Problem Set 3

Hung Le 12/10/2021

Exercise 1 - PS3

Consider the following two subsets of \mathbb{R}^2 :

$$egin{aligned} S_1 := \left\{ (x,y) \in \mathbb{R}^2 : 0 < x < 1 \ ext{and} \ 0 < y < 1
ight\}, \ S_2 := \left\{ (x,y) \in \mathbb{R}^2 : 0 < x < 1 \ ext{and} \ 0 \le y \le 1
ight\}. \end{aligned}$$

- (a) Consider the point $(\frac{1}{2}, \frac{1}{2})$. Find an open ϵ -ball around $(\frac{1}{2}, \frac{1}{2})$ that is entirely contained in S_1 . [Hint: Sketch a diagram of S_1 .]
- (b) Let (x_0, y_0) be any point in S_1 . Argue that you can always find an open ϵ -ball around (x_0, y_0) that is entirely contained in S_1 .
- (c) Is S_2 an open set? Explain why or why not.
- (d) Is S_2 a closed set? Explain why or why not.

1

Exercise 1 - Solution

- (a) One can choose the open ball having radius $\epsilon=\frac{1}{4}$
- (b) Given (x_0, y_0) , define

$$a:=\min\left\{x_0,y_0,1-x_0,1-y_0\right\}.$$

By the definition of S_1 , we have that a > 0. The open ball of radius $\epsilon = \frac{a}{2}$ around (x_0, y_0) is entirely contained in S_1 .

- (c) No. For instance, any open ball around $(\frac{1}{2},0)$ is not contained in S_2 .
- (d) No. For instance, take the sequence $\left\{\left(\frac{1}{2n},0\right)\right\}_{n=1}^{\infty}$. This sequence is contained in S_2 . However, it converges to (0,0), which is not an element of S_2 .

- (a) Let $z = \ln(x^2 + y^2)$, $x(t) = e^{-t}$, and $y(t) = e^t$. Calculate the derivative of z with respect to t.
- (b) Calculate the Hessian matrix of the following function defined over \mathbb{R}^3 :

$$f(x, y, z) = -2x^2 - z^2 - 2xz - 2yz + x + 7y.$$

Exercise 2 - Solution

(a) By the chain rule, the derivative is

$$\frac{dz}{dt} = 2\frac{e^{2t} - e^{-2t}}{e^{2t} + e^{-2t}}$$

(b) The Hessian matrix is

$$D^{2}f(x,y,z) = \begin{pmatrix} -4 & 0 & -2 \\ 0 & 0 & -2 \\ -2 & -2 & -2 \end{pmatrix}$$

Consider the following function defined over \mathbb{R}^3 :

$$F(x_1, x_2, y) = x_1^2 - x_2^2 + y^3,$$

and consider the point $(x_1, x_2, y) = (6, 3, -3)$, where $F(x_1, x_2, y) = 0$.

- (a) Suppose we want to express y as a function of x_1 and x_2 around the point (6,3,-3). Explain why we are able to apply the implicit function theorem in this case.
- (b) Calculate the partial derivatives $\frac{\partial y}{\partial x_1}(6,3)$ and $\frac{\partial y}{\partial x_2}(6,3)$.
- (c) Suppose that, given the point (6,3,-3), x_1 increases to 6.2 and x_2 decreases to 2.9. Use the total differential to estimate the corresponding change in y. Note: you're asked to estimate the change in y, not in F.

Exercise 3 - Solution

- (a) We can apply the implicit function theorem because
 - F is a continuously differentiable function,
 - F(6,3,-3)=0, and
 - $\frac{\partial F}{\partial y}(6,3,-3)=27\neq 0$.
- (b) By the implicit function theorem:

$$\frac{\partial y}{\partial x_1}(6,3) = -\frac{2x_1}{3y^2} = -\frac{4}{9}, \quad \frac{\partial y}{\partial x_2}(6,3) = \frac{2x_2}{3y^2} = \frac{2}{9}.$$

(c)

$$dy = \frac{\partial y}{\partial x_1}(6,3)dx_1 + \frac{\partial y}{\partial x_2}(6,3)dx_2 = -\frac{4}{9} \times 0.2 - \frac{2}{9} \times 0.1 = -\frac{1}{9}.$$

Let $u: \mathbb{R}^2_+ \to \mathbb{R}$ be a C^1 utility function, and let $f: \mathbb{R} \to \mathbb{R}$ be a C^1 function such that f'(x) > 0 for every $x \in \mathbb{R}$ (i.e. f is a strictly increasing function). Define the composite function $v:=f\circ u$. Recall that the Marginal Rate of Substitution of u at a point (x_0,y_0) is

$$MRS^{u}(x_0, y_0) = -\frac{\frac{\partial u}{\partial x}(x_0, y_0)}{\frac{\partial u}{\partial y}(x_0, y_0)}.$$

- (a) Write the expression of the MRS at (x_0, y_0) for the composite function v.
- (b) Use the chain rule to show that the MRS of u and v at (x_0, y_0) is the same.
- (c) Now assume that u is also homogeneous of degree k. Show that the MRS of u is a homogeneous function of degree zero.

