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Regression discontinuity design

Rules create experiments

@ Institutional rules often assign individuals to “treatments" which
can be exploited for estimating causal effects
@ The most typical case are threshold rules that are based on some
ex-ante variable
e Score in entry exams
o Income for subsidy eligibility
e Project quality score for public R&D subsidies
o Age limit for alcohol consumption
@ This ex-ante variable is called the running (forcing, assignment)
variable.

@ Selected threshold of the running variable assigns individuals
into “treated" and “not treated"

@ The idea in RDD design is to exploit the randomness of
assignment around the threshold



Regression discontinuity design

@ The main idea in the RDD is to compare the outcomes below
(control) and above (treated) the threshold
@ We assume that:

o Treatment status is a deterministic function of the running
variable

o Treatment status is a discontinuous function of the running
variable

@ Sharp desgin: Treatment switched from 0 to 1 at the threshold

o Fuzzy design: The probability of treatment jumps at the
threshold



Regression discontinuity design

@ RDD works when:
e Variation in treatment status is as good as randomly assigned
around the threshold
o There is no way to precisely manipulate the running variable
o There are enough observations around the threshold



Example: Effect of the Minimum Legal Drinking Age

(MLDA) on death rates

Carpenter and Dobkin (2009)

@ outcome variable y;: death rate
© treatment D;: legal drinking status
© running variable x;: age

Q cutoff: MLDA transforms 21-year-olds from underage minors to
legal alcohol consumers.



Example: Effect of the Minimum Legal Drinking Age

(MLDA) on death rates
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Example: Effect of the Minimum Legal Drinking Age

(MLDA) on death rates

FIGURE 4.2
A sharp RD estimate of MLDA mortality effects
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Notes: This figure plots death rates from all causes against age in months.
The lines in the figure show fitted values from a regression of death rates on
an over-21 dummy and age in months (the vertical dashed line indicates the

7/ 64



Sharp Regression Discontinuity Design

@ Suppose that treatment status (D);) is deterministic and
discontinuous function of the running (assignment, forcing)
variable (x;):

o D;=1ifz; >c
o D, =0ifx; <c
@ In this case, we have a sharp RDD

o All individuals to the right of the cut off are exposed to the
treatment and all those to the left are denied the treatment



Sharp Regression Discontinuity Design: Linear case

@ Suppose we can write the relationship between Y, D, and X as:
Y=a+Dr+XF+e¢
@ We are assuming that the relationship between Y and X is linear

@ Y is a discontinuous function of D generating a treatment effect
T
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Simple linear RD set up

Outcome variable (Y)




Sharp Regression Discontinuity Design: Linear case

Y jumps at X =c¢

We assume that all factors, other than D, affecting Y evolve
smoothly with respect to X

B’ would be a reasonable guess for value of Y when D =1

A’ would be a reasonable guess for value of Y when D =0

Then B' — A’ would be the impact of treatment on Y
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Sharp Regression Discontinuity Design: Linear case

@ Inherent tradeoff in RDD:

o Estimates are more accurate, the closer we are to the thershold
o The closer we are to the threshold, the less data we have

@ We need to use data away from the threshold

@ As aresult we need to assume a functional form for the
relationship between Y and X
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Nonlinear RD set up
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Sharp Regression Discontinuity Design: Specifying the

functional form

@ One way to estimate the treatment effect in an RD set up is to
specify the functional form between Y and X

@ We already saw the linear example
@ But in general the relationship can be any f(X;):
Yi=a+71Di+ f(Xi) + €
e f((X;) can be, for example, p:th order polynomial:
F(Xi) = B1X; + BaXP + B3 X7 + o + B, X7

e f(X;) can also be estimated separately at each side of the cutoff
point

@ Relies on the assumption that f(X;) is an adequate description
of the relationship between Y and X

@ The further away from the threshold we are, the bolder this
assumption is
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Sharp Regression Discontinuity Design: Estimation within

a bandwidth

@ In the previous graph:
B—-—A=1limEY;|X;=c+ ¢ —lim E[Y;|X; =c— ¢
e—0 e—0

@ which at the limit is equal to:
ElYi(D; =1) = Yi(D; = 0)|X; = (]
@ This is the treatment effect at the thershold ¢

@ Around the threshold we can use the outcomes below the
threshold as a valid counterfactuals for outcomes above the
threshold
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Sharp Regression Discontinuity Design: Estimation within

a bandwidth

How should we estimate E[Y;|X; = ¢+ ¢] and E[Y;|X; = ¢ — €]
Non-parametric methods: Local linear regressions within a given
bandwidth (window) of width h around the threshold

How to choose h?

