Statistical Mechanics
FO415

Fall 2021, lecture 5
Percolation: a phase transition



Take home (previous)

How would the random field affect a) a GL-theory (what is the free energy like?) and b)the physics of a domain wall?

"In the Landau theory, the local order parameter ¢(x) and its conjugate field h are related by an equation of state. This requires
that the linear term in the expansion of f is absent so the free energy density function f(T,< ¢(x) >) doesn’t have any terms linear
on ¢. However, if we have a random field, the free energy term that is linear on ¢ would no longer be 0.

As random fields can destroy ferromagnetic order at any temperature if they are strong enough, the physics of a domain wall
would be affected as well: the local correlations between spins would no longer lead to predictable collective behaviour in
“clusters”, if the random fields are strong enough."

"If one introduces a random field into the Ising model, the free energy density will have a linear term and is no longer spatially
uniform --. As a result, the order parameter is no longer partially uniform."

"I would think that a random field would also make lattices of particles more random. Without the random field, there are only a
few small clusters of different spin at low temperatures (T< Tc) and very large clusters at high temﬁeratures. Perhaps the random
field would cause there to be more clusters at low temperatures and more holes in clusters at high temperatures.’



Answers...

"how would you simulate the model - how do the random fields enter the picture? What kind of transitions would you expect in this system?

"The transitions between the binary phases would be then modelled b\( a Hamiltonian over the lattice sites, which encapsulate the opinion field, the interaction
sum involving the coupling coefficients weighing the transition probabi it\éand with of course the environment and trend-depending polarization field. The
polarization field resembles a random field much in the sense that it can be strongly affected by some global trends or innovations being found both
independently and dependently w.r.t. each other."

"As for the transitions in the given system, | would naively expect some “cliques” to emerge, as the effect of neighbours can be strong. The walls of these cliques
Erobably contain spins that

ave the biggest a Priori tendency ¢ to the spin they are in. In the case of this paper, | would
expect the effect of media F(t) to cause phase transitions to force all spins to choose one value in the end."

"Expected transitions in this sort of simulation could be formation of clusters if forcing stays small for a relatively long time. Strong and localized spikes in forcing
may flip opinions of certain group, but if sufficient clustering has happened, the opinions may flip back. With large and random forcing, the clusters
break down and the system seems very random."

"In the article three different data sources, birth rates, sales of cell phones and the drop of applause in concert halls are presented in a RFIM framework. The
random field in this context enter the picture when the model is described so that the variables are the individual's opinion, affect of the public information and
affect of the ne(ijghbours. These parameters are very practical in the article but the overall incentive of one individual, meaning the combination of those factors,
can be modelled and the created decision model is equal with the RFIM model. If the model is put on a 2D lattice it can be presented for example with -1 and 1.
Because the transitions are affected by the neighbours, it would probably start with -1, randomly and slowly move to state where there is more positive values

(1) and back to -1. For example with the clapping case, it would go from no-clapping situation to many-clapping situation and back to no-clapping situation."

"if | wanted to simulate this, | would model it as a network, with each node connected to a random number of other nodes (because people are effected to varyi
ng degrees by the people around them)-- "



Summary of a geometrical phase transition

 What is percolation?
* How does it depend on typical parameters like the dimension?
* What kind of physics might be important for?

* What kind of quantities turn out to be important?



What is percolation?

The study of connectedness

“How far can | go?” —idea of a
cluster (of size s, with a given p).

What is this transition at a p_ like?

What does it depend on and not
depend on?

Why is it relevant?

Suppose a large porous rock is submerged
under water for a long time, will the water
reach the center of the stone?

(Broadbent and Hammersley, 1957)

,L,,;_ EEROOERDRAREED
| . | e . °

p = 0.60

o
I
o
o0
o

TG T A e il-l"-l' -"li- TR
R i =||| .||.| !r;_ :_I._ i rm EE;:_E%-‘:.E'EE::='§._;E=.:'E==E§
_.-_';,E_ ;§|== _1i'::==:=f'-1_ . _' mj mm .- e B g;&: R ]
ol oy B Ei" '*."as FHEMDE SRR
o % T N :!‘-Jg_:: =1 et e il-ulli‘il o
e R e "o e e T e, :..:::L==.-=E;=§;'=.=-=='EF:FE:EI:;
e T 1 o Ty ey - R ] 13, fesvisag. BERERES §°H8 UECE. a0



Main definitions

Y

- L >

» a cluster is a group of nearest-neighbor occupied sites

» the size s of a cluster is the number of sites in this cluster

« the critical occupation probability p_is the probability p at
which an infinite cluster appears for the first time in an infinite
lattice



Conductivity of random systems

Electrical transport properties of percolating random networks
of carbon nanotube bundles

Fig. 4:

(Colour on-line) A stick network after applying the

bundle model. Dashed (red) lines represent semi-conducting
segments and solid (blue) lines metallic segments. The networks

colation probability

Per

Percolation probability

EPL, 91 (2010) 47002

CNT bundle systems: some CNT segments are
semiconducting, some are metallic due to impurities
(or not). Make a network: is it a good transistor?
Which network conducts or in other words

percolates?
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Main properties in a lattice

 bond percolation - all nodes on the lattice are occupied, the
edges between neighbors may be open (present) with
probability p or closed with probability 1-p; edges are
assumed to be independent
« example: liquid poured on top of some porous material

» site percolation - all edges are open, a node is occupied
with probability p
 more general approach
» every bond model may be reformulated as a site model on a

different lattice but not vice versa

« onset of percolation - critical occupation probability p_
« probability that a site belongs to the infinite cluster, P_(p)
« geometry of the infinite cluster at p=p_and p>p_

Maln quantltles or questlons « if one excludes the infinite cluster:

» average cluster size, y(p)
« typical size of the largest cluster, s,(p)

» typical radius (linear size) of the largest cluster, &(p)



Examples of thresholds

2D vs 3D (or ND): p. and its
trends

Site vs. bond thresholds

In a fixed dimension:
threshold vs. lattice type

(Value: math vs. physics vs.
numerics)

l Lattice [ # nn ’ Site percolation | Bond percolation |
1d 2 1 1
2d Honeyeomb 3 0.6062 1 1 —=2=sin(7/18) = 0.65271
2d Square | 0.592746 1/2
2d Triangular 6 1/2 2sin(7/18) = 0.34729
3d Diamond | ().43 ()38
3d Simple cubic 6 0.3116 1).2488
3d BCC B 0.246 0.1803
Jd FCC (0,198 (.119
id Hypercubic 0.197 0.1601
5d ||1.p(*t'f'1'h;r 141 (0.1182




Percolation property Il
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What is the percolating cluster like?

The mass is not volume-like

The structure is “tenuous” — the
cluster can be broken up by
“cutting” or “red bonds” —if you
do transport phenomena
(conductivity...) on the cluster the
physics comes from these.

The perimeter is an interesting
random walk-process — Stochastic
Lowner Evolution....



Mass of the spanning cluster, correlation length

m « Ldf, fractal dimension d” 0* p— ,

91/48 in 2D, an universal value
(little bit less than 21!) ol 7

Mass scaling above defines an * I
exponent for the mass above the 108
transition, 8, 2D 5/36, 3D 0.14 o |

Correlation length exponent &, 2D .
4/3, 3D 0.88 of 7

Exponents universal! (Bond/site, c
lattice type) .

&5
T

-
ra

L
w 10 ¢ o, 10’



Example: 1D case (in probability)

Exactly solvable, but boring case.

Similar problems are found on
trees (Bethe lattice, Cayley tree).

They generalize into other
connectivity problems (“2-
connectivity” or rigidity,
combinatorial
optimization/Satisfiability
problems...).

10 10° 107 10" 10°



Notes on scale-free behavior

Re-scale lengths
(or time) —
avalanche/cluster
size and the pdf
also re-scale.

Pdf invariant, solve
for D(S).

More complicated
examples (book).

=&/B=¢/(1+¢),
S"'=8/C = 5/(1+ ce),
D' = AD = D(1 + ae).

D'(8") = AD(S) = AD(CS") = (1 + ae)D((1 + c€)S").

D(S") = D'(S") = (1 + ae)D((1 + ce)S"),

0 =aeD + :::ES'%,
dD _ aD
dsS &S’

D = DS~ */°.



Renormalization (easy case

1. Divide the lattice into blocks of linear size b (in terms of the lattice constant) with each block
containing a few sites (spin).

2. Next, the coarse graining procedure takes place. The sites in the blocks are averaged in some Real Space’ k Space Is the usual
way (to be specified more precisely shortly) and the entire block is replaced by a single su- and ha rd Ca Se
[ X X ]

per site (spin) which is occupied with a probability according to the renormalisation group
transformation p' = Ry(p).

In the combined procedure 1 and 2. one should keep the symmetry of the original lattice such
that we can repeat the coarse graining procedure again. The result of these two operations are
to create a new lattice whose fundamental spacing is b times as large as the original lattice.

3. Restore original lattice constant by rescaling the length scales by the factor b.
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Next exercise

4.1 1D Ising HOMEWORK (5 points)

Consider the one-dimensional Ising model, with Hamiltonian

N
H=-1> SSu—-HY S, (1)
i=1

where S; = +1 are ’spins’ in chain, J is the coupling strength and H the external field.
The 1D Ising model can be solved exactly and here we do it step-by-step.

