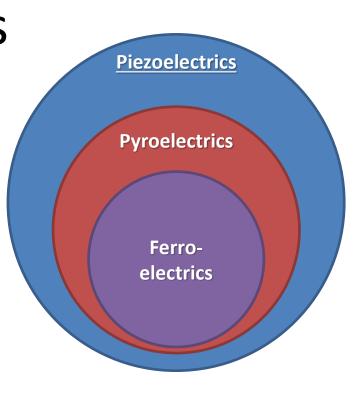
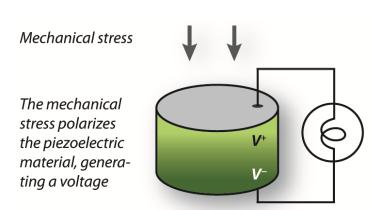


Functional Inorganic Materials Lecture 10: Piezoelectricity


Fall 2021


Antti Karttunen (antti.karttunen@aalto.fi) Department of Chemistry and Materials Science

Lecture Exercise 10 is a MyCourses Quiz

Contents

- General overview of non-centrosymmetric materials
 - Piezoelectricity is limited to crystals with certain symmetry properties
- Piezoelectricity
 - Electric polarization from mechanical force
 - Mechanical deformation due to electric field
- Applications of piezoelectricity in various fields of technology
 - Energy harvesting as a potential future application

Literature on non-centrosymmetric materials

P. Shiv Halasyamani and Kenneth R. Poeppelmeier, Noncentrosymmetric Oxides, *Chem. Mater.* **1998**, *10*, 2753–2769. DOI: <u>https://doi.org/10.1021/cm980140w</u>

Kang Min Ok, Eun Ok Chi and P. Shiv Halasyamani, Bulk characterization methods for non-centrosymmetric materials: second harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity, *Chem. Soc. Rev.*, **2006**, *35*, 710–717. DOI: https://doi.org/10.1039/B511119F

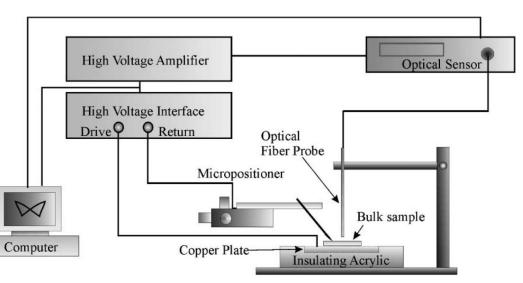
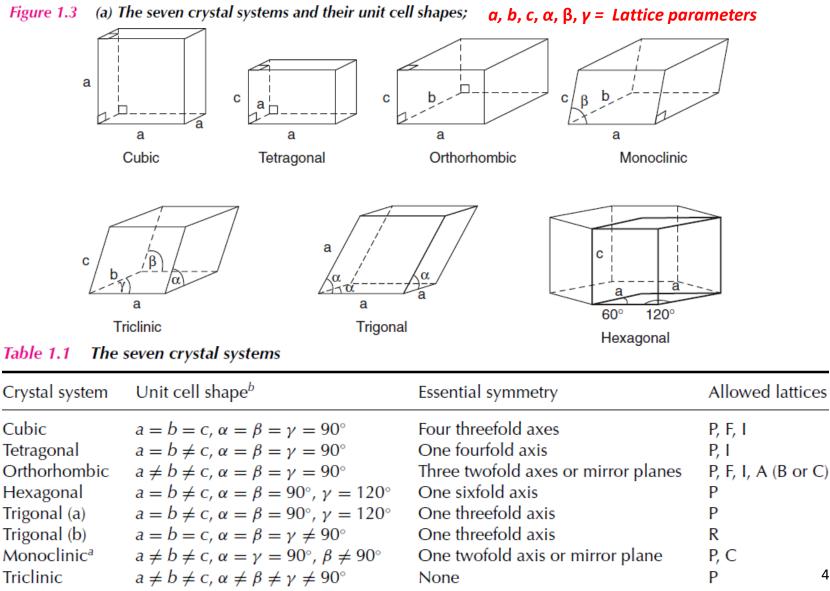



Fig. 3 Experimental system to measure converse piezoelectric effects.

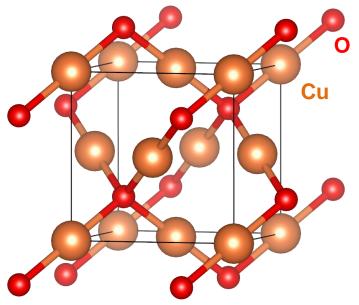
Let's start with a brief review of crystal systems and crystal classes, because crystal symmetry is very important for understanding non-centrosymmetric functional materials

Crystal systems

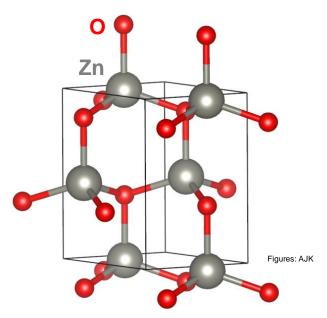
Ref: West p. 3-4

4

Crystal classes


• The seven crystal systems consist of 32 crystal classes corresponding to the 32 crystallographic point groups

