
Computer	Vision	

CS-E4850,	5	study	credits	

Lecturer:	Juho	Kannala	

	

Lecture	8:	Deep	convolutional	neural	

networks		&	image	classification		

•  Deep	convolutional	neural	networks	are	trainable	
computational	models	with	multiple	processing	layers	and	

many	parameters.	They	allow	end-to-end	learning	of	both	

image	features	and	task-specific	decisions		(classifiers,	

regressors,	etc.).	

		

•  Image	classification	is	a	task	where	a	given	image	is	assigned	

a	class	label	that	describes	its	content	(e.g.	“person”,	“dog”,	

“car”,	“building”).	
	
	

Acknowledgement:	many	slides	from	Svetlana	Lazebnik,	Rob	Fergus,	

and	Andrej	Karpathy	

	

Further	reading	

•  LeCun,	Bengio,	Hinton:	Deep	learning.	Nature	2015.	
	

http://pages.cs.wisc.edu/~dyer/cs540/handouts/deep-

learning-nature2015.pdf	

	

	

•  Goodfellow,	Bengio,	Courville:	

http://www.deeplearningbook.org/	

	

	

Deep Convolutional Neural Networks
for Image Classification

Many slides from Rob Fergus, Andrej Karpathy

Deep learning
•  Learn a feature hierarchy all the way from pixels to

classifier

•  Each layer extracts features from the output of
previous layer

•  Train all layers jointly

Layer 1 Layer 2 Layer 3 Simple
Classifier

Image/
Video
Pixels

Background: Linear classifiers
•  When the data is linearly separable, there may

be more than one separator (hyperplane)

Which separator
is best?

Perceptron

Perceptron

x1

x2

xD

w1

w2

w3
x3

wD

Input

Weights

.

.

.

Output: sgn(w⋅x + b)

Can incorporate bias as
component of the weight
vector by always
including a feature with
value set to 1

Loose inspiration: Human neurons

Perceptron update rule
•  Initialize weights randomly
•  Cycle through training examples in multiple

passes (epochs)
•  For each training instance x with label y:

•  Classify with current weights: y’ = sgn(w⋅x)
•  Update weights: w ß w + α(y-y’)x
•  α is a learning rate that should decay as 1/t (t is the epoch)
•  What happens if y’ is correct?
•  Otherwise, consider what happens to individual weights

wi ß wi + α(y-y’)xi
–  If y = 1 and y’ = -1, wi will be increased if xi is positive or

decreased if xi is negative à w⋅x will get bigger
–  If y = -1 and y’ = 1, wi will be decreased if xi is positive or

increased if xi is negative à w⋅x will get smaller

Convergence of perceptron update rule
•  Linearly separable data: converges to a

perfect solution
•  Non-separable data: converges to a

minimum-error solution assuming learning
rate decays as O(1/t) and examples are
presented in random sequence

Multi-Layer Neural Networks

•  Network with a hidden layer:

•  Can represent nonlinear functions (provided
each perceptron has a nonlinearity)

Multi-Layer Neural Networks

Source: http://cs231n.github.io/neural-networks-1/

Multi-Layer Neural Networks

Figure source: http://cs231n.github.io/neural-networks-1/

•  Beyond a single hidden layer:

Training of multi-layer networks
•  Find network weights to minimize the error between true and

estimated labels of training examples:

•  Update weights by gradient descent:

E(w) = yj − fw (x j)()
2

j=1

N

∑

w1
w2

w
ww

∂

∂
−←

E
α

Training of multi-layer networks
•  Find network weights to minimize the error between true and

estimated labels of training examples:

•  Update weights by gradient descent:

•  This requires perceptrons with a differentiable nonlinearity

w
ww

∂

∂
−←

E
α

Sigmoid: g(t) =
1

1+ e−t
Rectified linear unit (ReLU): g(t) = max(0,t)

E(w) = yj − fw (x j)()
2

j=1

N

∑

Training of multi-layer networks
•  Find network weights to minimize the error between true and

estimated labels of training examples:

•  Update weights by gradient descent:

•  Back-propagation: gradients are computed in the direction
from output to input layers and combined using chain rule

•  Stochastic gradient descent: compute the weight update
w.r.t. one training example (or a small batch of examples) at
a time, cycle through training examples in random order in
multiple epochs

w
ww

∂

∂
−←

E
α

E(w) = yj − fw (x j)()
2

j=1

N

∑

Multi-Layer Network Demo

http://playground.tensorflow.org/

Neural networks: Pros and cons
•  Pros

•  Flexible and general function approximation
framework

•  Can build extremely powerful models by adding
more layers

•  Cons
•  Hard to analyze theoretically (e.g., training is

prone to local optima)
•  Huge amount of training data, computing power

may be required to get good performance
•  The space of implementation choices is huge

(network architectures, parameters)

Neural networks for images

image convolutional layer

feature map

weight mask

Neural networks for images

image convolutional layer

Convolution as feature extraction

Input Feature Map

.

