw that the seller can increase profits by using a reserve price

Are there other instruments that the seller could use?

Are there other issues that should be taken into account in designing
the auction?

In real world, auction design is often a complicated problem:
I Think about your reading assignment. What makes things complicated

there?

We consider next three important issues thorough examples:
I How to treat asymmetric bidders?
I How to ensure sufficient entry?
I How to deter collusion?
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Bidder subsidies and set-asides

In real auction it is common that seller treats some bidders
preferentially. Why?

Distributional reasons:
I Government favoring domestic bidders, municipal favoring local

producers in procurement, etc.
I Favoring of small businesses by subsidies or restricting entry

(exclusions, or set-asides)

Competition, or other post-auction market reasons:
I Make sure there is sufficient competition in the market after auction

Is it possible to increase revenue by subsidies?

Let us look at a specific example with asymmetric bidders
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Example of bid subsidies

Two bidders with private values v1 and v2.

Suppose the bidders are ex-ante asymmetric in the following sense:
I Valuations are independently drawn from

v1 ∼ U [0, 1] ,

v2 ∼ U [0, 2] .

Consider an ascending auction (or equivalently, second price auction)
I Both bidders bid up to their values and the higher value bidder wins.
I This is more likely to be bidder 2.

What is the expected price?
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Consider two equally likely events:
I Bidder 2 has value v2 > 1
I Bidder 2 has value v2 < 1

In the former case, bidder 2 wins and pays on expectation 1/2

In the latter case, each bidder as likely to win, and expected price 1/3

So, bidder 2 wins with probability 3
4 and the expected revenue is

1
2

1
2 + 1

2
1
3 = 5

12 .
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Suppose the seller gives 50% discount to the weaker bidder (bidder 1)

What is the optimal bidding strategy of bidder 1?
I Bid up to 2v1

Behavior of bidders is as if both bidders have values drawn uniformly
from [0, 2]

As a result, both bidders are as likely to win

Expected ”clock price” is now 2
3

But taking into account the subsidy payment, the expected revenue
of the seller is

R =
1

2

2

3
+

1

2

1

3
=

1

2
.
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Effect of subsidies:

With no subsidy
I Strong bidder is more likely to win ( 3

4 against 1
4 )

I Expected revenue is 5
12

I Auction is efficient: higher value bidder always wins

With subsidy:
I Both bidders equally likely to win
I Expected revenue is 1

2 >
5

12
I Auction is inefficient

Again: seller gives up on efficiency to increase revenue
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Entry of bidders

A common problem in organizing auctions: how to ensure there are
enough bidders participating?

More bidders guarantees more competition

But if bidders expect tough competition, why would they participate
if entry is costly?

This is a typical problem for example in procurement auctions, where
it takes some work and effort for the participants to prepare offers

Asymmetries can also be problematic
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Take the same example as above. Two bidders with independently
drawn valuations:

v1 ∼ U [0, 1] ,

v2 ∼ U [0, 2] .

Second price auction / ascending auction

Ex-ante expected payoffs of the two bidders (before they learn their
valuations):

I Bidder 1 expects to get 1
12 (why?)

I Bidder 2 expects to get 1
2 + 1

12 (why?)
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Suppose now that there is a cost of 1
10 to enter

I Think of this as the cost of learning how much you value the good
(cost of inspecting the procurement contract, cost of learning the
production cost of service, etc.)

Given this, bidder 1 should not enter at all

Therefore, bidder 2 is the only one to enter and bids zero

Not good for the seller...
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How to promote entry of bidders in practice?

Subside weaker bidders
I Increase their payoff of entering, hence encourage entry

Subsidize the entry costs directly
I E.g. reimburse costs of preparing documentation for procurement

contract offers

Restrict the strong bidders from participating: set-asides
I Excluding a strong incumbent may increase profits by inducing more

competitive entry

How about auction format?
I In ascending price auction, the strong bidders can always respond in

real time to weaker bidders.
I Not good for entry (see your reading assignment).
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Collusion

Collusion occurs if bidders agree in advance or during the auction to
let price settle at some low level.

I This is illegal, but happens anyway.

This occurs most naturally in situations, where there are multiple
items for sale.