Tradeoff between precision and bias

Literature on optimal bandwidths
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RD design as a local RCT

@ The relationship between RDD and RCT

@ In RCT the assignment variable X is completely random and
therefore independent of Yy;, Y1,

o The average treatment effect can be computed as a differences in
mean value of Y on the right and left hand side of the threshold

@ RDD as an RCT where individuals have incomplete control over
X

@ Then treatment is as good as randomly assigned only around the
cutoff point
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RCT as RDD
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Validity of RDD

@ RDD relies on the assumption that individuals are not able to
influence the assignment variable precisely
@ There are ways to test this assumption:

o Baseline characteristics should have the same distribution just
above and below the threshold

o Density of the running variable, X, should be continuous at the
threshold (McCrary test)
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Sharp design example: Causal effect of incumbency,

@ Does a democratic candidate for a seat in the U.S. house of
representatives have an advantage if his party won the seat in the
previous election?

@ Exploits the fact the previous election winner is determined by
rule D; = 1if x; > ¢ where c the threshold for winning (50 % in
a two party state)

@ Because D; is a deterministic function of x; there should be no
confounding factors other than x;
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Estimates with different bandwidths and functional forms

TABLE 3
RD ESTIMATES OF THE EFFECT OF WINNING THE PREVIOUS ELECTION ON
PROBABILITY OF WINNING THE NEXT ELECTION

Bandwidth: 1.00 0.50 0.25 0.15 0.10 0.05 0.04 0.03 0.02 0.01

Polynomial of order:

Zero 0.814 0.777 0.687 0.604 0.550 0.479 0.428 0.423 0.459 0.533
(0.007) (0.009) (0.013) (0.018) (0.023) (0.035) (0.040) (0.047) (0.058) (0.082)
[0.000] [0.000] [0.000] [0.000] [0.011] [0.201] [0.852] [0.640] [0.479]

One 0.689 0.566 0457  0.409 0.378 0.378 0472 0.524 0.567 0.453
(0.011) (0.016) (0.026) (0.036) (0.047) (0.073) (0.083) (0.099) (0.116) (0.157)
[0.000] [0.000] [0.126] [0.269] [0.336] [0.155] [0.400] [0.243] [0.125]

Two 0526 0440 0375  0.391 0450 0.607 0586 0.589 0440 0.225
(0.016)  (0.023) (0.039) (0.055) (0.072) (0.110) (0.124) (0.144) (0.177) (0.246)
[0.075] [0.145] [0.253] [0.192] [0.245] [0.485] [0.367] [0.191] [0.134]

Three 0452 0370 0408 0435 0472 0566 0.547 0412 0266 0.172
(0.021) (0.031) (0.052) (0.075) (0.096) (0.143) (0.166) (0.198) (0.247) (0.349)
[0.818] [0.277] [0.295] [0.115] [0.138] [0.536] [0.401] [0.234] [0.304]

Four 0385 0375 0424 0529 0604 0453 0331 0134 0.050 0.168
(0.026) (0.039) (0.066) (0.093) (0.119) (0.183) (0.214) (0.254) (0.316) (0.351)
[0.965] [0.200] [0.200] [0.173] [0.292] [0.593] [0.507] [0.150] [0.244]

Optimal order of 4 3 2 1 1 2 0 0 0 1

the polynomial
Observations 6,558 4,900 2,763 1,765 1,209 610 483 355 231 106




Sharp design example: Causal effect of incumbency,

@ Result suggest that incumbency raises the re-election probability
by 40%
@ Checks for validity

e Bunching in the distribution of x near the cutoff ¢?
e Discontinuities in pretreatment covariates


https://cloudfront.escholarship.org/dist/prd/content/qt6nm6j3zv/qt6nm6j3zv.pdf
https://cloudfront.escholarship.org/dist/prd/content/qt6nm6j3zv/qt6nm6j3zv.pdf

