
SCHEDULE
Date Topic

1. Tue 14.09. Lec-1: Introduction
2. Fri 17.09. Lec-2: Crystal Chemistry & Tolerance parameter
3. Fri 17.09. EXERCISE 1
4. Tue 21.09. Lec-3: Crystal chemistry & BVS
5. Fri 24.09. Lec-4: Molecular Symmetry & Point Groups
6. Fri 24.09. EXERCISE 2
7. Tue 28.10. Lec-5: Crystallography & Space Groups
8. Fri 01.10. Lec-6: XRD & Reciprocal Lattice
9. Fri 01.10. EXERCISE 3
10. Tue 05.10. Lec-7: ND
11. Fri 08.10. Lec-8: Rietveld
12. Fri 08.10 EXERCISE 4: Rietveld
13. Tue 12.10. Lec-9: Synchrotron rad. & XAS & RIXS
14. Fri 15.10. Lec-10: EXAFS & Mössbauer
15. Fri 15.10. EXERCISE 5
16. Tue 19.10. Seminars: XPS, ED, HRTEM, SEM, AFM
17. Fri 22.10. Lec-11: GI-XRD & XRR (10.00-11.30)
18. Fri 22.10. EXERCISE 6: XRR (12.00→)

EXAM: Friday, Oct. 29th, 2021



SYNCHROTRON RADIATION
 Continuous band of electromagnetic spectrum including

infrared, visible light, ultraviolet and x-rays

 Accidentally discovered in an electron synchrotron of
the General Electric Company, USA, in 1947

http://www.nsrrc.gov.tw



National Synchrotron Radiation Research Center
(NSRRC), Hsinchu, TAIWAN

XANES & EXAFS
 Collaboration with Dr. Jin-Ming Chen

→  38 joint publications since 2001
 Cu-K, Cu-L, Fe-K, Fe-L, Co-L, Ru-L,

Nb-L, Ta-L, Mo-L, W-L, Bi-L, Ce-M,
Sr-K, Se-K, O-K



NSRRC, Taiwan
National Synchrotron Radiation Research Center

 Relatively small synchrotron
 Particularly suitable for light elements,

e.g. oxygen → We are frequent users
 Creation of ACCELERATED ELECTRONS

- electrons are injected from an Electron Gun
- pre-accelerated to 50 MeV in a linear LINAC
- accelerated to 1.5 GeV in a Booster Ring

Electron Gun

LINAC

Booster Ring (72 m in circumference):
- Electrons with 99.999995 % of light speed



Accelerated electrons are sent through a 70-meter long Transport Line
into a hexagonal, 120-meter Storage Ring, where they circulate with
an energy of 1.5 GeV in ultra-high-vacuum pipes for several hours,
emitting synchrotron radiation.

Transport Line

http://www.srrc.gov.tw/eng/about/lightsource-4.html


There are different types of magnets
attached to the storage ring to generate
X-ray light with different characteristics
for different types of experiments

http://www.esrf.eu/files/live/sites/www/files/about/synchrotron-science/ESRF-02.jpg


The emitted light is channeled through Beamlines to the Experimental
Stations, where experiments are conducted.

http://www.srrc.gov.tw/eng/about/lightsource-6.html


http://www.nsrrc.gov.tw



XAS: X-ray Absorption Spectroscopy
XAFS: X-ray Absorption Fine-Structure
XANES: X-ray Absorption Near-Edge Structure
RIXS: Resonant Inelastic X-ray Scattering
EXAFS: Extended X-ray Absorption Fine-Structure



: absorption coefficient

EXAFS
 X-ray absorption is measured in the vicinity of absorption edge
 Synchrotron radiation  intense and continuous X-ray radiation
 Absorption edge energy is element specific  EXAFS is element specific
 Possible for all elements except for the very lightest elements



EXAFS (Extended X-ray Absorption Fine Structure)

 Oscillatios in the high-energy side of the absorption edge
 Oscillations explained in the 1970s  EXAFS theory
 Simplified explanation:   x-ray energy absorbed 

photoelectrons removed from inner shell 
sphere waves 
scatter from the neighbouring atoms
Due to this backscattering 
interference effect  oscillations  EXAFS

 Oscillations depend on neighbouring atoms (type, number, distance)



STEPS in EXAFS DATA ANALYSIS
Conversion of measured intensities to μ(E)

Pre-edge background subtraction (instrumental errors etc)

μ(E) normalized to vary from 0 to 1

Post-edge background removal (smooth curve)

Conversion from energy to (photoelectron) wave number: E → k

Weighting k values (to give more impact for higher k values)

Fourier transform from k to R (= distance) space

Isolation of appropriate ”shells” by Fourier filtering

Modelling to EXAFS equation to get: R and N (= coordination number)



