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Lecture	7:		
Optical	flow	and	keypoint	tracking	

•  Given	two	subsequent	frames	of	a	video,	the	optical	flow	
field	indicates	the	apparent	motion	of	each	pixel		

	
•  If	we	have	more	than	two	frames,	we	can	track	features	
from	one	frame	to	the	next	by	following	the	optical	flow	
	
	
	

Acknowledgement:	many	slides	from	Svetlana	Lazebnik,	Derek	Hoiem,	Steve	Seitz,	
Rick	Szeliski,	M.	Pollefeys,	and	others	(detailed	credits	on	individual	slides)	

	
	



Reading	&	software	
•  Szeliski’s	book,	1st	edition:	Chapter	8	or	2nd	edition:	Chapter	9	
	
•  Baker	&	Matthews:	Lucas-Kanade	20	years	on,	a	unifying	framework,	

2004	
–  https://www.ri.cmu.edu/publications/lucas-kanade-20-years-on-a-unifying-

framework/	
	

•  Shi	&	Tomasi:	Good	features	to	track,	1994	
–  http://www.ai.mit.edu/courses/6.891/handouts/shi94good.pdf	
	

•  OpenCV	software:	
–  http://docs.opencv.org/3.1.0/d7/d8b/tutorial_py_lucas_kanade.html	

	

	



Motivation: glimpse to the state of the art 



Motion is a powerful perceptual cue 
•  Sometimes, it is the only cue 



Motion is a powerful perceptual cue 
•  Even “impoverished” motion data can evoke a 

strong percept 

G. Johansson, “Visual Perception of Biological Motion and a Model For Its Analysis", 
Perception and Psychophysics 14, 201-211, 1973. 



Motion is a powerful perceptual cue 
•  Even “impoverished” motion data can evoke a 

strong percept  

G. Johansson, “Visual Perception of Biological Motion and a Model For Its Analysis", 
Perception and Psychophysics 14, 201-211, 1973. 



Uses of motion in computer vision 
•  3D shape reconstruction 
•  Object segmentation 
•  Learning and tracking of dynamical models 
•  Event and activity recognition 



Preview: Structure from motion 
•  Given a set of corresponding points in two or more 

images, compute the camera parameters and the 3D point 
coordinates 

R1,t1 

R2,t2 

R3,t3 ? ? ? 

? 



Keypoint tracking 

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:  
A factorization method. IJCV, 9(2):137-154, November 1992.  



Motion field 
•  The motion field is the projection of the 3D 

scene motion into the image 



Optical flow 
•  Definition: optical flow is the apparent motion 

of brightness patterns in the image 
•  Ideally, optical flow would be the same as the 

motion field 
•  Have to be careful: apparent motion can be 

caused by lighting changes without any actual 
motion 
•  Think of a uniform rotating sphere under fixed lighting  

vs. a stationary sphere under moving illumination 



Estimating optical flow 

•  Given two subsequent frames, estimate the apparent 
motion field u(x,y) and v(x,y) between them 

•  Key assumptions 
•  Brightness constancy:  projection of the same point looks the 

same in every frame 
•  Small motion:  points do not move very far 
•  Spatial coherence: points move like their neighbors 

I(x,y,t–1) I(x,y,t) 



Brightness Constancy Equation: 

),()1,,( ),,(),( tyxyx vyuxItyxI ++=−

),(),(),,()1,,( yxvIyxuItyxItyxI yx ++≈−

Linearizing the right side using Taylor expansion: 

The brightness constancy constraint 

I(x,y,t–1) I(x,y,t) 

0≈++ tyx IvIuIHence, 



The brightness constancy constraint 

•  How many equations and unknowns per pixel? 
•  One equation, two unknowns 

•  What does this constraint mean? 

•  The component of the flow perpendicular to the 
gradient (i.e., parallel to the edge) is unknown 

0=++ tyx IvIuI

0),( =+⋅∇ tIvuI



The brightness constancy constraint 

•  How many equations and unknowns per pixel? 
•  One equation, two unknowns 

•  What does this constraint mean? 

•  The component of the flow perpendicular to the 
gradient (i.e., parallel to the edge) is unknown 

0=++ tyx IvIuI

0)','( =⋅∇ vuI

edge 

(u,v) 

(u’,v’) 

gradient 

(u+u’,v+v’) 

If (u, v) satisfies the equation,  
so does (u+u’, v+v’) if  

0),( =+⋅∇ tIvuI



The aperture problem 

Perceived motion 



The aperture problem 

Actual motion 



The barber pole illusion 

http://en.wikipedia.org/wiki/Barberpole_illusion 



The barber pole illusion 

http://en.wikipedia.org/wiki/Barberpole_illusion 



Solving the aperture problem 
•  How to get more equations for a pixel? 
•  Spatial coherence constraint:  pretend the pixel’s 

neighbors have the same (u,v) 
•  E.g., if we use a 5x5 window, that gives us 25 equations per pixel 

B. Lucas and T. Kanade. An iterative image registration technique with an application to 
stereo vision. In Proceedings of the International Joint Conference on Artificial 
Intelligence, pp. 674–679, 1981. 
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Solving the aperture problem 
•  Least squares problem: 

B. Lucas and T. Kanade. An iterative image registration technique with an application to 
stereo vision. In Proceedings of the International Joint Conference on Artificial 
Intelligence, pp. 674–679, 1981. 

