

Lecture 6: Electromagnetic waves and more

Today's menu

- Basic EM waves in plasmas:
	- Transverse EM wave in the absence of a background *B*-field
	- Ordinary wave (*O*-wave)
	- Extraordinary wave (*X*-wave)
	- *L*-wave
	- *R*-wave
- Cut-offs & Resonances
- MHD waves:
	- Shear-Alfvén waves
	- Slow and fast magnetosonic waves (& compressional Alfvén wave)

Aalto University School of Science

Electromagnetic waves in vacuum

Aalto University chool of Science

Allow time-dependent and fields need Maxwell's equations

Maxwell's equations once again

$$
\nabla \cdot \mathbf{E} = \rho / \epsilon_0
$$

$$
\nabla \cdot \mathbf{B} = 0
$$

$$
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}
$$

$$
\nabla \times \mathbf{B} = \mu_0 \mathbf{j} - \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}
$$

In vacuum: $\rho = 0$, $j = 0$

18.10.2021 4

Wave equation in vacuum

Take curl of Faraday's law \rightarrow $\partial^2 E$ ∂ 1 $\nabla \times (\nabla \times \boldsymbol{E}) = \frac{\partial}{\partial t} \nabla \times \boldsymbol{B} =$ c^2 ∂t^2 $\partial^2 E$ 1 $\nabla(\nabla\cdot\mathbf{E})-\nabla^2\mathbf{E}=$ c^2 ∂t^2 Oispersion relation. $\partial^2 E$ Basic wave equation: $\nabla^2 \boldsymbol{E} - \frac{1}{c^2}$ $\frac{\partial E}{\partial t^2} = 0.$ c^2 ω^2 Plane wave solution $\rightarrow k^2 E \frac{\omega^2}{c^2}E = 0 \rightarrow \omega^2 = c^2k$ **Aalto University
School of Science** 18.10.2021

Wave equation in plasmas

In plasmas,

- $\rho \approx 0$ can be assumed by quasineutrality (or simply make the choice to look at $\mathbf{k} \cdot \mathbf{E} = 0$ since EM waves are *usually* transverse)
- $j = 0$ is a very bad assumption.
- → wave equation in plasmas: $\nabla^2 \boldsymbol{E} = \mu_0 \frac{\partial \boldsymbol{E}}{\partial t}$ $\frac{\partial f}{\partial t} +$ 1 c^2 $\partial^2 E$ ∂t^2 .
- FT & linearize $\rightarrow (\omega^2 c^2 k^2) E_1 = -i \omega c^2 \mu_0 j_1$

EM waves are fast \rightarrow ions immobile \rightarrow current solely from electrons

EM waves w/ no background B field

No guiding B field \rightarrow electrons are free to move: m $\partial \pmb{\nu}$ ∂t $= -eE$ FT & linearize $\rightarrow j_1 = -en_0 v_1 = -en_0$ $-eE_1$ $-i\omega m$ $= i$ e^2n_0 $\frac{1}{m\omega}E_1$ $\rightarrow (\omega^2 - c^2 k^2) E_1 = -i \omega c^2 \mu_0 j_1 = \omega c^2 \mu_0 \frac{e^2 n_0}{m \omega_0}$ $\frac{11}{m\omega}E_1=$ e^2n_0 $m\epsilon_0$ $\boldsymbol{E}_1 = \omega_p^2 \boldsymbol{E}_1$ → Dispersion relation for transverse EM waves propagating in

plasmas in the absence of DC magnetic field:

$$
\omega^2 = \omega_p^2 + c^2 k^2
$$

 k

Observations on the dispersion relation

$$
1. \quad v_{ph}^2 = \frac{\omega^2}{k^2} = c^2 + \frac{\omega_p^2}{k^2} > c^2
$$

$$
2. \quad v_{gr} = \frac{d\omega}{dk} = \frac{c^2}{v_{ph}} < c
$$

- 3. At large k (small λ) \rightarrow ordinary light waves, $\omega = ck$
- 4. There is a *cut-off frequency* for waves to propagate …

$$
\omega < \omega_{cut-off} = \omega_p \blacktriangleright ck = \sqrt{\omega^2 - \omega_p^2} = i \sqrt{\omega_p^2 - \omega^2}
$$
\n
$$
\blacktriangleright e^{ikx} = e^{-Im(k)x} = e^{-\frac{x}{\delta}}, \text{ where } 1/\delta = \frac{1}{c} \sqrt{\omega_p^2 - \omega^2},
$$