I All bidders get a fair share, why raise price?
I In extreme situations, incentives for price competition can be very low,

even without formal collusion.
I E.g. three similar objects, three bidders. Each bidder gets one, why

raise prices?
I Spectrum auctions?

With a single object, collusion may rely on:
I Side agreements: you win and share profits with me.
I Intertemporal arrangement: you win today, I win tomorrow.

P.Murto (Aalto) Pricing Lectures part 3 October 18, 2021 39 / 91



How to deter collusion?

Tougher law enforcement?

What about the auction format?

Ascending auction
I Suppose bidders 1 and 2 agree in advance that 1 should win.
I What happens if bidder 2 deviates the agreement, and keeps on

bidding as price increases?
I Bidder 1 can bid back - makes deviation unprofitable and helps the

collusion.

Sealed bid auction
I Again, suppose bidders 1 and 2 agree on bids such that bidder 2 wins.
I But then bidder 1 can secretly outbid and steal the auction.
I Deviation from agreement more tempting - makes it harder to sustain

collusion.
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Lecture 18.10.: Formal analysis of auctions

So far, we have worked through simple examples.
I Two bidders, independent private values drawn from uniform

distribution.
I Ascending price auction, second-price auction, first-price auction.

It turned out that all these formats resulted in the same expected
revenue for the seller.

We also saw that a reserve price can increase seller’s revenue.

The goal now is to understand these findings better.

In particular, we look for an explanation of the revenue equivalence
theorem.

To do that, we start by defining games of incomplete information.
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Bayesian Games: Formal Definitions

Harsanyi: a game of incomplete information is given by
¯1 set of players: i ∈ {1, 2, ...,N}

2 actions available to player i : Ai for i ∈ {1, 2, ...,N}. Let ai ∈ Ai denote
a typical action for player i

3 sets of possible types for all players: Θi for i ∈ {1, 2, ...,N}. Let
θi ∈ Θi denote a typical type of player i

4 let a = (a1, ..., aN), θ = (θ1, ..., θN), a−i = (a1, ..., ai−1, ai+1, ..., aN),
θ−i = (θ1, ..., θi−1, θi+1, ..., θN) etc.

5 natures move: θ is selected according to a joint probability distribution
p(θ) on Θ = Θ1 × · · · ×ΘN

6 strategies: si : Θi → Ai , for i ∈ {1, 2, ...,N}. si (θi ) ∈ Ai is then the
action that type θi of player i takes

7 payoffs: ui (a1, ..., aN ; θ1, ..., θN)
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Bayesian Games: Formal Definitions

Game proceeds as follows
I Nature chooses θ according to p(θ).
I Each player i observes realized type θ̂i and updates her beliefs.

F Each player comes up with conditional probability on remaining types
conditional on θi = θ̂i .

F Denote distribution on θ−i conditional on θ̂i by pi (θ−i |θ̂i ).
F Recall Bayes’ rule:

pi (θ̂−i |θ̂i ) =
pi
(
θ̂i , θ̂−i

)
∑

θ−i∈Θ−i

pi
(
θ̂i , θ−i

) .
I Players take actions simultaneously.
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Bayesian Games: Formal Definitions
Important special cases:

Private values: for all a, i , θi and all θ−i , θ
′
−i we have:

ui (a; θi , θ−i ) = ui
(
a; θi , θ

′
−i
)
.

I In words, player i ′s payoff in the game depends on her own information
and the actions chosen by all players, but not on the information of the
others.

I In all other cases, we say that we have interdependent values.
I Come up with examples where private values make sense and where

interdependent values make sense.

Independent values: for all i , θi and θ′i we have:

pi (θ−i |θi ) = pi
(
θ−i |θ′i

)
.

I In words, your own type contains no information on the types of the
others.

I Hence p (θ) = p1 (θ1) · p2 (θ2) · ... · pN (θN) , where pi (θi ) is the
marginal distribution on θi .
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Bayesian Games: Formal Definitions

Solution Concept: Bayesian Nash Equilibrium:

Definition: A strategy profile (s1(θ1), ..., sN(θN)) is a (pure strategy)
Bayesian Nash Equilibrium if si (θi ) is a best response to s−i (θ−i ) for all i
and all θi ∈ Θi .

Action specified by strategy of any given player has to be optimal
given strategies of all other players and beliefs of player.