Fuzzy RDD

@ In sharp RDD treatment jumps from O to 1 at the threshold
o In fuzzy RDD the probability of treatment jumps at the threshols

o N g1(z;) ifx; >c
P'I"(Dz - 1|xl) — { g(](xz) lffL'Z <ec

so that g1 (x;) # go(x)
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Fuzzy RDD

o A treatment effect can be recovered by dividing the jump in the
relationship between Y and X at the threshold (the reduced
form) by the jump in the the probability of treatment at the
threshold (the first stage):

lime 0 E[Y;|X; = ¢+ €] — lime0 E[Y;| X; = ¢ — €]
T =
lim,_,q E[Dl‘Xz =c+ E] — lim_,g E[DAX,L =c— E]

@ Note the analogy to the Wald estimate in the IV strategy

@ The threshold as an instrument that creates exogenous variation
in the probability of treatment

@ We identify the effect for the individuals at the threshold



Example of "Fuzzy Design": Abdulkadiroglu, Angrist, and

Pathak, Econometrica 2014

@ What is the effect of attending an elite high school on student
achivement?

@ Focus on competitive elite schools in Boston and New York
@ These schools select their students based on admissions tests

o Admission threshold creates a discontinuity in the probability of
being admitted

@ Autors use these entry thresholds to estimate the effect of
attending an elite school on test scores

@ Parallels to situation in Helsinki high schools
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Example of "Fuzzy Design": Abdulkadiroglu, Angrist, and

Pathak, Econometrica 2014

@ We would expect the probability of receiving an offer from a
school to jump from O to 1 at the entry threshold
e However, the probability of enrollment may not jump from O to 1

e Some applicants receive multiple offers and only choose to enroll
in the preferred school

o Rejected slots will be filled from the waiting list below the
threshold

@ There’s clear ranking between schools

o Ones who are admitted to the best school are very likely to enroll
o Ones who are below the threshold of the worst elite school should
not be able to enroll in any of the elite schools
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Example of "Fuzzy Design": Abdulkadiroglu, Angrist, and

Pathak, Econometrica 2014

@ Most rejected applicants are admitted to some other elite school
@ Does the school quality really vary at all at these thresholds?

@ One way to examine this is to check how the quality of fellow
students jumps at the threshold

@ Peer quality = the average test score of one’s peers in the same
school
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Example of "Fuzzy Design": Abdulkadiroglu, Angrist, and

Pathak, Econometrica 2014

@ Suppose we are intrested in the effect of peer quality on student
achievement

@ Denote student’s end of high school test score with Y and her
pre high school test score with X

@ One could try to estimate the effect of peers’ average pre high
school test scores, X, with the following regression:

Y; =0+ 01 X; + 02X, +u;

@ What could go wrong here?

R



Example of "Fuzzy Design": Abdulkadiroglu, Angrist, and

Pathak, Econometrica 2014

o Entry thresholds create "as good as random" variation in the
entry probability

@ We can write the reduced form as:
Yi = ao + pD; + SoRi + e

where D; = 1 for accepted applicants and R; is the running
variable

@ The first stage can be written as:

Xi=oa1+¢D; + PR + e
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Example of "Fuzzy Design": Abdulkadiroglu, Angrist, and

Pathak, Econometrica 2014

@ There is hardly any visible reduced form

@ Given this, it is not surprising that 2SLS estimates are
approximately zero for all outcomes

e Elite schools do not seem to have any effect on achievement

@ What does the locality of RDD imply for the intepretation of
these estimates?
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Boston and New York combined

TABLE IX
2SLS ESTIMATES FOR BOSTON AND NEW YORK*

Math English
(1) (2) (3) (4) (5) (6) W) (8) [c) (10)
2SLS Estimates (Models With Cohort Interactions)
Peer mean —0.038 0.064 —0.035 0.006 0.044 —0.047
(0.032) (0.080) (0.044) (0.030) (0.064) (0.051)
Proportion nonwhite 0.145 0.421 0.160 —0.014 0.141 0.063
(0.110) (0.279) (0.137) (0.102) (0.218) (0.134)
Years in exam school —0.003 0.006 0.045 0.027
(0.036) (0.030) (0.034y (0.025)
First-Stage F-Statistics (Models With Cohort Interactions)
Peer mean 65.8 9.1 50.0 39.8 57 228
Proportion nonwhite 65.8 17.6 60.0 52.3 12.4 41.2
‘Years in exam school 12.0 16.2 10.6 15.8
N 31,911 33313 31911 31,911 33313 31,222 32,185 31,222 31,222 32,185

(Continues)
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Are elite schools in Helsinki any better?