 \rightarrow an exponentially attenuated wave with skin depth δ

Radio communication

Recall $\omega_p^2 = \frac{e^2 n_0}{m \epsilon_0}$ $m\epsilon_0$

- \rightarrow For a given frequency ω , there is a maximum density for plasmas through which the wave can still propagate.
- This is the basis of short-wavelength radio communication
- To communicate with a satellite, the wave frequency has to be chosen sufficiently high to penetrate all atmospheric layers
- Space vehicle entering the atmosphere will suffer a communication black-out due to the shock wave in front of it

Electromagnetic waves with $B_0 \neq 0$ $k \perp B_0$

Aalto University chool of Science

Transverse waves propagating perpendicular to : *ordinary wave*

Transverse wave: $k + E$

Propagation perpendicular to magnetic field: $k \perp B_0$

#1. Take $E_1 \parallel B_0$

Then the magnetic field does not constrain the electron motion and the math of $B_0 = 0$ case applies

 $\omega^2 = \omega_p^2 + c^2 k^2$

This is called an *ordinary wave –* or just *O-wave* between friends*.*

Finding the *extraordinary* **wave**

#2. Take $E_1 \perp B_0$

Now electron motion *is* constrained by **B**.

Take x-axis so that $\bm{k} = k \widehat{\bm{x}}$ and $\bm{E}_\mathbf{1} = E_{\bm{x}} \widehat{\bm{x}}\ + E_{\bm{y}} \widehat{\bm{y}}$

• It is known that in this case a longitudinal component will arise $\rightarrow E_x \neq 0$. Electron EoM, linearized and FT'd:

$$
-im\omega v_1 = -e(E_1 + v_1 \times B_0)
$$

$$
v_x = \frac{-ie}{m\omega} (E_x + v_y B_0)
$$

$$
v_y = \frac{-ie}{m\omega} (E_y - v_x B_0)
$$

$$
v_y = \frac{e}{m\omega} \left[-iE_x - \frac{\Omega_e}{\omega} E_y \right] / \left(1 - \frac{\Omega_e^2}{\omega^2} \right)
$$

Aalto University School of Science

Dispersion relation for the *X* **wave**

Now careful with the wave equation: $E_x \neq 0 \rightarrow k \cdot E \neq 0$ → $(\omega^2 - c^2 k^2) E_1 + c^2 k E_x$ **k** = $-i\omega c^2 \mu_0 j_1 = i\omega c^2 \mu_0 n_0 e$ **v**₁ We already have $v_1 = v_1(E_1) \rightarrow$

A matrix equation: $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ C D E_{x} E_y $= 0$

→ Use the determinant condition to find the non-trivial solution ...

$$
HW → \frac{c^2 k^2}{\omega^2} = 1 - \frac{\omega_p^2}{\omega^2} \frac{\omega^2 - \omega_p^2}{\omega^2 - \omega_h^2}
$$
, dispersion relation for the X-wave

18.10.2021 13

Cut-offs and resonances

We have just obtained our first *non-trivial* dispersion relation. In particular, it can happen that

- $k \to 0$, i.e., $\lambda \to \infty$. This is the cut-off that we already got for $B_0 = 0$. A cutoff corresponds to *reflection* of the EM wave
- $k \to \infty$, i.e., $\lambda \to 0$. This is called a *resonance*, and here the wave can be *absorbed.*

How do cut-offs and resonances look for the *X*-wave?