To compute the expected payoff, note:
I Given strategy si (·), type θi of player i plays action si (θi )
I With vector of types θ = (θ1, ..., θN) and strategies (s1, ..., sN), realized

action profile is (s1(θ1), ..., sN(θN))
I Player i of type θ̂i has beliefs about types of other players given by

conditional probability distribution pi (θ−i |θ̂i )
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Bayesian Games: Formal Definitions

The expected payoff from action si is∑
θ−i

ui (si , s−i (θ−i ), θ)pi (θ−i | θ̂i )

Best Response: action si (θ̂i ) is a best response to s−i (θ−i ) if and only
if for all a′i ∈ Ai∑

θ:−i

ui (si (θ̂i ), s−i (θ−i ), θ)pi (θ−i | θ̂i )

≥
∑
θ:−i

ui (a
′
i , s−i (θ−i ), θ)pi (θ−i | θ̂i )
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Bayesian Games: Auctions

An auction is a particular Bayesian game.

A seller with an indivisible item for sale, zero cost.

N bidders: i = 1, ...,N.

Each bidder i has private information θi ∈ Θi .

Given the profile θ = (θi , θ−i ), bidder i ’s valuation is ui (θi , θ−i ) if he
gets the item and zero otherwise.

The prior distribution over Θ ≡ ×N
i=1Θi is F (θ). After knowing one’s

own θi , bidder i forms the posterior distribution of others’ valuation
payoff as Fi (θ−i |θi ).

All bidders and seller are risk-neutral expected utility maximizers.
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Bayesian Games: Auctions

Bi : (pure) action space for bidder i (bi ∈ Bi the amount i can bid in
auction, most typically Bi = R+).

Pure strategies: si : Θi → Bi .

Let Pi (b1, · · · , bN) be the probability that bidder i wins.

Let Ti (b1, · · · , bN) be the monetary payment that bidder i transfers
to seller (no matter i wins or not) if (b1, · · · , bN) is the vector of bids.

I Ti (bi , b−i ) can even be negative.

Payoffs to i if θ is the realized type vector and b is the realized bid
vector:

Pi (b1, ..., bN) ui (θi , θ−i )− Ti (bi , b−i ) .
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Bayesian Games: Auctions

Private values: if for all θi , θ
′
−i , θ−i , ui (θi , θ−i ) = ui

(
θi , θ

′
−i
)
.

Interdependent values: if the above condition is violated.

Common values: For all i , j and θ ∈ Θ ≡ ×N
i=1Θi ,

ui (θ) = uj (θ) .

Independent value model: if θi , i = 1, ...,N, are independentlty
drawn.

Symmetric case: if fi (θ) = fj (θ) and ui = uj for any i and j .
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Bayesian Games: Auctions

We work today with the independent, symmetric and private value
model in which all θi s are i.i.d. drawn from a common distribution.

We also assume that all bidders and seller are risk neutral.

Hence, given the bid profile (bi , b−i ), bidder i ’s payoff is

θiPi (bi , b−i )− Ti (bi , b−i ) .
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Standard Auction Formats

First Price Auction (High-bid Auction)
I buyers simultaneously submit bids
I the highest bidder wins (tie broken by flip coin)
I winner pays bid (losers pay nothing)

Pi (bi , b−i ) =


1
1
K
0

if bi > bj ,∀j 6= i
if bi ties for highest with K − 1 others

otherwise
.

Ti (bi , b−i ) =

{
bi
0

if i wins
otherwise

.
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Standard Auction Formats

Dutch Auction (Open Descending Auction)
I Auctioneer starts with a high price and continuously lowers it until

some buyer agrees to buy at current price
I the highest bidder wins (tie broken by flip coin)

Pi (bi , b−i ) =


1
1
K
0

if bi > bj ,∀j 6= i
if bi ties for highest with K − 1 others

otherwise
.

Ti (bi , b−i ) =

{
bi
0

if i wins
otherwise

.

This is the same as the case in FPA.

Dutch Auction and First Price Auction are strategically equivalent.
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Standard Auction Formats

Second Price Auction (Vickrey Auction)
I same rules as FPA except that winner pays second highest bid
I proposed in 1961 by William Vickrey

Pi (bi , b−i ) =


1
1
K
0

if bi > bj ,∀j 6= i
if bi ties for highest with K − 1 others

otherwise
.