Lassi Tervonen’s master thesis from University of Helsinki is a
replication of Abdulkadiroglu et al with data from Helsinki
region

There are more or less clear elite schools in Helsinki

Entry thresholds based on comprehensive school GPA

Just as in Boston the peer quality jumps at the threshold

Reduced form and 2SLS effects are zero
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Peer quality at the elite school thresholds in Helsinki
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Reduced form: Mother tongue matriculation exam grade
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Silliman and Virtanen: Labor market returns to vocational

secondary education

@ In many European education system the critical choice concerns
the type of secondary education: academic or vocational
@ Trade-off
o Academic education provides general skills and prepares for
further education
e Vocational education provides specific skills and prepares directly
for the labor market
o Typically vocational education graduates earn more in the early
stage of the career and less later on
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Annual earnings and employment of Finnish vocational and

academic track graduates
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Silliman and Virtanen: Labor market returns to vocational

secondary education

@ Mean differences between types of graduates may be driven by
selection

o Academic aptitude
o Preferences
@ Would students who are marginally admitted to academic
secondary education benefit from studying in the vociational
track instead?
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Silliman and Virtanen: Labor market returns to vocational

secondary education

o Students selected based on their compulsory school GPA: c;i
@ Over-subscribed programs have an admission cutoff: 7

@ Focus on students who apply to both academic and vocational
programs

@ Distance to the cutoff &k for student 7 is: a; = ¢j. — Tk

@ Use cut-offs from the applicants’ first-ranked preference:

_— ik if Vocational >~ Academic
*k = —lay if Academic = Vocational
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Admission and enrollment around the cutoffs
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Earnings around the cutoffs 4 and 15 years after admission

Annual income.
8500 7000 7500

8000
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Year-by-year RDD estimates of the effect of enrollment into
vocational education

00000
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Silliman and Virtanen: Labor market returns to vocational

secondary education
(]
(]
(]
(]
o
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Vocational education increases earnings until age 33

No sign of trending off

No effects on employment

Vocational seems to be beneficial for applicants at the margin

Selection based on comparative advantage



Example: Integration plans for immigrants

@ Labour market integration of immigrants is a hot topic in many
countries

@ Active labour market policies targeted at immigrants

@ Sarvimiki and Hamildinen study the effect of immigrant
integration plans in Finland

@ Mandatory for recently arrived immigrants who are unemployed
or collect welfare benefits
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https://www.journals.uchicago.edu/doi/pdfplus/10.1086/683667
https://www.journals.uchicago.edu/doi/pdfplus/10.1086/683667

Example: Integration plans for immigrants

@ Integration plans were implemented on May 1 1999
@ Applied to those immigrant who arrived after May 1 1997
@ Immigrants who had arrived earlier were exempted

e RDD: Use May 1 1997 cutoff to identify the effect of integration
plans on earnings and benefit uptake
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https://www.journals.uchicago.edu/doi/pdfplus/10.1086/683667
https://www.journals.uchicago.edu/doi/pdfplus/10.1086/683667

First stage: Integration plans by month of arrival
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Reduced form: Earnings by month of arrival
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Example: Integration plans for immigrants

o Use only immigrants who arrived within A days of the cutoff for
estimation

@ Use optimal bandwidth algorithms to choose h: 42 months for
earnings, 40 months for plans


https://www.journals.uchicago.edu/doi/pdfplus/10.1086/683667
https://www.journals.uchicago.edu/doi/pdfplus/10.1086/683667

Example: Integration plans for immigrants

@ Reduced form: OLS estimation of the following regression:
yi = a+pB1[r; > ro]+do(ri—ro)+011[r; > rol(ri—ro)+Xin+e;

where y; is the outcome for immigrant i, 1 is an indicator
function, r; is date of arrival, rg is May 1 1997, and X; are
observable controls

@ First stage: OLS estimation of the following regression:
D; = p+y1ri > rol+Ao(ri—ro)+A11[r; > ro](ri—ro)+X;m+e;

where D; is indicator for immigrant i getting an integration plan
@ The local average treatment effect of the integration plan is