(a) Start by writing the canonical partition function

Iy = Z exp [—H] . (2)

{Si}

where the second term of the exponential function in the Hamiltonian has form -~ -3 (S;+
Sit1)-

(b) From the obtained expression for the partition function, one can modify it to Zy =
Y5, 50 S H\Zl T(S;, Sit1). By expanding T'(S;, S;y1) to a 2 x 2 transfer matriz

T+ +) T(+-)N .
T*(ﬂ—ﬁ) T(—.—))*(“‘)‘ ®

show that the partition function is a trace of a product of N transfer matrices, i.e. Zy =
Tr(T)V.

(c) Solve for the eigenvalues A, Ny (with Ay > Ay) of T and argue that Zy ~ A in the
thermodynamic limit.

(d) From the above expression for the partition function, compute the free energy per site
g(T, H) = limy 00 (—% log Z,,) .

(e) Finally, you get the magnetization m(T, H) from the free energy by

m(T, H) = — (%)T (4)

If H =0, does the system undergo a phase transition as the temperature is lowered?

4.2 The Ising model (Sethna 8.1 p. 174)

The Ising Hamiltonian in 2D is:
H=—7) SS—HY S, (5)

where S; = %1 are ’spins’ on a square lattice, and the sum ), ) 1s over the four nearest-
neighbor bonds (each pair summed once). It is conventional to set the coupling strength
J = 1 and Boltzmann’s constant kg = 1, which amounts to measuring energies and
temperatures in units of .J. The constant H is called the external field, and M =37 Si is
called the magnetization.

Play with the simulation. At high temperatures, the spins should not be strongly corre-
lated. At low temperatures the spins should align all parallel, giving a large magnetization.
Roughly locate T.. , the largest temperature where distant spins remain parallel on average
at H = 0. Explore the behaviour by gradually lowering the temperature from just above T,
to just below T..; does the behaviour gradually change, or jump abruptly (like water freezing
to ice)? Eaxplore the behaviour at T = 2 (below T..) as you vary the external field H = 0.1
up and down through the ‘phase boundary’ at H = 0. Does the behaviour vary smoothly in
that case?

If using the software suggested by Sethna, try also changing the update method and see
how the cluster algorithm works in practice.

4.3 Ising self-similarity (Sethna 12.1 p. 282)

Run a large Ising system at zero external field and 7' = T, = 2/log(1 + 2) ~ 2.26919.
Run for at least a few hundred sweeps to equilibrate. You should see a fairly self-similar



Take home 5

* We concentrate on Sethna Ch 12 and percolation. Study the first two sections (12.1,
12.2). You may also read through the rest of the chapter. On percolation, there is a lot
of material available. We woul
recommend http://www.ams.org/publicoutreach/feature-column/fcarc-percolation for
a mathematical viewpoint, which may be entertaining. It shortly explains how
percolation is related to conformal invariance.

Check out also Kim Christensen's lecture notes on easily solvable percolation

problems, https://web.mit.edu/ceder/publications/Percolation.pdf. Spend a moment in
understanding how the cluster size distribution is derived (Equations 1.1-1.3) and the
same for the correlation length in 1D (1.9-1.10, roughly). The analysis of the Bethe
lattice percolation is entertaining but it is useful for our purposes (at most) for showing
what kind of quantities one might want to compute.

A final piece of reading is the lecture note for engineers, http://www.idc-
online.com/technical references/pdfs/chemical engineering/Percolation.pdf, which
introduces to some practical applications.



http://www.ams.org/publicoutreach/feature-column/fcarc-percolation
https://web.mit.edu/ceder/publications/Percolation.pdf
http://www.idc-online.com/technical_references/pdfs/chemical_engineering/Percolation.pdf

Note on take-home’s

Please remember, that the
purpose is NOT to answer
correctly. The purpose is that you
answer SOMETHING (and think
about the question and the
material).

That is sufficient for “passing” the
question (read: getting the
points).



.... Questions...

The take-home questions are two. Check the real-space renormalization
ﬁart of the KC (1.9 section). Try out that for 1D percolation, eg. draw what
appens to the system as you coarse-grain it (to larger scalesﬁ

The last set of notes in particular mentions again the conductivity problem
(e.g. take a system of insulating/conducting sticks, look at the conductivity
when such sticks percolate by varying their fraction and assuming the
system is connected anyways, or a bond percolation system say in 2d).
Another variant of this is the elasticity of the percolation cluster, imagine
that the sticks are very very soft or very hard springs so that the
percolation transition leads to the stiffening of the whole thing.

Both of these "transport quantities" are described by their own exponents
(conductivity and elasticity). The question to answer is: which of these has
a bigger value? Does the conductivity or the elastic modulus increase
faster? Do you have an argument why?