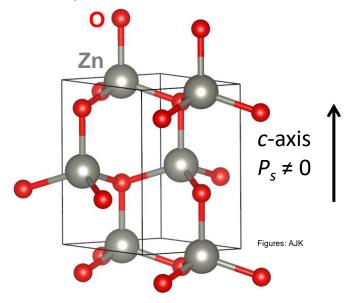
Crystal system	Crystal classes (point groups) in Hermann-Mauguin notation	Crystal classes (point groups) in Schönflies notation
Triclinic	1, 1	<i>C</i> ₁ , <i>C</i> _{<i>i</i>}
Monoclinic	2, m, 2/m	C ₂ , C _s , C _{2h}
Orthorhombic	222, mm2, mmm	D_{2}, C_{2v}, D_{2h}
Tetragonal	4, 4 , 4/m, 422, 4mm, 4 2m, 4/mmm	$C_4, S_4, C_{4h}, D_4, C_{4v}, D_{2d}, D_{4h}$
Trigonal	3, 3 , 32, 3 <i>m</i> , 3 <i>m</i>	$C_3, S_6 (C_{3i}), D_3, C_{3v}, D_{3d}$
Hexagonal	6, 6 , 6/m, 622, 6mm, 6 m2, 6/mmm	$C_6, C_{3h}, C_{6h}, D_6, C_{6v}, D_{3h}, D_{6h}$
Cubic	23, 4 3m, m 3 , 432, m 3 m	T, T _d , T _h , O, O _h


Ref: Inorganic Structural Chemistry (2nd ed.), Ulrich Müller, 2006, Wiley p. 24 and Wikipedia

Centrosymmetric and noncentrosymmetric materials

- Centrosymmetric crystal classes possess an *inversion center*: for every point (x, y, z) in the unit cell there is an indistinguishable point (-x, -y, -z)
- Non-centrosymmetric crystal classes *do not possess an inversion center*
- Piezo-, pyro-, and ferroelectricity are possible only for *non-centrosymmetric materials*

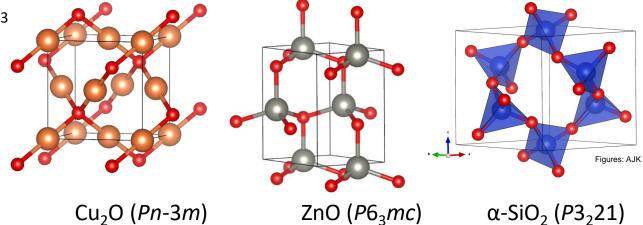
Cu₂O (space group *Pn*-3*m*) **Centrosymmetric** oxide with **inversion center**


ZnO (space group P6₃mc) Non-centrosymmetric oxide with no inversion center

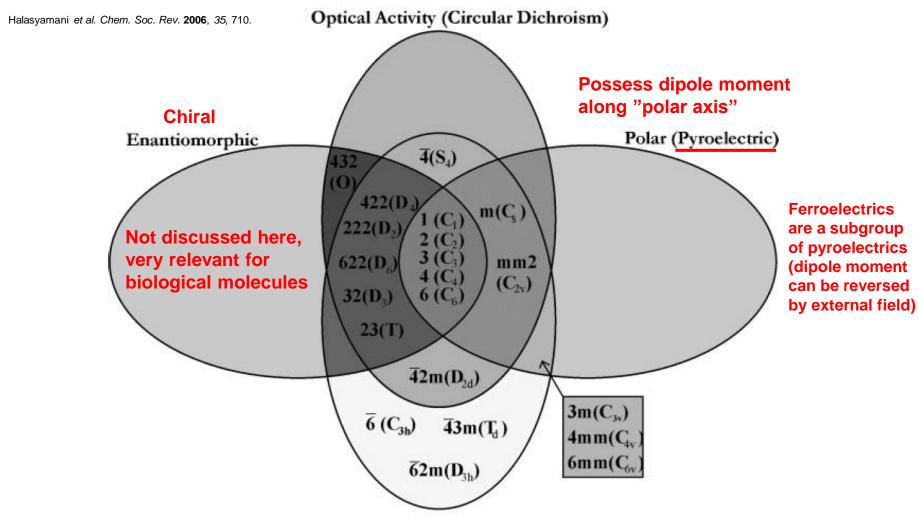
Polar and non-polar materials

- Non-centrosymmetric materials can be *polar* or *non-polar*
 - A polar crystal has more than one point that every symmetry operation leaves unmoved
 - For example, a "**polar axis**", with no mirror plane or twofold axis perpendicular to it
 - Physical property (e.g. *dipole moment*) can differ at the two ends of the axis
- Pyro- and ferroelectricity is only possible for *polar materials*
 - Polar materials show *spontaneous polarization* P_s

 α -SiO₂, α -quartz (space group P3₂21) Non-centrosymmetric oxide with **no polar axis** (*c* has perpendicular C₂ axis)



ZnO (space group $P6_3mc$) Non-centrosymmetric oxide with a **polar axis** (*c*-axis)


