
PHYS-E055101 Low Temperature Physics: Nanoelectronics

Superconducting devices

G. S. Paraoanu

Department of Applied Physics, School of Science,

Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland

1



I. SUPERCONDUCTIVITY

What is superconductivity? It is a phenomenon occurring in certain materials at low

temperatures, characterized by exactly-zero electrical resistance as one of the measurable

signatures. Superconductivity was discovered in 1911 in the famous laboratory of Kamer-

lingh Onnes, where it was first noticed that the resistivity of Hg (mercury, a metal) drops

abruptly to zero at around 4 K.

H. K. Onnes, 1911
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Electrical
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(    )W

Is this surprising? Yes: the electrical resistivity of metals decreases with temperature,

but it is never zero, due to impurities (electrons would scatter on those). However, for a

superconductor, the resistance drops abruptly to exactly zero at a certain finite temperature.

This suggests a phase transition.

So, isn’t this some kind of perfect conductor - can it be for example understood as
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having zero impurities? It is actually much more than this. It cannot be understood in

the framework of classical physics - i.e. classical electricity and magnetism. It has many

other unusual properties: it expels the lines of magnetic field – even if these fields are static

(Meissner effect). An electrical current flowing in in a superconducting ring will have no

dissipation (these are called “persistent currents”), and as a result it will rotate there forever

i.e. longer than the age of the Universe!

II. BCS THEORY OF SUPERCONDUCTIVITY

The microscopic theory that describes superconductivity is due to Bardeen, Cooper, and

Schrieffer (BCS, 1957). The theory refers to s-wave superconductors (the pairing of the

electrons is of s-type). Other types of superconductors (called high-Tc and believed to have

d-wave pairing) have been discovered since - the first by Bednorz and Mueller (1986) - with

critical temperatures that can exceed 100K.

The basic mechanism of superconductivity is the pairing of electrons, which will tend to

form Cooper pairs. Pairing is due to an effective attraction between electrons - therefore

the theory of superconductivity has to go beyond the noninteracting electron gas model and

include interactions between electrons. It might come as a surprise that the e-e interaction

is attractive: shouldn’t be exactly the opposite be the case, since electrons have all negative

charge there will be a repulsive force between them? Note that in the discussion of metals we

have ignored completely the dynamics of the ionic background in which the electrons move:

we have assumed that there exists some positive background which neutralizes the electron

charge. However, consider what happens when one electron moves through the lattice. The

nearby ions will create a positive charge density to compensate the negative charge of the

electron. However, the speed of the electron is vF = ~kF/m; in contrast, the ions are heavier

and therefore much slower. By the time the ions have polarized, the electron is long gone

from that region. Now, if a second electron enters that region, it will experience a positive

charge excess, to which it will be attracted. Note the long-range character of this e − e

interaction: the electrons can move far apart from each other, still feeling the effect of this

interaction. Thus they do not form real molecules. This is reflected, as we will see, very

accurately in the BCS theory.
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The Hamiltonian for a system of interacting electrons is

Ĥ =
∑
k,σ

(
~2k2

2m
− µ

)
ĉ†k,σ ĉk,σ +

∑
k,k′,q,σ,σ′

Vk,k′,q,σ,σ′ ĉ
†
k,σ ĉ

†
−k+q,σ′ ĉ−k′+q,σ′ ĉk′,σ. (1)

We then make two assumptions:

1) the electrons that pair up will have opposite spin (s-wave pairing), σ = −σ′.

2) the center of mass momentum of a pair is zero, that is, pairing occurs only for q = 0.