•  When is this system solvable? 
•  What if the window contains just a single straight edge? 
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Conditions for solvability 
•  “Bad” case: single straight edge 



Conditions for solvability 
•  “Good” case 



Lucas-Kanade flow 
Linear least squares problem 

B. Lucas and T. Kanade. An iterative image registration technique with an application to 
stereo vision. In Proceedings of the International Joint Conference on Artificial 
Intelligence, pp. 674–679, 1981. 

The summations are over all pixels in the window 

Solution given by 
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Lucas-Kanade flow 

•  Recall the Harris corner detector: M = ATA is 
the second moment matrix 

•  We can figure out whether the system is 
solvable by looking at the eigenvalues of the 
second moment matrix 
•  The eigenvectors and eigenvalues of M relate to edge 

direction and magnitude  
•  The eigenvector associated with the larger eigenvalue points 

in the direction of fastest intensity change, and the other 
eigenvector is orthogonal to it 
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Recall: second moment matrix 

λ1 

λ2 

“Corner” 
λ1 and λ2 are large, 
 λ1 ~ λ2 

λ1 and λ2 are small “Edge”  
λ1 >> λ2 

“Edge”  
λ2 >> λ1 

“Flat” 
region 

Classification of image points using eigenvalues 
of the second moment matrix: 



Uniform region 

–  gradients have small magnitude 
–  small λ1, small λ2 
–  system is ill-conditioned 



Edge 

–  gradients have one dominant direction 
–  large λ1, small λ2  
–  system is ill-conditioned 



High-texture or corner region 

–  gradients have different directions, large magnitudes 
–  large λ1, large λ2 
–  system is well-conditioned 



Example of optical flow estimation 

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003 



Example of optical flow estimation 

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003 
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Iterative Refinement 

•  Iterative Lukas-Kanade Algorithm 
1.  Estimate displacement at each pixel by solving 

Lucas-Kanade equations 
2.  Warp I(t) towards I(t+1) using the estimated flow field 

- Basically, just interpolation 

3.  Repeat until convergence 

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003 



Multi-resolution estimation 

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003 



Multi-resolution estimation 

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003 



image I image J 

Gaussian pyramid of image 1 (t) Gaussian pyramid of image 2 (t+1) 

image 2 image 1 

Coarse-to-fine optical flow estimation 

run iterative L-K 

run iterative L-K 

warp & upsample  

. 

. 

. 



Multi-resolution	Lucas	Kanade	Algorithm	



Optical	Flow	Results	

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003 



Optical	Flow	Results	

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003 



Errors in Lucas-Kanade 
•  The motion is large (larger than a pixel) 

•  Coarse-to-fine estimation 
•  Iterative refinement 
•  Exhaustive neighborhood search (feature matching) 

•  A point does not move like its neighbors 
•  Motion segmentation 

•  Brightness constancy does not hold 
•  Exhaustive neighborhood search with normalized correlation 



Large displacement optical flow 
 Start with something similar to Lucas-Kanade 
 + gradient constancy 
 + energy minimization with smoothing term 
 + region matching 
 + keypoint matching (long-range) 

Large displacement optical flow, Brox et al., CVPR 2009 
Region-based +Pixel-based +Keypoint-based 



Feature tracking 
•  If we have more than two images, we can 

track a feature from one frame to the next by 
following the optical flow 

•  Challenges 
•  Finding good features to track 
•  Adding and deleting tracks 



Shi-Tomasi feature tracker 

•  Find good features using eigenvalues of second-
moment matrix 

•  Key idea: “good” features to track are the ones whose motion can 
be estimated reliably 

•  From frame to frame, track with Lucas-Kanade 
•  This amounts to assuming a translation model for frame-to-frame 

feature movement 

•  Check consistency of tracks by affine registration 
to the first observed instance of the feature 

•  Affine model is more accurate for larger displacements 
•  Comparing to the first frame helps to minimize drift 

J. Shi and C. Tomasi. Good Features to Track. CVPR 1994.  



Tracking example 

J. Shi and C. Tomasi. Good Features to Track. CVPR 1994.  



Summary	of	KLT	tracking	
•  Find	a	good	point	to	track	(harris	corner)	

•  Use	intensity	second	moment	matrix	and	
difference	across	frames	to	find	displacement	

•  Iterate	and	use	coarse-to-fine	search	to	deal	with	
larger	movements	

•  When	creating	long	tracks,	check	appearance	of	
registered	patch	against	appearance	of	initial	
patch	to	find	points	that	have	drifted	



Implementation	issues	
•  Window	size	

–  Small	window	more	sensitive	to	noise	and	may	miss	larger	
motions	(without	pyramid)	

–  Large	window	more	likely	to	cross	an	occlusion	boundary	
(and	it’s	slower)	

–  15x15	to	31x31	seems	typical	

•  Weighting	the	window	
–  Common	to	apply	weights	so	that	center	matters	more	
(e.g.,	with	Gaussian)	



Why	not	just	do	local	template	matching?	

•  Slow	(need	to	check	more	locations)	

•  Does	not	give	subpixel	alignment	(or	becomes	
much	slower)	
– Even	pixel	alignment	may	not	be	good	enough	to	
prevent	drift	

•  May	be	useful	as	a	step	in	tracking	if	there	are	
large	movements	



Summary	
•  Major	contributions	from	Lucas,	Kanade,	Shi,	Tomasi	

–  Tracking	feature	points	
– Optical	flow	

	
•  Key	ideas	

–  By	assuming	brightness	constancy,	truncated	Taylor	
expansion	leads	to	simple	and	fast	patch	matching	across	
frames	

–  Coarse-to-fine	registration	