Exercise 4 - Solution

(a)

$$MRS^{\nu}(x_0,y_0) = -\frac{\frac{\partial \nu}{\partial x}(x_0,y_0)}{\frac{\partial \nu}{\partial y}(x_0,y_0)}.$$

(b)

$$MRS^{\vee}(x_0, y_0) = -\frac{\frac{\partial v}{\partial x}(x_0, y_0)}{\frac{\partial v}{\partial y}(x_0, y_0)} = -\frac{\frac{\partial f}{\partial x}(u(x_0, y_0))}{\frac{\partial f}{\partial y}(u(x_0, y_0))} = -\frac{f'(u(x_0, y_0)) * \frac{\partial u}{\partial x}(x_0, y_0)}{f'(u(x_0, y_0)) * \frac{\partial u}{\partial y}(x_0, y_0)}$$

 $= \mathsf{MRS}^u(x_0,y_0).$

(c) For every t > 0

$$MRS^{u}(tx_0, ty_0) = -\frac{\frac{\partial u}{\partial x}(tx_0, ty_0)}{\frac{\partial u}{\partial y}(tx_0, ty_0)} = -\frac{t^{k-1}\frac{\partial u}{\partial x}(x_0, y_0)}{t^{k-1}\frac{\partial u}{\partial y}(x_0, y_0)} = MRS^{u}(x_0, y_0),$$

If $f: \mathbb{R}^n_+ \to \mathbb{R}$ is a C^1 function homogeneous of degree k, its first order partial derivatives are homogeneous of degree k-1.

For each of the following production functions, determine whether the corresponding returns to scale are *decreasing*, *increasing*, or *constant*. Throughout the exercise, assume that the parameters a, b, and c are all strictly positive.

- (a) $f(x_1, x_2) = ax_1 + bx_2$.
- (b) $f(x_1, x_2) = ax_1^c + bx_2^c$.
- (c) $f(x_1, x_2) = \min\{ax_1, bx_2\}.$
- (d) $f(x_1, x_2) = \max\{ax_1, bx_2\}.$
- (e) $f(x_1, x_2) = x_1^a x_2^b$.
- (f) $f(x_1, x_2) = \frac{1}{\frac{1}{x_1} + \frac{1}{x_2}}$.

9

Exercise 5 - Solution

(a)
$$f(x_1, x_2) = ax_1 + bx_2$$

 $f(tx_1, tx_2) = atx_1 + btx_2$
 $= t(ax_1 + bx_2)$
 $= tf(x_1, x_2).$

Returns to scale are constant.

(b)
$$f(x_1, x_2) = ax_1^c + bx_2^c$$

$$f(tx_1, tx_2) = at^c x_1^c + bt^c x_2^c$$

$$= t^c (ax_1^c + bx_2^c)$$

$$= t^c f(x_1, x_2).$$

Returns to scale are constant if c=1, increasing if c>1, and decreasing if c<1.

Exercise 5 - Solution

(c)
$$f(x_1, x_2) = \min\{ax_1, bx_2\}$$

 $f(tx_1, tx_2) = \min\{atx_1, btx_2\}$
 $= t \min\{ax_1, bx_2\}$
 $= t f(x_1, x_2).$

Returns to scale are constant. (d) $f(x_1, x_2) = \max\{ax_1, bx_2\}$

$$f(tx_1, tx_2) = \max\{atx_1, btx_2\}$$
$$= t \max\{ax_1, bx_2\}$$
$$= t f(x_1, x_2).$$

Returns to scale are constant.

Exercise 5 - Solution

(e)
$$f(x_1, x_2) = x_1^a x_2^b$$

 $f(tx_1, tx_2) = t^a x_1^a t^b x_2^b = t^{a+b} x_1^a x_2^b = t^{a+b} f(x_1, x_2).$

Returns to scale are constant if (a + b) = 1, increasing if (a + b) > 1, and decreasing if (a + b) < 1.

 $= t f(x_1, x_2).$

(f)
$$f(x_1, x_2) = \frac{1}{\frac{1}{x_1} + \frac{1}{x_2}}$$

$$f(tx_1, tx_2) = \frac{1}{\frac{1}{tx_1} + \frac{1}{tx_2}}$$

$$= \frac{1}{\frac{1}{t}(\frac{1}{x_1} + \frac{1}{x_2})}$$

$$= t \frac{1}{\frac{1}{x_1} + \frac{1}{x_2}}$$

Returns to scale are constant.