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Lecture	8:	Deep	convolutional	neural	

networks		&	image	classification		

•  Deep	convolutional	neural	networks	are	trainable	
computational	models	with	multiple	processing	layers	and	

many	parameters.	They	allow	end-to-end	learning	of	both	

image	features	and	task-specific	decisions		(classifiers,	

regressors,	etc.).	

		

•  Image	classification	is	a	task	where	a	given	image	is	assigned	

a	class	label	that	describes	its	content	(e.g.	“person”,	“dog”,	

“car”,	“building”).	
	
	

Acknowledgement:	many	slides	from	Svetlana	Lazebnik,	Rob	Fergus,	

and	Andrej	Karpathy	

	



Further	reading	

•  LeCun,	Bengio,	Hinton:	Deep	learning.	Nature	2015.	
	

http://pages.cs.wisc.edu/~dyer/cs540/handouts/deep-

learning-nature2015.pdf	

	

	

•  Goodfellow,	Bengio,	Courville:	

http://www.deeplearningbook.org/	

	

	



Deep Convolutional Neural Networks 
for Image Classification 

Many slides from Rob Fergus, Andrej Karpathy 



Deep learning 
•  Learn a feature hierarchy all the way from pixels to 

classifier 

•  Each layer extracts features from the output of 
previous layer 

•  Train all layers jointly 

Layer 1 Layer 2 Layer 3 Simple  
Classifier 

Image/ 
Video 
Pixels 



Background: Linear classifiers 
•  When the data is linearly separable, there may 

be more than one separator (hyperplane) 

Which separator 
is best? 



Perceptron 
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Output: sgn(w⋅x + b) 

Can incorporate bias as 
component of the weight 
vector by always 
including a feature with 
value set to 1 



Loose inspiration: Human neurons 





Perceptron update rule 
•  Initialize weights randomly 
•  Cycle through training examples in multiple 

passes (epochs) 
•  For each training instance x with label y: 

•  Classify with current weights: y’ = sgn(w⋅x) 
•  Update weights: w ß w + α(y-y’)x 
•  α is a learning rate that should decay as 1/t (t is the epoch) 
•  What happens if y’ is correct? 
•  Otherwise, consider what happens to individual weights  

wi ß wi + α(y-y’)xi 
–  If y = 1 and y’ = -1, wi will be increased if xi is positive or 

decreased if xi is negative à w⋅x will get bigger 
–  If y = -1 and y’ = 1, wi will be decreased if xi is positive or 

increased if xi is negative à w⋅x will get smaller 



Convergence of perceptron update rule 
•  Linearly separable data: converges to a 

perfect solution 
•  Non-separable data: converges to a 

minimum-error solution assuming learning 
rate decays as O(1/t) and examples are 
presented in random sequence 



Multi-Layer Neural Networks 

•  Network with a hidden layer: 

•  Can represent nonlinear functions (provided 
each perceptron has a nonlinearity) 



Multi-Layer Neural Networks 

Source: http://cs231n.github.io/neural-networks-1/ 



Multi-Layer Neural Networks 

Figure source: http://cs231n.github.io/neural-networks-1/ 

•  Beyond a single hidden layer: 



Training of multi-layer networks 
•  Find network weights to minimize the error between true and 

estimated labels of training examples: 

•  Update weights by gradient descent: 
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Training of multi-layer networks 
•  Find network weights to minimize the error between true and 

estimated labels of training examples: 

•  Update weights by gradient descent: 

•  This requires perceptrons with a differentiable nonlinearity 
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Sigmoid: g(t) =
1

1+ e−t
Rectified linear unit (ReLU): g(t) = max(0,t)  
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Training of multi-layer networks 
•  Find network weights to minimize the error between true and 

estimated labels of training examples: 

•  Update weights by gradient descent: 

•  Back-propagation: gradients are computed in the direction 
from output to input layers and combined using chain rule 

•  Stochastic gradient descent: compute the weight update 
w.r.t. one training example (or a small batch of examples) at 
a time, cycle through training examples in random order in 
multiple epochs 
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Multi-Layer Network Demo 

http://playground.tensorflow.org/ 



Neural networks: Pros and cons 
•  Pros 

•  Flexible and general function approximation 
framework 

•  Can build extremely powerful models by adding 
more layers 

•  Cons 
•  Hard to analyze theoretically (e.g., training is 

prone to local optima) 
•  Huge amount of training data, computing power 

may be required to get good performance 
•  The space of implementation choices is huge 

(network architectures, parameters) 



Neural networks for images 

image convolutional layer 

feature map 

weight mask 



Neural networks for images 

image convolutional layer 



Convolution as feature extraction 

Input Feature Map 

.

.
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Convolutional Neural Networks 
•  Neural network with specialized 

connectivity structure 
•  Stack multiple stages of feature 

extractors 
•  Higher stages compute more 

global, more invariant features 
•  Classification layer at the end 

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, 
Gradient-based learning applied to document recognition, Proc. IEEE 86(11): 2278–2324, 1998. 