 Absorption coefficient () versus X-ray energy
 Pre-edge background subtraction
 Normalization



 Post-edge background subtraction



 Conversion from energy to (photoelectron) wave number: E → k

 Weighting k values (to give more impact for higher k values)



 Fourier transform from k to R (= distance) space

 Isolation of appropriate ”shells” by Fourier filtering



Modelling to EXAFS equation: R (distance) and N (coordination number)



REMEMBER: phase-shift of ca. 0.5 Å possible



Mössbauer Spectroscopy
 Gamma rays

 Concepts: Recoil energy & Resonance absorption & Doppler effect

 Mössbauer Phenomenon

 Information obtained:
Chemical (valence), structural (coordination) & magnetic properties

 Suggested reading:
https://www.rsc.org/Membership/Networking/InterestGroups/MossbauerSpect/Intropart1.asp

Our Mössbauer spectrometer

https://www.rsc.org/Membership/Networking/InterestGroups/MossbauerSpect/Intropart1.asp


GAMMA RAYS
 Shortest wavelength (highest energy) part of electromagnetic radiation
 Energy in the order of transitions in atomic nucleus
 Atom nucleus has different energy levels:

(lowest energy) ground state and (higher energy) excited states (life times <1 s)
 When the nucleus returns from an excited state (Ee) to the ground state (Eg),

the energy difference is emitted as gamma rays (E0 = Ee - Eg)



RECOIL ENERGY
 Momentum Conservation Law: when gamma rays are emitted

the nucleus gets a recoil impulse of the opposite direction
(imagine what happens to the boat when the passanger jumps
from it to the dock)

 Corresponding recoil energy (= energy loss): Erecoil  10-2 eV

Erecoil = E0
2 / 2mc2

 For less-energetic radiation Erecoil is negligble

 Due to the recoil energy, gamma rays lose their capability to be
absorbed by similar atom nuclii

i.e. so-called RESONANCE ABSORPTION is NOT possible



RECOIL-FREE EMISSION
 Recoil may be avoided if the emitting nucleus is part of crystal lattice:

the entire crystal lattice receives the recoil energy, and the recoil
becomes meaningless (the boat is tightly anchored)

 Accordingly the resonance absorption becomes possible

 The recoil-less emission is nowadays known for around 100 nuclii

 Note: different isotopes of the same element behave differently (c.f. ND)

 Probability of recoil emission (f) increases:
- with decreasing E0 (with increasing atomic number)
- with decreasing temperature



MÖSSBAUER PHENOMENON

 Gamma rays emitted in recoil-less manner
can be absorbed by similar atoms (nuclii)
 RESONANCE ABSORPTION

 1957 Rudolf Mössbauer:
recoil-less resonance absorption for 191Ir (Nobel 1961)
 MÖSSBAUER SPECTROSCOPY

or NGR (Nuclear Gamma Resonance)

 Mössbauer spectroscopy possible only for transitions
between the ground state and the lowest excited state
 gamma energies less than ca. 100 keV

 By far most commonly utilized Mössbauer nucleus
is 57Fe (14.4 keV): f ≈ 1 at room temperature



57Fe is the most commonly utilized Mössbauer nucleus; here we concentrate on it only.

http://www.statcounter.com/
http://www.statcounter.com/


57Co - 57Fe
 Radioactive 57Co precursor decays to

excited 57Fe* nucleus

(57Co can be prepared from iron relatively
easily in a syclotron)

 Part (9 %) of excited 57Fe* decays back to
ground state but part (91 %) of it decays
via a lower-energy excited state (life time
99 ns)

 Part (10 %) of the lower-energy excited
57Fe*  decays further to ground state
emitting 14.4 keV gamma rays

 57Fe is one of the stable isotopes of iron;
its portion in natural iron is 2 %
(isotope enrichment possible but expensive)

http://elchem.kaist.ac.kr/vt/chem-ed/spec/material/graphics/mossbau1.gif


RECORDING of MÖSSBAUER SPECTRUM
 E0 slightly depends on the environment of the Mössbauer nucleus

(e.g. E0 of 57Fe is different in Fe metal and in FeSO4)
→ E0 is a parameter that reflects the difference of the two environments

 In Mössbauer measurement it is possible to experimentally observe the
resonance absorption (i.e. absorption when E0 = 0)  → E0 needs to be made
zero by slightly changing the E0 value of either the emitting or absorbing nucleus

 Control of E0 is possible only through Doppler effect, i.e. by moving either the
source (emitting nucleus) or the sample (absorbing nucleus)
→  in Mössbauer spectroscopy the energy axis is given in the unit of mm/s
→  the required velocities vary between 1  1000 mm/s

 Measurement geometry: transmission (most common) or reflection
 Gamma rays get weaker quite fast → relatively thin sample in transmission

measurement → amount of Mössbauer isotope typically 0.110 mg
 In reflection measurement information from surface (0.220 m) → thin films



Mössbauer Spectroscopy
 Source of gamma rays: e.g. iron bulk containing radioactive 57Co
 Sample (absorbing gamma rays): containing e.g. 57Fe
 REQUIREMENT: Resonance absorption → source is vibrated
 Detector: measures the intensity of the gamma-ray beam that is

transmitted (typical configuration) through the sample

http://elchem.kaist.ac.kr/vt/chem-ed/spec/material/graphics/mossbau2.gif


 A solid sample is exposed to
gamma-ray beam, and a detector
measures the beam intensity
transmitted through the sample.