Formally, we can write Vk,k′,q,σ,σ′ = (1/2)Vk,k′δq,0δσ,−σ′ , therefore

Ĥ =
∑
k,σ

(
~2k2

2m
− µ

)
ĉ†kσ ĉkσ +

∑
k,k′

Vk,k′ ĉ
†
k↑ĉ
†
−k↓ĉ−k′↓ĉk′↑, (2)

Next, we aim at applying the idea of pairing and treat the corresponding operators using

mean-field ideas,

ĉ−k↓ĉk↑ = Fk + (ĉ−k↓ĉk↑ − Fk), (3)

ĉ†k↑ĉ
†
−k↓ = F ∗k + (ĉ†k↑ĉ

†
−k↓ − F

∗
k ). (4)

Here we defined the average of the pairing operator as

Fk = 〈ĉ−k,↓ĉk,↑〉. (5)

We will then treat the fluctuations around this average as small, in other words we write

ĉ†k↑ĉ
†
−k↓ĉ−k′↓ĉk′↑ = [F ∗k + (ĉ†k↑ĉ

†
−k↓ − F

∗
k )][Fk′ + (ĉ−k′↓ĉk′↑ − Fk′)] (6)

≈ ĉ†k↑ĉ
†
−k↓Fk′ + ĉ−k′↓ĉk′↑F

∗
k − Fk′F ∗k . (7)

This results in the so-called BCS Hamiltonian,

H =
∑
k,σ

(
~2k2

2m
− µ

)
ĉ†kσ ĉkσ +

∑
k,k′

Vk,k′
(
ĉ†k↑ĉ

†
−k↓Fk′ + ĉ−k′↓ĉk′↑F

∗
k − Fk′F ∗k

)
. (8)

Next, let us define

ξk =
~2k2

2m
− µ, (9)

and the so-called superconducting gap,

∆k = −
∑
k′

Vkk′〈ĉ−k′↓ĉk′↑〉 = −
∑
k′

Vkk′Fk′ . (10)
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where we have put a minus sign to put in evidence the attractive character of the interaction.

This results in the so-called BCS-model Hamiltonian,

H =
∑
k,σ

ξkĉ
†
kσ ĉkσ −

∑
k

(
∆kĉ

†
k↑ĉ
†
−k↓ + ∆∗kĉ−k↓ĉk↑ −∆kF

∗
k

)
. (11)

This is already a nice result, from which you can see plenty of things: for example that the

electrons are created and annihilated in pairs, with ∆k playing the role of a pairing energy.

Also, because ∆k is defined as an average over the pairing operator, it has the significance

of an order parameter.

Next, we would like to diagonalize the BCS Hamiltonian. To do so, we note that the

Hamiltonian is quadratic, and that instead of the desired diagonal terms ĉ†ĉ it also has

mixed in the pairing operators ĉĉ and ĉ†ĉ†. We would like to ”unmix” these terms, and for

this we should find a linear transformation that does precisely that. This transformation is

called the Bogoliubov (or Bogoliubov-Valatin) transformation. It has the form

ĉk↑ = u∗kγ̂k0 + vkγ̂
†
k1, (12)

ĉ†−k↓ = −v∗kγ̂k0 + ukγ̂
†
k1, (13)

where γk0 and γk1 are called quasiparticle operators. Remember that ĉ are fermionic opera-

tors, that is

{ĉk,σ, ĉ†k′,σ′} = δkk′δσσ′ , (14)

and so are the quasiparticle operators γ̂,

{γ̂k,j, γ̂†k′,j′} = δkk′δjj′ , j, j
′ ∈ {0, 1}. (15)

Exercise: Show that this transformation is canonical (preserves the commutation rela-

tions) iff |uk|2 + |vk|2 = 1.

We now substitute these forms into the BCS Hamiltonian to find

Ĥ =
∑
k

ξk

[
(|uk|2 − |vk|2)(γ̂†k0γ̂k0 + γ̂†k1γ̂k1 + 2|vk|2 + 2|vk|2 + 2u∗kv

∗
kγ̂k1γ̂k0 + 2ukvkγ̂

†
k1γ̂
†
k0

]
+
∑
k

[(∆kukv
∗
k + ∆∗ku

∗
kvk)(γ̂

†
k0γ̂k0 + γ̂†k1γ̂k1 − 1) +

+(∆kv
∗2
k −∆∗ku

∗2
k )γ̂k1γ̂k0 + (∆∗kv

2
k −∆ku

2
k)γ̂
†
k0γ̂
†
k1 + ∆kF

∗
k ]. (16)