Ti (bi , b−i ) =

{
maxj 6=i bi

0
if i wins

otherwise
.
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Second-price auction (SPA)

Claim: It is optimal for each player i to bid according to bi (θi ) = θi .

Proof: Let Vi (θi , bi , b−i ) be the payoff to i of type θi when the
others bid vector is b−i .Then

Vi (θi , bi , b−i ) =

{
θi −maxj 6=i bi if bi ≥ maxj 6=i bi ,

0 otherwise.

Hence it is optimal to set bi ≥ maxj 6=i bi if and only if
θi −maxj 6=i bi ≥ 0.
Clearly setting bi (θi ) = θi accomplishes exactly this.

We say that bi (θi ) = θi is a dominant strategy since the optimal bid
amount does not depend on the strategies of the other players.
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Standard Auction Formats

English Auction (Ascending Price Auction)
I buyers announce bids, each successive bid higher than previous one
I the last one to bid the item wins at what he bids

As long as the current price p is lower than θi , bidder i has a chance
to get positive surplus. He will not drop out until p hits θi .

Only when anyone else drops out before bidder i , i.e., p = maxj 6=i θj
can he win by paying p, the second highest valuation.

This shows that English Auction and Second Price Auction are
equivalent.
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First-price auction (FPA)

Deriving the equilibrium bid function for the first-price auction is
more tricky, since there is no dominant strategy

The equilibrium is derived in a direct way at the end of this slide set
(Additional material)

Instead, we next derive the Revenue Equivalence Theorem and use
that to derive the equilibrium of the first-price auction
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Envelope Formula and Revenue Equivalence Theorem

How to explain the revenue equivalence between first and second
price auctions that we observed in the example last week?

Consider an IPV auction with symmetric type distributions (do not
yet specify auction format)

Suppose that i with type θi bids bi .

Her probability of winning Pi and her expected payment Ti are then
determined by bi , and not by θi .
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Envelope Formula and Revenue Equivalence Theorem

We write the expected payoff then as:

Vi (θi , bi ) = θiPi (bi )− Ti (bi ) .

The expected maximized payoff to i of type θi is then:

Ui (θi ) = max
bi

θiPi (bi )− Ti (bi ) .

The envelope theorem tells us that U ′ (θi ) = Pi (bi (θ)), where bi (θ) is
the optimally chosen bid for type θ (Check that you know what
envelope theorem says).
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Envelope Formula and Revenue Equivalence Theorem

If we look for equilibria in symmetric increasing strategies, we must
have:

Pi (bi (θi )) = F (θi )
N−1 .

Using envelope theorem, we have:

Ui (θi ) =

∫ θi

0
F (s)N−1 ds.

This is really remarkable since we have not said anything about the
auction format at this stage.
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Envelope Formula and Revenue Equivalence Theorem

The expected payoff to each bidder is the same in all auctions that
result in the same probability of winning.

Hence expected payoff is the same in FPA and SPA.

But this means that the expected payments that the bidders make
must be equal in SPA and FPA.

But then the expected revenue to the seller must be the same:
Revenue Equivalence Theorem
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Auctions and Envelope Theorem
Now we can also use this result to derive equilibria in different
auctions

For FPA,
Ui (θi ) = (θi − b (θi ))F (θi )

N−1 .

But the envelope formula says:

Ui (θi ) =

∫ θi

0
F (s)N−1 ds.

Combining these, we get:

b (θi ) = θi −
∫ θi

0 F (s)N−1 ds

F (θi )
N−1

.

See additional material at the end of this slide set for a direct
derivation of the same formula.
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Auctions and Envelope Theorem

We can also compute equilibria for other auctions using this.

In an all pay auction, all bidders pay their bid and the highest bidder
wins the object.

In a symmetric equilibrium then,

Ui (θi ) = θiF (θi )
N−1 − b (θi ) .