Cut-offs and resonances of the *X***-wave**

• Resonance:

- $k \to \infty$ when $\omega \to \omega_h$
- Resonance occurs at a point in the plasma where $\omega^2 = \omega_h^2 = \omega_p^2 + \Omega_e^2$ But this dispersion relation we know: *electrostatic 'waves' across* B_0 !
- When an EM wave approaches a point in a plasma where $\omega \to \omega_h$, both ν_{ph} and v_{ar} go to zero and the wave is converted into *upper hybrid oscillations*!

 Λ

Cut-off:

•
$$
k \to 0
$$
 when $1 = \frac{\omega_p^2}{\omega^2} \frac{\omega^2 - \omega_p^2}{\omega^2 - \omega_h^2} = \frac{\omega_p^2}{\omega^2} \left[1 - \frac{\Omega_e^2}{\omega^2 - \omega_p^2} \right]^{-1}$

Stop bands for *X-***wave**

 $HW \rightarrow 2$ cut-off frequencies: $\omega_R =$ 1 2 $\Omega_e^2 + 4\omega_p^2 + \Omega_e$

 $\Omega_e^2 + 4\omega_p^2 - \Omega_e$

The resonance and cut-off frequencies divide the dispersion diagram into propagation and non-propagation zones.

→ X-wave has two regions of propagation, separated by a 'stop band' where it cannot propagate.

 $\omega_L =$

1

2

The new *dispersion diagram*

Note: the dispersion diagram for the *X*-wave was no longer of the type $\omega = \omega(k)$.

The reason is that we do not have simple enough functional dependence between ω and k.

 \rightarrow Plotting $\frac{\omega}{\omega}$ ck = v_{ph} \mathcal{C}_{0} as a function of ω has proven to be enlightening.

Stop band for the *O* **wave?**

Simpler:
$$
\omega^2 = \omega_p^2 + c^2 k^2
$$

\n
$$
\Rightarrow \frac{c^2 k^2}{\omega^2} = 1 - \frac{\omega_p^2}{\omega^2}
$$

 \rightarrow No resonances

 \rightarrow One cut-off: $k \rightarrow 0$ when $\omega = \omega_p$ (as was discovered already \odot)

18.10.2021 18

Electromagnetic waves with $B_0 \neq 0$ $k \parallel B_0$

Aalto University chool of Science

How about waves parallel to ?

Now $k \parallel B_0 \rightarrow k = k\hat{z}$, and from electron motion we can expect \boldsymbol{E}_1 = $E_{\chi} \widehat{\boldsymbol{\mathcal{X}}} \, + E_{\chi} \widehat{\boldsymbol{y}}$ \blacktriangleright we can use the wave equation from X wave with the substitutions $\mathbf{k} = k\widehat{\mathbf{x}} \to k\widehat{\mathbf{z}}$ \rightarrow

$$
(\omega^2 - c^2 k^2) E_x = \alpha \left(E_x - \frac{i \Omega_e}{\omega} E_y \right), \quad \text{where } \alpha = \frac{\omega_p^2}{1 - \Omega_e^2 / \omega^2}
$$

$$
(\omega^2 - c^2 k^2) E_x = \alpha \left(E_x + \frac{i \Omega_e}{\omega} E_y \right)
$$

Again we have a coupled set of equations \rightarrow use det = 0 \rightarrow

$$
\omega^2 - c^2 k^2 - \alpha = \pm \alpha \frac{\Omega_e}{\omega}
$$

18.10.2021 20

Wave names by polarization

We then obtain two waves propagation along the B field:

- R-wave: $\frac{c^2 k^2}{r^2}$ $\frac{\kappa}{\omega^2} = 1 \omega_p^2$ ω^2 $1-\frac{\Omega_e}{\Omega}$ ω −1
- L-wave: $\frac{c^2k^2}{a^2}$ $\frac{\pi}{\omega^2} = 1 \omega_p^2$ ω^2 $1 + \frac{\Omega_e}{\Omega}$ ω −1

Reason for names:

The E_1 vector of the *R*-wave rotates clockwise in time as viewed in the direction of propagation \rightarrow right-hand circularly polarized wave

Vice versa for the *L*-wave.