This looks pretty complicated, but there is a way out. Let us try to find uk and vk such

that the terms that are not diagonal would vanish. This means

2ξkukvk + ∆∗kv
2
k −∆ku

2
k = 0. (17)
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Together with the normalization condition |uk|2 + |vk|2 = 1, this results in the solutions

|uk|2

|vk|2
=

1

2

(
1± ξk

Ek

)
. (18)

Here Ek is the quasiparticle eigenenergy,

Ek =
√
ξ2
k + |∆k|2. (19)

With these solutions, the Hamiltonian has the diagonal form

H =
∑
k

Ek

(
γ̂†k0γ̂k0 + γ̂†k1γ̂k1

)
+
∑
k

(
ξk − Ek + ∆k〈ĉ†k↑ĉ−k↓〉

∗
)
. (20)

It describes a system of free fermions (the quasiparticles) with spectrum Ek. The ground

state has a rather interesting form,

|BCS〉gnd =
∏
k

[
uk + vkĉ

†
k↑ĉ
†
−k↓

]
|0〉. (21)

Here |0〉 is the ground state for the ĉkσ operators, that is

ĉk↑|0〉 = 0, (22)

ĉk↓|0〉 = 0, (23)

while |BCS〉gnd is the ground state for the operators γ̂k0, γ̂k1,

γ̂k0|BCS〉gnd = 0, (24)

γ̂k1|BCS〉gnd = 0. (25)

The last relation can be immediately checked by inverting Eqs. (12,13) thus obtaining

γ̂k0 = ukĉk↑ − vkĉ†−k↓, (26)

γ̂†k1 = v∗kĉk↑ + u∗kĉ
†
−k↓. (27)

III. DENSITY OF STATES FOR SUPERCONDUCTORS

Let us look into more detail into Eq. (19). Let us take ∆ independent of k (this assump-

tion can be justified by determining ∆ self-consistently in the BCS theory). Then

Ek =
√
ξ2
k + |∆|2. (28)
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FIG. 1. Spectrum of quasiparticles in a BCS superconductor.

From here we can see that the minimum value of Ek is ∆: exciting quasiparticles in the

superconductor is possible only of one provides an energy above this gap value. The spectrum

of excitations of quasiparticles in a superconductor is shown in Fig. 1.

To find the density of states, we only have to make a change of variables in all the usual

integrals over ξk. In other words

N (super)
3D (E)dE = N (norm)

3D (ξ)dξ. (29)

The density of states for the metal can be approximated with its value at the Fermi level

(which corresponds to ξ = 0 with the notations here). Therefore we have

N (super)
3D (E) = N (norm)

3D (0)
|E|√

E2 −∆2
Θ(|E| −∆). (30)

The density of states in a superconductor is shown in Fig. (2).

This representation is called the semiconductor picture of supercondcutivity, due to

its resemblance with the concept of semiconducting gap.

IV. TUNNELING IN JUNCTIONS WITH SUPERCONDUCTING LEADS

Consider now the following system, in which two superconductors are separated by an

insulator that creates a tunnel barrier between them. Imagine that we try to measure the

IV (current-voltage) characteristics of the system.
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FIG. 2. Density of state in a superconductor. Figure from Ref. [1].
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To calculate the current, it is natural to generalize the approach of the previous lecture to

superconducting leads. The density of states has to be replaced by that of superconductors,

as given by the BCS theory. It turns out that this density of states consists of a factor which

is the same as for metals, which gets multiplied by a divergent part near the gap.