;=

=2
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https://www.journals.uchicago.edu/doi/pdfplus/10.1086/683667
https://www.journals.uchicago.edu/doi/pdfplus/10.1086/683667

Impact of the integration plans on earnings and benefits

Earnings Benefits
(1) (2) (3) 4
Reduced form 7,286 7,238 —2,785 —2,684
(4,094) (3,091) (1,758) (1,281)
First-stage .35 .35 .35 .35
(02) (02) (02) (02)
Local average treatment
cffect (LATE) 20,916 20,702 ~8017 ~7.698
(11,891) (9,107) (5,103) (3,681)
Compliers” expected outcomes
in the absence of the treatment 44,445 44,420 61,249 60,810
(9,962) (8,900) (4,314) (3,049)
LATE relative to the baseline 47 47 —.13 —.13
Additional covariates No Yes No Yes
Bandwidth (months) 42 42 40 40
First-stage F-statistic for the
excluded instrument 322.0 390.1 318.1 384.5

Observations 16,615 16,615 16,173 16,173



Sensitivity w.r.t bandwidth
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Example: Integration plans for immigrants

@ Integration plans increased earnings and reduced benefits take-up

o However, they had no effect on total amount of training received
by the immigrants

@ The authors interpret that the effect is coming through changes in
the content of training
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https://www.journals.uchicago.edu/doi/pdfplus/10.1086/683667
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What did we do last time? @

@ RDD: exploit randomness of treatment assignment around a
threshold
e Y;, outcome
e X, running variable

o D;, treatment which is a deterministic and discontinuous function
of X i

@ RDD as a RCT with incomplete influence of the assignment of
treatment
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What did we do last time? @

e Sharp RDD
o D;=1ifX; > ¢
o D;=0ifX; <c
@ Estimation
e Assume: Y; = a+7D; + f(X;) + v
o Estimate:

lim E[Y;|X; =c+¢€ —lim E[Y;|X; =c—¢
e—0 e—0

o Choose bandwidth h
e Limitdatato X € [c — h,c+ h]
o Non-parametric estimation within these data

@ Test that baseline characteristics are balance around the threshold

@ Test that the density of X is continuous at the threshold
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What did we do last time? @

o Fuzzy RD

i oaiw) ifx>c
Pr(D; = 1|z:) = { nfe) a2

so that g1 (z;) # go(z:)
@ IV analogy: Divide the jump in the relationship between Y and

X at the threshold (the reduced form) by the jump in the the
probability of treatment at the threshold (the first stage):

o lime,o E[Y;|X; = ¢+ €] — lim,o E[Y;| X; = ¢ — €]
lim._.o E[Dl‘Xz =c++ E] — lim_,g E[D1|X,L =c— 6]
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What did we do last time? @

@ Abdulkadiroglu et al
o Admission test threshold to gain access to Boston elite high
schools
o Distcontinuity in the probability of enrolling (the first stage)
o No jump in high school achivement (reduced form)
e Jump in the peer quality
@ Can we use the RD setting to estimate the effect of peer quality
on student achievement?
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What did we do last time? @

@ Problematic exclusion restrtiction: Admission to elite school
only affects student performance through peer quality

@ But other inputs will change at the threshold as well

@ Denote achievement of student ¢ with y;, peer quality with a;,
and all other relevant school inputs with w; and assume that:

yi = Ba; +yw; +n;

where 7); is the error term and C'ov(a,n) # 0 and Cov(w,n) # 0
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What did we do last time? @

@ Suppose we instrument a with z knowing that the exclusion
restriction does not necessarily hold

@ We assume that Cov(z,n) = 0 and Cov(z, a) # 0. However, we
also have that Cov(z,w) # 0

@ We have that:

Cov(y, z) = BCov(a, Z) + vCov(w, 2)

@ so that Couly, 2) Cov(w, 2)
ov(y,z) ov(w, z) _
Cov(a,z) prn Cov(a, z) Brap
where p is the 2SLS estimate of the effect of w on a using z as
instrument
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What did we do last time? @

2SLS version of the omitted variable bias

Can we put a sign on this bias?
e We would expect inputs to affect achievement positively:y > 0
e We would expect the other inputs to be affected positively by a:
p>0

Bias is likely to be positve

2SLS effects are close to zero

No evidence on peer quality effects
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