Biological inspiration 
•  D. Hubel and T. Wiesel (1959, 1962, Nobel Prize 

1981) 
•  Visual cortex consists of a hierarchy of simple, complex, 

and hyper-complex cells  

Source 



Input Image 

Convolution 
(Learned) 

Non-linearity 

Spatial pooling 

Normalization 

Convolutional Neural Networks 

Feature maps 
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Convolutional Neural Networks 
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Convolutional Neural Networks 



Input Image 

Convolution 
(Learned) 

Non-linearity 

Spatial pooling 

Normalization 

Feature maps 

Feature Maps 
 

Feature Maps 
After Contrast 
Normalization 

Convolutional Neural Networks 



Input Image 

Convolution 
(Learned) 

Non-linearity 

Spatial pooling 

Normalization 

Feature maps 

Convolutional filters are 
trained in a supervised 
manner by back-propagating  
classification error 

Convolutional Neural Networks 



Simplified architecture 

P(c | x) = exp(wc ⋅x)

exp(wk ⋅x)
k=1

C

∑

Softmax layer: 



Compare: SIFT Descriptor 

Apply 
oriented filters 

Take max filter 
response (L-inf 
normalization) 

Spatial pool (Sum), 
L2 normalization 

Feature  
Vector 

Image 
Pixels 

Lowe 
[IJCV 2004] 



AlexNet 
•  Similar framework to LeCun’98 but: 

•  Bigger model (7 hidden layers, 650,000 units, 60,000,000 params) 
•  More data (106 vs. 103 images) 
•  GPU implementation (50x speedup over CPU) 

•  Trained on two GPUs for a week 

A. Krizhevsky, I. Sutskever, and G. Hinton, 
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012 



Refinement of AlexNet architecture 

M. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks,  
arXiv preprint, 2013 



Layer 1 Filters 

M. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks,  
ECCV 2014 (Best Paper Award winner) 



Layer 1: Top-9 Patches 



Layer 2: Top-9 Patches 

•  Patches from validation images that give maximal activation of a given feature map  



Layer 2: Top-9 Patches 



Layer 5: Top-9 Patches 



Layer 5: Top-9 Patches 



ImageNet Challenge 

  

Validation classification

  

Validation classification

  

Validation classification •  ~14 million labeled images, 20k 
classes 

•  Images gathered from Internet 

•  Human labels via Amazon MTurk  

•  Challenge: 1.2 million training images, 
1000 classes 

www.image-net.org/challenges/LSVRC/ 



ImageNet Challenge 2012-2014 

Team Year Place Error (top-5) External data 

SuperVision – Toronto 
(7 layers) 

2012  - 16.4% no 

SuperVision 2012  1st 15.3% ImageNet 22k 

Clarifai – NYU 
(7 layers) 

2013 - 11.7% no 

Clarifai 2013 1st 11.2% ImageNet 22k 

VGG – Oxford 
(16 layers) 

2014 2nd 7.32% no 

GoogLeNet 
(19 layers) 

2014 1st 6.67% no 

Human expert* 5.1% 

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/ 



Deep Residual Nets 

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, 
Deep Residual Learning for Image Recognition, arXiv 2015 



Deep Residual Nets 

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, 
Deep Residual Learning for Image Recognition, arXiv 2015 



Deep learning packages 
•  Caffe 
•  Torch 
•  Theano 
•  TensorFlow 
•  Matconvnet 
•  … 

http://deeplearning.net/software_links/ 



Breaking CNNs 

http://arxiv.org/abs/1312.6199 
http://karpathy.github.io/2015/03/30/breaking-convnets/ 



Breaking CNNs 

http://arxiv.org/abs/1412.1897 
http://karpathy.github.io/2015/03/30/breaking-convnets/ 



What is going on? 
•  Recall gradient descent training: modify the 

weights to reduce classifier error 

•  Adversarial examples: modify the image to 
increase classifier error 

http://karpathy.github.io/2015/03/30/breaking-convnets/ 

http://arxiv.org/abs/1412.6572 
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What is going on? 

x x← x+α ∂E
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http://karpathy.github.io/2015/03/30/breaking-convnets/ 

http://arxiv.org/abs/1412.6572 



Fooling a linear classifier 
•  Perceptron weight update: add a small 

multiple of the example to the weight vector: 
 

         w ß w + α x 

•  To fool a linear classifier, add a small 
multiple of the weight vector to the training 
example: 

          x ß x + α w 



Fooling a linear classifier 

http://karpathy.github.io/2015/03/30/breaking-convnets/ 



Summary 
•  Currently most applications of deep neural 

networks in computer vision are based on 
supervised learning 

•  Need lots of annotated training data (and GPUs) 
•  Training via back-propagation takes time and is 

prone to local minima (many tips and tricks) 
•  Manual design of feature detectors and descriptors 

is replaced by manual design of network 
architectures (-> better automation needed) 

•  Lately there has been progress in weakly 
supervised and unsupervised learning (e.g. 
generative adversarial networks) 