Summarizing all the discussion above, we can write the tunneling probability, including

both the metallic and superconducting case, as

Γ1→2(δE1→2) =
1

e2R12

∫ ∞
−∞

dE1

∫ ∞
−∞

dE2N1(E1)N2(E2)f1(E1)[1− f2(E2)]δ(E2 − E1 − δE1→2)(31a)

=
1

e2R12

∫ ∞
−∞

dE1N1(E1)N2(E1 + δE1→2)f1(E1)[1− f2(E1 + δE1→2)] , (31b)

with N1,2 being the normalized density of states of the electrodes, as introduced above.
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Furthermore, given the tunneling probabilities of Eq. (31), we can calculate the current

through a single superconducting tunnel junction without charging effects

I1→2 = −e [Γ1→2(δE1→2)− Γ2→1(δE2→1)] (32)

=
1

eR12

[∫ ∞
−∞

dE1N1(E1)N2(E1 + eV )f1(E1)(1− f2(E1 + eV )) (33)

−
∫ ∞
−∞

dE2N1(E2 − eV )N2(eV )f2(E2)(1− f2(E2 − eV ))

]
(34)

=
1

eR12

∫ ∞
−∞

dE1N1(E1)N2(E1 + eV )[f1(E1)− f2(E1 + eV )], (35)

which is a generalizations of the formulas we are used to from the previous lectures. To

calculate the integrals a more convenient and at the same time physically justifiable approach

is to introduce a broadening parameter into the density of states,

NDynes =

∣∣∣∣∣<
{

E + iη√
(E + iη)2 + ∆2

}∣∣∣∣∣ . (36)

The parameter η is called Dynes parameter and it accounts for the finite life-time of quasi-

particles in the superconductor. The symbol < stands for the real part of the expression in

curly brackets. This broadening of the density of states leads to nonzero currents flowing

through the tunnel junction at voltages smaller than ∆/e (say for a NIS junction), which

are often seen in experiments.

A. NIS junctions

For a single NIS junction, we just use a constant normal-metal density of states for N1

in Eq. (35) and a superconductor density of states for N2, see Fig. 3. At zero temperature,

there is no current in the gap region (that is, for a bias −∆ < eV < ∆), simply because

there are no states available there in the superconductor. At large values of the gap, the

effect of the superconducting gap is not apparent anymore, and the sample behaves simply

as a constant-conductivity element with resistance R12.

In Fig. 4 we show the IV and dI/dV characteristics for a NIS junction.

SINIS devices The presentation below follows closely [5]. A superconductor-insulator-

normal metal-insulator-superconducting (SINIS) device can be seen as an SET without gate,

with superconducting leads and a normal metal island. SINIS are very useful devices, used as

local coolers [2], secondary thermometers [3], and electron pumps [4]. Usually the charging
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FIG. 3. Semiconductor model for NIS tunneling. Figure from [1].

FIG. 4. IV and dI/dV curves for a NIS junction at various temperatures. Figure from [1].

energy in a SINIS is so small that it can be neglected. However, in some applications, for

instance as thermometers, the SINIS dimensions may become small enough to make charging

effects become observable.

Figure 5 shows the I–V -curves and conductances of a SINIS structure at different operat-

ing temperatures for both zero and finite charging energy. Without charging energy (upper

plots), the SINIS reproduces the I–V curve of a single NIS junction, with all features being
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FIG. 5. Top: Current (left) and conductance (right) of a SINIS structure as function of applied

voltage at different operating temperatures. The charging energy of the system is set to zero.

Bottom: Current (left) and conductance (right) through a SINIS structure with finite charging

energy (EC = 0.15∆). The offset of the quasiparticle threshold is 2EC and the periodicity of its

repetition is 4EC . In all plots the temperature is kBT0 = 3.92× 10−2∆. Figure and text from [5]

at twice the voltage, as we expect due to the fact that only half of the voltage applied to the

SINIS drops over a single junction. With a finite charging energy (lower plots), the quasi-

particle threshold is pushed up from V = 2∆/e to (2∆ + 2EC)/e, and is repeated at 4EC

intervals with decreasing amplitude. This is visible especially well in the conductance plots

in Fig. 5. At operating temperatures that are comparable to or larger than the charging

energy, all features are smeared out. In Fig. 5 (for the case that ∆ = 220 µeV and thus

EC = 33 µeV), the curve with still barely visible oscillations conductance would correspond

to a temperature of 2kBT0 ≈ 17 µeV, while in the curve at the next higher temperature of

5kBT0 ≈ 43 µeV the oscillations are smeared out entirely.
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SINIS refrigerators

In Fig. 3 we show the main idea of NIS cooling and some experimental results are shown

in Fig. 6. The existence of a superconducting gap selectively allows the hot electrons (at the

tail of the Fermi distribution) to tunnel from the metal to the superconductor. Tunneling

of the colder electrons is suppressed because there are no states available in the gap of the

superconductor. As a result, the metal electrode cools.