 The gamma-ray energy is varied
by vibrating the gamma-ray
source. The velocity of the source
results in a small energy shift due
to the Doppler effect.

 In Mössbauer spectrum, gamma-
ray intensity is plotted as a
function of the source velocity.

 At velocities corresponding to the
resonant energy levels of the
sample, some of the gamma-rays
are absorbed, seen as negative
peaks in the spectrum.

 The number, positions and
intensities of the peaks provide
information about the chemical
environment of the absorbing
nuclei in the sample.

http://elchem.kaist.ac.kr/vt/chem-ed/spec/material/graphics/mossbau2.gif


MÖSSBAUER SPECTROSCOPY
 E0 depends (weakly) on the environment of the Mössbauer nucleus

 local environment of the Mössbauer-active nucleus
 called HYPERFINE INTERCATIONS
(i) chemical (oxidation state, spin state): Isomer shift
(ii) electric (coordination sphere): Quadrupole splitting
(iii) magnetic (magnetic ordering): Magnetic splitting

 All information (i)  (iii) with one measurement
 Perfectly specific for the investigated nucleus
 If the Mössbauer-active nucleus exists in the sample in different

environments the overall spectrum consists of the sub-spectra with
the relative abundancies of the corresponding different species of
the Mössbauer-active nucleus (sum of sub-spectra)



ISOMER SHIFT
 Isomer shift (IS or δ) depends:

electron densities about the nucleus
 directly on s-orbital electron configuration
 indirectly on p/d/f-orbital electron configuration

 In case of iron (3d transition metal) the different
oxidation states/spin states differ in terms of the
d-orbital electron configuration (which then slightly
affects the s-orbital density)

 Isomer shift is given against a standard
 Typically used standards:

119Sn: SnO2
57Fe: Fe metal (officially Na2Fe(CN)5NO)

https://www.google.fi/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwj3tYq20JHlAhXxxaYKHRRRBKYQjRx6BAgBEAQ&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FRanges-of-isomer-shift-values-expected-for-different-oxidation-and-spin-states-of-iron_fig2_287448153&psig=AOvVaw1A8ZsYSVjACCiUHkBaHbRU&ust=1570794699909934


ELECTRIC QUADRUPOLE INTERACTION
 Nucleus feels electric field gradient due to asymmetry of surrounding ions
 symmetric → no splitting; asymmetric surrounding → splitting





Summary of HYPERFINE INTERACTIONS affecting Mössbauer spectra

https://www.google.fi/url?sa=i&url=https%3A%2F%2Fserc.carleton.edu%2Fdetails%2Fimages%2F35326.html&psig=AOvVaw0R5KBr9cPuKQa_dJidHHQY&ust=1602094031012000&source=images&cd=vfe&ved=0CAIQjRxqGAoTCNiuxt3HoOwCFQAAAAAdAAAAABDCAQ


Isomer shift (IS or δ), Quadrupole splitting (Δ) & Magnetic splitting (Hhf)

https://www.google.fi/url?sa=i&url=https%3A%2F%2Fwww.cambridge.org%2Fcore%2Fbooks%2Fremote-compositional-analysis%2Fmossbauer-spectroscopy%2F76B069605DE3A16191A0C7582DBBCE4D%2Fcore-reader&psig=AOvVaw0R5KBr9cPuKQa_dJidHHQY&ust=1602094031012000&source=images&cd=vfe&ved=0CAIQjRxqGAoTCNiuxt3HoOwCFQAAAAAdAAAAABC6AQ


Different iron species in the sample
→ spectrum consists of sub-spectra of each different Fe species
→ intensity ratio of sub-spectra = concentration ratio of corresp. Fe species

EXAMPLE: overall spectrum consists of two sub-spectra
- Intensity/concentration ratio: b-Fe / a-Fe = 2 : 1
- Same isomer shift →  same valence  (+III)
- Slightly larger quadrupole splitting for a-Fe → more asymmetric coordination

https://www.google.fi/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2F57-Fe-Mossbauer-spectrum-recorded-at-room-temperature-for-Na-125-Ni-125-Fe-175-PO-4_fig1_324170371&psig=AOvVaw0R5KBr9cPuKQa_dJidHHQY&ust=1602094031012000&source=images&cd=vfe&ved=0CAIQjRxqGAoTCNiuxt3HoOwCFQAAAAAdAAAAABDQAQ