Cut-offs and resonances for *L* **and** *R* **?**

Resonances:

- R -wave: $k \to \infty$ @ $\omega = \Omega_e$, giving a resonance. Physics of the resonance: polarization allows the E field to be in sync with the electron gyration \rightarrow wave dumps its energy to electrons \rightarrow electron cyclotron resonance heating *(ECRH)*
- *L*-wave: no resonance found. (would exist if ion motion were included)

Cut-offs:

- *R*-wave: $k \to 0$ @ $\omega = \omega_R$.
- L-wave: $k \to 0 \omega \omega = \omega_L$.

The names of the frequencies make sense! \odot

Stop bands for *R* **and** *L* **waves**

The *L*-wave

• Has a stop band at low- $\omega \rightarrow$ behaves like an *O*-wave except with replacement $\omega_p \rightarrow \omega_L$

The *R*-wave

- Has a stop band between [Ω_e , ω_R
- The low-frequency band, $\omega < \Omega_e$, has an interesting history and relevance
- HW: *Food for Thought*

School of Science

Summary of EM waves in plasmas

Along the B field:

• Right-hand (*R*) and left-hand (*L*) circularly polarized waves

Across the B-field:

• plane-polarized ordinary *(O*) wave and elliptically polarized extraordinary (*X*) wave

Magnetohydrodynamic waves

Aalto University School of Science

What is different now?

- Until now we have always been aware that plasma consists of ions and electrons \rightarrow we have made choices of which dynamics to include.
- In magnetohydrodynamics, the plasma is just a *fluid*
- \rightarrow in MHD, the waves are supported/carried by plasma fluid, where the ion and electron species have just as much to say as oxygen and hydrogen have in regular *hydro*dynamics.

We shall now apply our procedure to the MHD equations …

Linearized MHD equations

Do the linearization procedure for the MHD equations \rightarrow

$$
\frac{\partial \rho_1}{\partial t} + \rho_0 \nabla \cdot \mathbf{V}_1 = 0
$$
\n
$$
\rho_0 \frac{\partial \mathbf{V}_1}{\partial t} + \nabla p_1 - \frac{(\nabla \times \mathbf{B}_1) \times \mathbf{B}_0}{\mu_0} = 0 \qquad \text{here } \rho \text{ is the fluid density}
$$
\n
$$
-\frac{\partial \mathbf{B}_1}{\partial t} + \nabla \times (\mathbf{V}_1 \times \mathbf{B}_0) = 0
$$
\n
$$
\frac{\partial}{\partial t} \left(\frac{p_1}{p_0} - \frac{\gamma \rho_1}{\rho_0}\right) = 0
$$

18.10.2021 27

"Plane wave" solution …

Now take the harmonic approximation and assume that each perturbed quantity is a sum of plane waves w/ given \bm{k} and ω :

$$
-\omega \rho_1 + \rho_0 \mathbf{k} \cdot \mathbf{V}_1 = 0 \Rightarrow \rho_1 = \rho_0 \frac{\mathbf{k} \cdot \mathbf{V}_1}{\omega}
$$

$$
\omega \mathbf{B}_1 + \mathbf{k} \times (\mathbf{V}_1 \times \mathbf{B}_0) = 0 \Rightarrow \mathbf{B}_1 = \frac{(\mathbf{k} \cdot \mathbf{V}_1) \mathbf{B}_0 - (\mathbf{k} \cdot \mathbf{B}_0) \mathbf{V}_1}{\omega}
$$

$$
-\omega \left(\frac{p_1}{p_0} - \frac{\gamma \rho_1}{\rho_0}\right) = 0 \Rightarrow p_1 = \gamma p_0 \frac{\mathbf{k} \cdot \mathbf{V}_1}{\omega}
$$

$$
-\omega \rho_0 \mathbf{V}_1 + \mathbf{k} p_1 - \frac{(\mathbf{k} \times \mathbf{B}_1) \times \mathbf{B}_0}{\mu_0} = 0
$$

4 equations, 4 unknowns!