FIG. 6. Experimental results for cooling. Figure from [1].

In the case of two-junction structures such as SETs, SINIS, etc., this results in the heating

and cooling of the middle electrode (the island). This is due to the fact that, although the

currents through the two junctions are the same, as it should be due to the conservation of

charge (the charge of the island has to remain constant) the energy transfer (heat) does not

need to satisfy such a conservation law.

It is straightforward to calculate the energy transferred per unit time out of the island

(cooling power) as a function of the applied voltage,

PI(V ) =
∞∑

n=−∞

p(n) [PI→L(n)− PL→I(n) + PI→R(n)− PR→I(n)] . (37)

Here the powers PL→I(n), PI→L(n), PR→I(n), and PI→R(n) correspond to energy being trans-

ferred onto/off the island by tunneling into the left and right electrodes, at a given number

of excess electrons n on the island. They can be calculated by multiplying the energy car-

ried by each tunneling electron to the probability of tunneling per unit time (given by the

12
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FIG. 7. Cooling powers in different double-island devices. Top left: SINIS structure with EC = 0

at different temperatures. Top right: SINIS at fixed temperature 5T0 with different charging

energies. Bottom left: SET with 5T0 and EC = 0 for different gap sizes ∆I < ∆L of the island.

Bottom right: SET with ∆I = 0.2∆L and EC = 0.15∆L at different temperatures. In all plots

kBT0 = 3.92× 10−2∆L. Figure and text from [5].

density of states and Fermi factors), and then summing over energy states (see also Eqs.

(31a), (31b)),

PI→X(n) =
1

e2RIX

∫ ∞
−∞

EENI(E)NX[E + δEI→X(n)]fI(E) [1− fX(E + δEI→X(n))]

PX→I(n) =
1

e2RXI

∫ ∞
−∞

E [E + δEX→I(n)]NI [E + δEX→I(n)]NX(E) [1− fI(E + δEX→I(n))] fX(E) ,

where X = L,R.

In Figure 7 we present a comparison between the cooling powers on the island Eq.(37)

for SINIS (upper plots) and superconducting SET structures (lower plots). We observe that

cooling exists only in an interval of bias voltages not much larger than the quasiparticle
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threshold at 2∆/e (we take identical superconducting leads with gap ∆). As seen from

the left upper plot, as the temperature is lowered the process becomes much less efficient.

The general effect of the charging energy is that it is detrimental to cooling (right plot,

upper part). In the case of superconducting SET’s (lower plots, Figure 7) the existence of

singularity-matching peaks produces relatively sharp spikes in the cooling power. Essentially,

the island is cooled down by BCS quasiparticles [6]. The left figure shows these features

for the case of negligible charging energy (a SISIS structure with a relatively large middle

electrode having a different gap than the leads). An interesting feature is also that the range

of voltages over which cooling occurs is extended, due to the fact that now the quasiparticle

threshold is at values 2∆L + 2∆I. Finally, cooling in SET structures with finite charging

energy is shown in the lower-right plot of Figure 7.

B. SIS junctions

For a single SIS junction, we will have to use a superconductor density of states for both

N1 and N2 in Eq. (35). The semicornductor picture looks like in Fig. 8.

In the IVs, the most important difference that appears is that at zero temperature the

current is zero in the voltage region −∆1 −∆2 < eV < ∆1 + ∆2. This is because in order

for an electron to tunnel say from the superconductor 1 to superconductor 2, a Cooper pair

has to be broken in superconductor 1 (and this costs a minimum energy of ∆1) and then,

when the electron arrives in superconductor 2 it will be an unpaired electron (which is a

quasiparticle excitation that costs a minimum ∆2).