.

.

Convolutional Neural Networks
•  Neural network with specialized

connectivity structure
•  Stack multiple stages of feature

extractors
•  Higher stages compute more

global, more invariant features
•  Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
Gradient-based learning applied to document recognition, Proc. IEEE 86(11): 2278–2324, 1998.

Biological inspiration
•  D. Hubel and T. Wiesel (1959, 1962, Nobel Prize

1981)
•  Visual cortex consists of a hierarchy of simple, complex,

and hyper-complex cells

Source

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Normalization

Convolutional Neural Networks

Feature maps

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Input Feature Map

...

Convolutional Neural Networks

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Convolutional Neural Networks

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Max

Convolutional Neural Networks

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Feature Maps

Feature Maps
After Contrast
Normalization

Convolutional Neural Networks

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Convolutional filters are
trained in a supervised
manner by back-propagating
classification error

Convolutional Neural Networks

Simplified architecture

P(c | x) = exp(wc ⋅x)

exp(wk ⋅x)
k=1

C

∑

Softmax layer:

Compare: SIFT Descriptor

Apply
oriented filters

Take max filter
response (L-inf
normalization)

Spatial pool (Sum),
L2 normalization

Feature
Vector

Image
Pixels

Lowe
[IJCV 2004]

AlexNet
•  Similar framework to LeCun’98 but:

•  Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
•  More data (106 vs. 103 images)
•  GPU implementation (50x speedup over CPU)

•  Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton,
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

Refinement of AlexNet architecture

M. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks,
arXiv preprint, 2013

Layer 1 Filters

M. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks,
ECCV 2014 (Best Paper Award winner)

Layer 1: Top-9 Patches

Layer 2: Top-9 Patches

•  Patches from validation images that give maximal activation of a given feature map

Layer 2: Top-9 Patches

Layer 5: Top-9 Patches

Layer 5: Top-9 Patches

ImageNet Challenge

Validation classification

Validation classification

Validation classification •  ~14 million labeled images, 20k
classes

•  Images gathered from Internet

•  Human labels via Amazon MTurk

•  Challenge: 1.2 million training images,
1000 classes

www.image-net.org/challenges/LSVRC/

ImageNet Challenge 2012-2014

Team Year Place Error (top-5) External data

SuperVision – Toronto
(7 layers)

2012 - 16.4% no

SuperVision 2012 1st 15.3% ImageNet 22k

Clarifai – NYU
(7 layers)

2013 - 11.7% no

Clarifai 2013 1st 11.2% ImageNet 22k

VGG – Oxford
(16 layers)

2014 2nd 7.32% no

GoogLeNet
(19 layers)

2014 1st 6.67% no

Human expert* 5.1%

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

Deep Residual Nets

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
Deep Residual Learning for Image Recognition, arXiv 2015

Deep Residual Nets

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
Deep Residual Learning for Image Recognition, arXiv 2015

Deep learning packages
•  Caffe
•  Torch
•  Theano
•  TensorFlow
•  Matconvnet
•  …

http://deeplearning.net/software_links/

Breaking CNNs

http://arxiv.org/abs/1312.6199
http://karpathy.github.io/2015/03/30/breaking-convnets/

Breaking CNNs

http://arxiv.org/abs/1412.1897
http://karpathy.github.io/2015/03/30/breaking-convnets/

What is going on?
•  Recall gradient descent training: modify the

weights to reduce classifier error

•  Adversarial examples: modify the image to
increase classifier error

http://karpathy.github.io/2015/03/30/breaking-convnets/

http://arxiv.org/abs/1412.6572

w
ww

∂

∂
−←

E
α

x← x+α ∂E
∂x

What is going on?

x x← x+α ∂E
∂x

∂E
∂x

http://karpathy.github.io/2015/03/30/breaking-convnets/

http://arxiv.org/abs/1412.6572

Fooling a linear classifier
•  Perceptron weight update: add a small

multiple of the example to the weight vector:

 w ß w + α x

•  To fool a linear classifier, add a small
multiple of the weight vector to the training
example:

 x ß x + α w

Fooling a linear classifier

http://karpathy.github.io/2015/03/30/breaking-convnets/

Summary
•  Currently most applications of deep neural

networks in computer vision are based on
supervised learning

•  Need lots of annotated training data (and GPUs)
•  Training via back-propagation takes time and is

prone to local minima (many tips and tricks)
•  Manual design of feature detectors and descriptors

is replaced by manual design of network
architectures (-> better automation needed)

•  Lately there has been progress in weakly
supervised and unsupervised learning (e.g.
generative adversarial networks)