Substitute the expressions for B_1 and $p_1 \rightarrow$ equation for V_1 :

$$
\left[\omega^2 - \frac{(\boldsymbol{k} \cdot \boldsymbol{B}_0)^2}{\mu_0 \rho_0}\right] \boldsymbol{V}_1 =
$$
\n
$$
\left\{ \left[\frac{\gamma p_0}{\rho_0} + \frac{B_0^2}{\mu_0 \rho_0}\right] \boldsymbol{k} - \frac{(\boldsymbol{k} \cdot \boldsymbol{B}_0)}{\mu_0 \rho_0} \boldsymbol{B}_0 \right\} (\boldsymbol{k} \cdot \boldsymbol{V}_1)
$$
\n
$$
-\frac{(\boldsymbol{k} \cdot \boldsymbol{B}_0)(\boldsymbol{V}_1 \cdot \boldsymbol{B}_0)}{\mu_0 \rho_0} \boldsymbol{k}
$$

18.10.2021 29

Get real(istic) …

Time to fix the space:

- Align the coordinate system so that $\mathbf{B}_0 = B_0 \mathbf{z}$, $\mathbf{k} = k_x \mathbf{x} + k_z \mathbf{z}$,
- Angle θ defined to be the angle between **k** and \boldsymbol{B}_0

Write the linearized equation of motion in (x, y, z) components:

\rightarrow Matrix equation

Aalto University School of Science

$$
\begin{pmatrix}\n\omega^2 - k^2 V_A^2 - k^2 V_S^2 \sin^2 \theta & 0 & -k^2 V_S^2 \sin \theta \cos \theta \\
0 & \omega^2 - k^2 V_A^2 \cos^2 \theta & 0 \\
-k^2 V_S^2 \sin \theta \cos \theta & 0 & \omega^2 - k^2 V_S^2 \cos^2 \theta\n\end{pmatrix}\n\begin{pmatrix}\nV_{1x} \\
V_{1y} \\
V_{1z}\n\end{pmatrix} = 0,
$$
\nHere $V_A^2 = \frac{B_0^2}{\mu_0 \rho_0}$ is the so-called *Alfvén speed*, and $V_S^2 = \frac{\gamma p_0}{\rho_0}$ is the sound speed

30

Non-trivial (≠ 0**) solutions only for det = 0**

 \rightarrow Product of three terms (easiest by using either middle row or middle column)

$$
\blacktriangleright \qquad \left(\omega^2 - k^2 V_A^2 \cos \theta\right) \left[\omega^4 - \omega^2 k^2 \left(V_A^2 + V_S^2\right) + k^4 V_A^2 V_S^2 \cos^2 \theta\right] = 0
$$

- \rightarrow 3rd order equation for ω^2
- **→ Different kinds of** *Alfvén waves* …

Shear Alfvén wave

$$
\omega^2 - k^2 V_A^2 \cos^2 \theta = 0
$$

This corresponds to $\mathbf{k} \cdot \mathbf{V}_1 = 0$

 \rightarrow No density or pressure perturbation associated with the wave

Also $V_1 \cdot B_0 = 0$

→ Motion only perpendicular to the magnetic field

Compressional Alfvén wave

The other two roots: $\omega = kV_{+}$, where

$$
V_{\pm} = \left\{ \frac{1}{2} \left[V_A^2 + V_S^2 \pm \sqrt{\left(V_A^2 + V_S^2\right)^2 - 4V_A^2 V_S^2 \cos^2 \theta} \right] \right\}^{1/2}
$$

These are the fast and slow *magnetosonic* waves – or *fast* and *slow* waves between friends.

- In the cold plasma limit $(p \to 0)$, the *fast* wave becomes the socalled *compressional Alfven wave*: $\omega = kV_A$ and slow wave dies.
- For $V_A \ll V_S$ the *fast* wave becomes a sound wave, modified by the presence of the magnetic field: $\omega = kV_s$

Hannes Alfvén (1908 – 1995)

Gravitational systems are the ashes of prior electrical systems.

— Hannes Alfven —

- developed the MHD theory
- was the first to discover these wave motions within MHD
- Nobel prize 1970

Alfvén waves can be used to diagnose the plasma (especially in space, but also in laboratory plasmas)