Another EXAMPLE
- Overall spectrum consists of two sub-spectra
- Both di- and trivalent iron
- Much more Fe(III) than Fe(II) (presice concentrations from spectral areas)
- Both Fe(III) than Fe(II) in asymmetric coordination, but Fe(II) more asymmetric

https://www.google.fi/url?sa=i&url=https%3A%2F%2Fwww.cambridge.org%2Fcore%2Fbooks%2Fanalytical-geomicrobiology%2Fmossbauer-spectroscopy%2F6C12E5ED904BDC5F26B0D5250C10EA71%2Fcore-reader&psig=AOvVaw0R5KBr9cPuKQa_dJidHHQY&ust=1602094031012000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCNiuxt3HoOwCFQAAAAAdAAAAABAD


Temperature-dependent measurements
→ employed e.g. to investigate magnetic transitions

EXAMPLE:
- completely ferro/ferri/antiferro-magnetic at 10 K
- completely paramagnetic at 295 K

NOTE: Can not straightforwardly distinguish the type or
magnetic ordering, i.e. ferro, ferri or antiferro

https://www.google.fi/url?sa=i&url=http%3A%2F%2Fdx.doi.org%2F10.5562%2Fcca2739&psig=AOvVaw0R5KBr9cPuKQa_dJidHHQY&ust=1602094031012000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCNiuxt3HoOwCFQAAAAAdAAAAABAo


Routine Mössbauer analysis of finely dispersed corrosion particles
formed in the cooling system of a power plant



NASA Mars Exploration Rovers: Spirit & Opportunity (launched in 2003):
Mössbauer spectrometer is one of the instruments on the robotic arm



Mössbauer example for B-site ordered DOUBLE PEROVSKITE
RECALL from the first lecture:
 Two different cations (B’ and B’’) occupy the B-site with 50%/50% ratio and in an

ordered manner →  B-site ordered double perovskite
 Example: B-site ordered halfmetallic Sr2FeMoO6: simultaneously ferrimagnetic and

electrically conducting → magnetic-field control of conductivity → spintronics
 We also discussed about so-called antisite defects if the ordering is not perfect; for

example some Fe atoms occupying the Mo site in Sr2FeMoO6 (this kind of disorder
distroyes rapidly the ferrimagnetic/halfmetallic properties)

https://www.google.fi/imgres?imgurl=https%3A%2F%2Fwww.researchgate.net%2Fprofile%2FMohammed_Sahnoun%2Fpublication%2F316637457%2Ffigure%2Ffig1%2FAS%3A493660384043008%401494709215742%2FThe-crystal-structure-of-double-perovskite-Ba2FeMoO6.png&imgrefurl=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FThe-crystal-structure-of-double-perovskite-Ba2FeMoO6_fig1_316637457&tbnid=W9aEf-cHfdVEeM&vet=12ahUKEwiBgtSkn9LrAhXRzSoKHdiLAogQMyhKegQIARBb..i&docid=aZCCxGmZODS7-M&w=595&h=558&q=Double%20perovskite%20antisite&ved=2ahUKEwiBgtSkn9LrAhXRzSoKHdiLAogQMyhKegQIARBb


Sr2FeMoO6

 Ferrimagnetic conductor (TC = 420 K)
 Halfmetallic: spin polarization of conduction electrons

→Tunneling-type magnetoresistance below TC
K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura and Y. Tokura, Nature 395, 677 (1998).

 First assumption: FeIII d5 (hs) & MoV d1

 Mössbauer: Fe2.5 & Mo5.5

B-site ordered
double perovskite

Mixed-valent iron: Sr2FeII/IIIMoV/VIO6

“Evidence for Valence Fluctuation of Fe in Sr2FeMoO6-w Double Perovskite”,
J. Lindén, T. Yamamoto, M. Karppinen, H. Yamauchi and T. Pietari,
Appl. Phys. Lett. 76, 2925 (2000).



M1

M2
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M1
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M2

APB

We can see for Sr2FeMoO6 sample by 57Fe Mössbauer Spectroscopy:
 Iron is magnetically ordered (sextets)
 There are many sextets → different types of iron atoms (ideally only one type)
 For the main (M1) sextet isomer shift (IS) corresponds to mixed-valent Fe2.5

 There is also sextet with trivalent Fe3+: it is due to antisite (AS) iron atoms
 Iron atoms next to AS-Fe atoms (M2) have valence between 2.5 and 3
 We can also see iron atoms with very low “frustrated” magnetic field; these are

trivalent iron atoms at so-called antiphase boundaries (APB)

Mo atoms marked with white circles