Using the envelope formula, we get:

b (θi ) = θiF (θi )
N−1 −

∫ θi

0
F (s)N−1 ds.

So in the case with F (θi ) = θi , we get

b (θi ) =
N − 1

N
θN .
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Discussion

The Revenue Equivalence Theorem shows that whenever two auction
formats lead to the same allocation, the expected revenue of the seller
is the same

In particular, this holds for standard first-price and second price
auctions, where allocation is efficient (highest valuation bidders gets
the object)

Recall the example in the last lecture with a reserve price:
I A positive reserve price leads to inefficient allocation
I But improves expected revenue of the seller
I Revenue Equivalence also implies that two different auctions with the

same distortion lead to the same revenue

How to design auctions optimally from the seller’s perspective?
I In a significant paper, Myerson (1981): ”Optimal Auction Design”

(Mathematics of Operations Research) gives the full answer
I In our environment, an optimally chosen reserve price is indeed the best

the seller can do
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Further readings

For a very elegant presentation of the theory of auctions (at advanced
MSc/PhD level), see the book Krishna: Auction Theory (Academic
Press)

Another excellent, but a bit advanced book, is Milgrom: Putting
Auction Theory to Work (Cambridge University Press)
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ADDITIONAL MATERIAL (For completeness): direct
derivation of equilibrium bids for the first-price auction

Let all bidders’ valuations are independent and have the same
cumulative distribution F (θi ) an [0, 1].

Let f (θi ) be the associated density function.

Consider symmetric equilibria where all bidders use the same bidding
strategy b (θi ) .

Assume furthermore that b (θi ) is a strictly increasing function so that

θi < θ′i ⇒ b (θi ) < b
(
θ′i
)
.

Since F (·) has a density ties happen with probability zero and they
can be ignored in the analysis.
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To find equilibrium, consider optimal bid of bidder i if others use
b (θj)

Bidder i wins with bid βi if and only if

bj = b (θj) < βi for all j 6= i .

Hence i wins with bid βi if and only if

θj < b−1 (βi ) , for all j 6= i ,

where b−1 (·) is the inverse function of the bid function.

We can then calculate the expected payoff to bidder i with valuation
θi from bid βi :

(θi − βi )
(
F
(
b−1 (βi )

))N−1
.

Optimal bid for θi is then found by

max
βi

(θi − βi )
(
F
(
b−1 (βi )

))N−1
.
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First-order condition for optimal βi :

(θi − βi ) (N − 1)
(
F
(
b−1 (βi )

))N−2 dF
(
b−1 (βi )

)
dβi

=
(
F
(
b−1 (βi )

))N−1
.

By chain rule,

dF
(
b−1 (βi )

)
dβi

= f
(
b−1 (βi )

)
d
b−1 (βi )

dβi
,

and by inverse function rule,

dF
(
b−1 (βi )

)
dβi

=
f
(
b−1 (βi )

)
b′ (b−1 (βi ))
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Since in equilibrium, βi = b (θi ) must be optimal, we have:

(θi − b (θi )) (N − 1) (F (θi ))N−2 f (θi )

b′ (θi )
− F (θi )

N−1 = 0.

Multiplying both sides by b′ (θi ) , we get

(θi − b (θi )) (N − 1) (F (θi ))N−2 f (θi )− b′ (θi )F (θi )
N−1 = 0,

or
d

dθi
(θi − b (θi ))F (θi )

N−1 − F (θi )
N−1 = 0,

or by integrating:

(θi − b (θi ))F (θi )
N−1 =

∫ θi

0
F (θ)N−1 dθ.

Hence the symmetric equilibrium bid function is:

b (θi ) = θi −
∫ θi

0 F (θ)N−1 dθ

F (θi )
N−1

.
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Properties of the bid function:
I b (θi ) < θi for all θi > 0
I b (θi ) > 0 for all θi > 0
I Increasing in θi (i.e. b′ (θi ) > 0, can you see this?)
I How does b (θi ) depend on N?

F Look at special case F (θi ) = θi .
F Then b (θi ) = θi − 1

N
θi .

F Hence the equilibrium bid is increasing in the number of competing
bidders.
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We know by revenue equivalence theorem that FPA and SPA lead to
the same allocation and the same expected revenue to the seller

This can of course be checked also directly:

For simplicity, assume uniform distribution here: F (θi ) = θi .

The revenue in SPA is simply the second highest θi .

In FPA, revenue is
(
N−1
N

)
times highest θi .

Which one is greater?
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Let θ(2) be the second highest valuation.
I It has density function N (N − 1) θN−2 (1− θ) for θ ∈ [0, 1].
I Hence it has expected value

E
(
θ(2)
)

=

∫ 1

0

N (N − 1)
(
θN−1 − θN

)
dθ =

N − 1

N + 1

The highest valuation θ(1) has density NθN−1 for θ ∈ [0, 1].
I Hence

E
(
θ(1)
)

=

∫ 1

0

NθNdθ =
N

N + 1
.