V. THE JOSEPHSON EFFECT

But this is not everything. If you do the experiment, you’d see in the IV characteristics

an electric current that flows across the junction even at zero voltage across the circuit!

(kind of weird, isn’t it? - a current flows without applying any bias voltage). This is the

Josephson effect. It was predicted theoretically by Brian Josephson when he was a graduate

student, and it ran against the accepted wisdom of that time (very famous scientists thought

that, had this current existed, it should be a second-order effect in the tunneling, therefore

very small and negligible). But Josephson put his money where the mouth is and did also
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FIG. 8. Semiconductor model for SIS tunneling. Figure from [1].

the experiment!
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Let us recall Eq. (21), the many-body BCS (Bardeen, Cooper, and Schrieffer) state

|BCS〉 =
∏
k

(
|uk|+ |vk|eiϕk ĉ†k↑ĉ

†
−k↓

)
|0〉 , (39)

where ĉ†k↑ĉ
†
−k↓ shows that electrons are paired in Cooper pairs. In this expression we just put

in evidence the fact that uk and vk are complex numbers; however it does not make sense

to keep track of both of their phases, just of the phase difference between them, which we

conveniently can take as the phase of vk (an overall phase in front of this wavefunction does

not matter). So vk = |vk| exp (iϕk). Moreover, it can be argued that this phase should be the

same for all Cooper pairs, so we can take ϕk = ϕ. From Eq. (17) we can see that this is also

equivalent to operating with a complex superconducting order parameter ∆ = |∆| exp(iϕ).

Next, let us try to extract some phenomenological information from it. So, what is the

BCS function trying to tell us about how superconductors behave as circuit elements?

A. The Josephson voltage-phase relation

Suppose now that we apply a voltage on a superconductor (while keeping another one as

reference). How do we write the new BCS many-body state?

Let us look at each electron. Assume that the single-electron Hamiltonian was Ĥ0, for

which we can write a field equation (in direct analogy with the Schrödinger equation)

i~
∂

∂t
ψ̂ (x, t) = Ĥ0ψ̂ (x, t) . (40)

How do we introduce a voltage V (t), which would produce an additional −eV (t) in the

Hamiltonian? We can simply preform the substitution

ψ̂ (x, t)→ e−
ie
~
∫ t
−∞ dτV (τ)ψ̂ (x, t) , (41)

in the equation abovem which produces eactly what we want, namely i~ ∂
∂t
ψ̂ (x, t) =

Ĥ0ψ̂ (x, t)→ i~ ∂
∂t
ψ̂ (x, t) =

[
Ĥ0 − eV (t)

]
ψ̂ (x, t) .

In terms of the annihilation and creation operators, this means

ĉk → ĉke
− ie

~
∫ t
−∞ dτV (τ), (42)

ĉ†k → ĉ†ke
ie
~
∫ t
−∞ dτV (τ). (43)
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so from Eq. (39) we have

|BCS〉 →
∏
k

[
|uk|+ |vk|ei(ϕ+ 2e

~
∫ t
−∞ dτV (τ))ĉ†k↑ĉ

†
−k↓

]
|0〉 , (44)

where ϕ (t) = ϕ+ 2e
~

∫ t
−∞ dτV (τ) is the resulting new time-dependent BCS phase. Note that

we assume here that the structure of the BCS many-body wavefunction does not change

under the application of the voltage.

We would like now to obtain an equation of motion for this phase. By simple differenti-

ation with respect to time we get the so-called Josephson voltage-phase relation:

dϕ (t)

dt
=

2e

~
V (t) (45)

Note the factor 2e here: it is important to realize that it comes from the pairing of the

electrons in a superconductor.

B. The Josephson current-phase relation

What we have established so far is that due to the special structure of the |BCS〉 state,

electrons pair up and they “phase-lock” to the same phase ϕ.

Consequence: think about one electron and its wavefunction. If it is in the right super-

conductor, its wavefunction will extend, via tunneling, into the left superconductor. If it is

in the left well, the wavefunction will have a “tail” into the right superconductor.

In the same way, we attach the Cooper pair wavefunctions – call them ΨL,ΨR.

�
�

�
�

�

�

�
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⇒

Ψ ' 1√
2

[ΨL + ΨRe
iϕ]. You might object that this is not normalized, because already∫

|ΨL|2 = 1,
∫
|ΨR|2 = 1; but we can think about it as an approximation, and in fact a good

one if ΨR and ΨL do not overlap too much under the barrier.

Now note that the quantum-mechanical current of particles is

j ≡ i~
2m

[(∇Ψ∗) Ψ−Ψ∗ (∇Ψ)] ', (46)

' ~
2m

[
ΨL

d

dz
ΨR −ΨR

d

dz
ΨL

]
· sinϕ (47)

predicts a non-zero, and perhaps large current ( ... all Cooper pairs have the same phase ϕ

so the tunneling currents of each will be added coherently and - if you imagine the electrons

as paired - then there will be many of these Cooper pairs)

IJ = const.× sinϕ, (48)

where the constant depends on the tunneling matrix element between the two superconduc-

tors, as in the previous equation. The constant const. = I0 is called the critical current of

the junction.

Another useful quantity is

EJ =
Φ0

2π
I0, (49)

which is called the Josephson energy. Here Φ0 = h
2e

= 2 · 10−7 Gcm2 is referred to as the

flux quantum.

Note: Above we have introduced the critical current of a junction in a somewhat phe-

nomenological way. The expression for the critical current can be derived rigorously on the

basis of the microscopic BCS theory, and it was first done in V. Ambegaokar and A.Baratoff,

Phys. Rev. Lett. 10, 486 (1963). The resulting Ambegaokar-Baratoff for the critical current

of the junction reads

I0 =
π∆

2eRN

tanh
∆

2kBT
, (50)

where ∆ is the superconducting gap and RN is the normal-state resistance.

For the purpose of this lecture, the essential result to remember is that IJ = I0 · sinϕ.
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So, we found the so-called Josephson current-phase relation:

IJ = I0 · sinϕ (51)

Although extremely simple, this relation is very powerful! Note that we can now already

explain what is seen in tunneling experiments, namely the possibility of a non-zero current

at zero bias voltage: from the Josephson voltage-phase relation at V = 0 we have ϕ = const.

therefore using the Josephson current-phase relation we get ⇒ IJ = const. at V = 0.

VI. APPENDIX: NONUNIFORM SUPERCONDUCTORS: BOGOLIUBOV - DE

GENNES EQUATIONS

In the derivation of the BCS theory we have assumed an infinite sample and uniform (zero)

potential, thus we have used the periodic boundary conditions and the momentum state

representation. However, the BCS theory can be formulated more generally (de Gennes),

resulting in a nonuniform |∆(~r)|.

The general Hamiltonian in second quantization is

H =
∑
σ

∫
d~rψ†σ(~r)H0(~r)ψσ(~r) +

∑
σ,σ′

∫
d~r

∫
d~r′Vσ,σ′(~r, ~r

′)ψσ(~r)†ψσ′(~r
′)†ψσ′(~r

′)ψσ(~r), (52)

where

H0(~r) =
1

2m

(
−i~~∇− e ~A

)2

+ U(~r)− µ, (53)

where in general ~A is the vector potential of a magnetic field. The interaction potential is

local and corresponding to singlet spin coupling,

Vσ,σ′(~r, ~r
′) = V (~r)δ(~r − ~r′)δσ,σ̄′ , (54)

where σ̄ is the opposite value (’negation of’) σ. Now, using the momentum representation,

one can easily check that the form of the Hamiltonians used above is reproduced.

If the system is not uniform, then the theory proceeds along the same lines, but u and v

will be dependent on position.
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