I Expected revenue is then

E
(
b(θ(1))

)
=

N − 1

N + 1
.

We observe that the expected revenue is the same in the two auctions
(as it should be revenue equivalence theorem).
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Lecture 20.10.: Common value auctions

So far we have considered models, where
I each bidder’s value depends on his/her own signal only (private

values), and
I signals are independently drawn

Recall the example: how much would you bid for a jar of coins?

Here the value of the object is common to all the bidders, but
different bidders have a different estimate about the value

Do you care about the estimates of the other bidders?
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Winner’s curse

Winning means that all the other bidders were more pessimistic about
the value than you.

Winning is ”bad news”.

Equilibrium bidding should take this into account.

But how exactly?

Do bidders take it into account in reality?
I If not, then selling jars of coins is a money printing business
I Experienced/inexperienced bidders
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A simple model of common value auction

Suppose that there is a common value v for the good, but its value is
unknown.

Formally, v is a random variable with some known probability
distribution (e.g. Normally distributed)

Both bidders observe a private signal that is correlated with the true
value v . For example, we might have

θ1 = v + ε1,

θ2 = v + ε2,

where ε1 and ε2 are some i.i.d. random variables (e.g. Normally
distributed noise terms)

Then a high signal indicates that it is likely that also v is high
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A simple model of common value auction

This model is often called mineral-rights model
I think of v as the true value of an mineral right, such as oil field

Note: θ1 and θ2 are independently drawn, conditional on v

But because v is unkonwn, θ1 and θ2 are correlated with each other
through v

Signals provide information about v (but only imperfect):
I The expected value for bidder i based on her own signal is E (v |θ1 )
I The expected value based on both signals is E (v |θ1, θ2 )

It is natural to assume that these are increasing in signal values (a
high signal predicts a high value)
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A simple model of common value auction

Recall from the previous lecture, we can specify an auction
environment by defining the utility for a bidder if he wins as
ui (θi , θ−i ) .

In this case, we have:

ui (θi , θ−i ) = E (v |θ1, θ2 ) .

Hence, the utility of winning depends on both signals

Moreover, the signals are correlated

Hence, this is an auction with interdependent values and correlated
signals
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How to bid in a common value auction?

Assume second price auction format

Suppose bidder 2 uses strategy b2 (θ2)

Bidder 1 has signal θ1. How to bid?

Consider bidding some p, or slightly more or less:
I Makes no difference if b2 (θ2) << p, or if b2 (θ2) >> p
I Only matters if b2 (θ2) ≈ p

The only situation where p is ”pivotal” is when b2 (θ2) = p, i.e.
θ2 = b−1

2 (p).
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How to bid?

If bidder 1 wins being pivotal, her expected value for the object is

E
(
v
∣∣θ1, θ2 = b−1

2 (p)
)

To be indifferent between winning and not means

p = E
(
v
∣∣θ1, θ2 = b−1

2 (p)
)
.

Bidding more or less than p would lead to expected loss, so a best
response strategy b1 (θ1) for bidder one is to bid b1 (θ1) that satisfies:

b1 (θ1) = E
(
v
∣∣θ1, θ2 = b−1

2 (b1 (θ1))
)
.
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How to bid?

Hence, a symmetric Bayesian equilibrim is given by b (θ) that satisfies:

b (θi ) = E (v |θi , θ−i = θi ) .

It is optimal to bid as if the other bidder has exactly the same signal
as you

This generalizes to a symmetric model with N bidders:

b (θi ) = E
(
v

∣∣∣∣θi ,max
−i
{θ−i} = θi

)
.

In other words, you should bid as if you have the highest signal, and
the second highest signal within all the bidders is the same as your
signal

How would you now bid for the jar of coins?
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No regret property

The strategy that we derived shields against the winner’s curse

Suppose that bidder 1 wins:

b (θ1) > b (θ2)⇐⇒ θ1 > θ2

Bidder 1 expected value post auction is E (v |θ1, θ2 )

But her payment is E (v |θ2, θ2 ) < E (v |θ1, θ2 ) (note: second price
auction)

I Bidder 1 is happy she won

Bidder 2 expected value post auction is also E (v |θ1, θ2 )

But to win, she should have outbid bidder 1, in which case she would
have paid E (v |θ1, θ1 ) > E (v |θ1, θ2 )

I Bidder 2 is happy she lost!
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Bidding in common value auctions

The general idea in bidding in common value auctions: winning or
losing conveys information about the information of the other bidders,
so take this into account

There is also a ”loser’s curse”.

Suppose that there are multiple identical objects for sale, say 10
bidders and 9 objects

Suppose you lose. What does that tell about the value of the objects?
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Winner’s curse and IPO:s

Winner’s curse may have implications in other environments too

Consider an initial public offering (IPO) of a company at price p:
I All buyers have essentially the same value v for shares (unknown future

trading price)
I You should buy if you think v > p
I If there is a lot of demand, then there is rationing (not every buyer gets

shares)
I What does it tell about other’s information if you get shares?
I Winner’s curse?

IPO:s are often underpriced. Why?
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Revenue comparison between auction formats

When signals are not independent, the Revenue equivalence theorem
does not hold

There is another principle called Linkage Principle, which allows for
revenue comparison between different formats

This important result is due Milgrom and Weber (1982): ”A Theory
of Auctions and Competitive Bidding”, Econometrica.

It turns out that second price auction is better for revenue than first
price auction.

The linkage principle also suggests that it is typically beneficial for the
seller to release additional information about the object for sale (if she
has any)
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Information aggregation in common value auctions

Where do asset prices come from?

One view: prices reflect all the information that the traders have
about asset values

But how does price get to reflect that information?

To investigate this question, we can model a financial market using an
auction model

The question is: can equilibrium price in an auction aggregate the
bidders’ information?
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Information aggregation in common value auctions

What is information aggregation?

Suppose the value of an asset is v

N bidders have an independent signal θi = v + εi

If N is large, then the median signal gives a very precise estimate of v :

Median (θi ) = v + median (εi ) ≈ v

if for example εi ∼ N
(
0, σ2

)
”Wisdom of the crowds”

But can the price in an auction aggregate information?

If there is only one object, then not likely.
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Information aggregation in common value auctions

Assume a common value auction, with N bidders and K identical
objects (think of N as a very large number)

For simplicity, assume K = N/2

Think of this as a market for an asset (K units, e.g. shares, and N
bidders)

The value of the asset is v and each bidder has a signal θi = v + εi

Auction format is a generalization of second price auction: K + 1st

price auction

Equilibrium bidding function can be shown to be

b (θi ) = E
(
v
∣∣θi ties with the K + 1st highest signal

)
.

Intuitively: bid as if you were just pivotal
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Information aggregation in common value auctions

But then

b (θi ) ≈ E (v |θi is median signal)

= E (v |v + median (εi ) = θi )

= θi

Price will be b
(
θ(K+1)

)
, where θ(K+1) is the K + 1st highest signal

So the auction price will be approximately the median signal, and
hence aggregates information!

This model is a very simplified version of Pesendorfer and Swinkels
(1997): ”The loser’s curse and information aggregation in common
value auctions”, Econometrica.
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Conclusions

Winning (or losing) reveals information about others’ estimates

Taking into account winner’s curse requires caution in bidding

Auction price can aggregate information
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Some further readings on auctions

A broad (but a bit old by now) survey on auctions is Klemperer
(2002): ”Auction Theory: A Guide to the Literature”, Journal of
Economic Surveys.

An empirical analysis of collusion in auctions: Asker (2010): ”A Study
of the Internal Organization of a Bidding Cartel”, American Economic
Review.

For discussion on practical issues on auction design, see Klemperer
(2002): ”What Really Matters in Auction Design”, Journal of
Economic Perspectives.
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For on-line auction applications, see e.g.

I Edelman, Ostrovsky, Schwarz (2007): ”Internet Advertising and the
Generalized Second-Price Auction: Selling Billions of Dollars Worth of
Keywords”, American Economic Review.

I Varian (2009): ”Online Ad Auctions”, American Economic Review
(Papers and Proceedings)

I Varian and Harris (2014): ”The VCG Auction in Theory and Practice”,
American Economic Review (Papers and Proceedings).
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