Classification of crystal classes

Crystal system	Centrosymmetric crystal classes (11)	Non-centrosymmetric crystal classes (21) Polar (10) Non-polar (11)		
Triclinic	1	1	_	
Monoclinic	2/m	2, m	_	
Orthorhombic	mmm	mm2	222	
Tetragonal	4/ <i>m,</i> 4/ <i>mmm</i>	4, 4 <i>mm</i>	$\overline{4}$, 422, $\overline{4}$ 2m	
Trigonal	<u>3</u> , <u>3</u> m	3, 3m	32	
Hexagonal	6/ <i>m,</i> 6/ <i>mmm</i>	6, 6 <i>mm</i>	<u>6, 622, 6m2</u>	
Cubic	m3, m3m	-	23, 4 3 <i>m,</i> 432,	

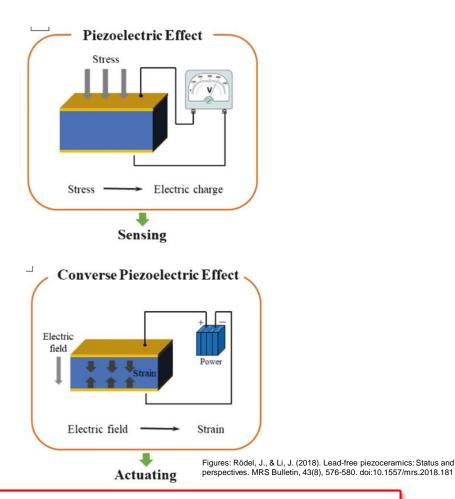
Refs: *Chem. Mater.* **1998**, *10*, 2753 and <u>Wikipedia</u>

Non-centrosymmetric crystal classes and functionality

Piezoelectric, Second-Harmonic Generation "Frequency doubling"

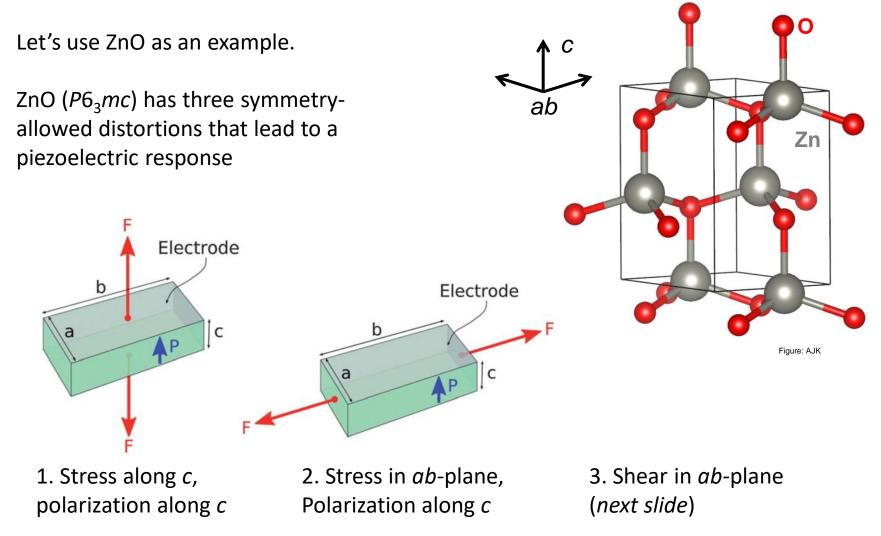
Piezoelectric coefficients

Direct piezoelectric effect

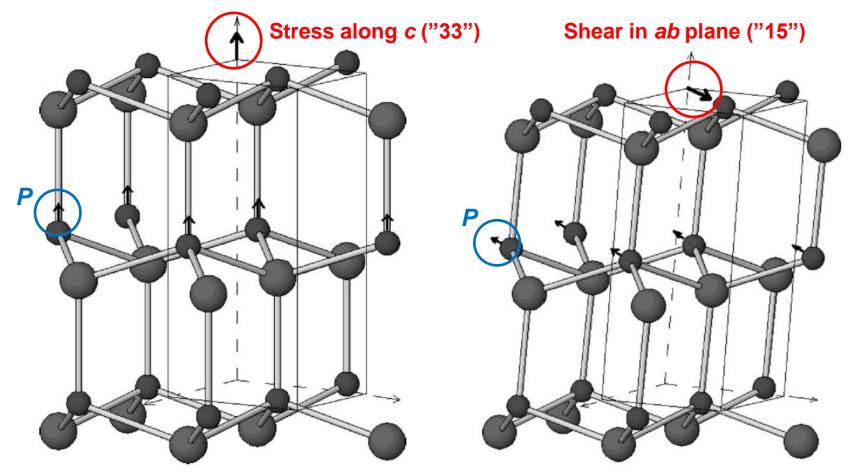

 $P = d\sigma$, where

- σ = applied tensile stress (N m⁻²)
- $d = piezoelectric modulus (C N^{-1})$
- *P* = resulting polarization (C m⁻²)

Converse piezoelectric effect


 ε = *dE*, where

- *E* = applied electric field (N C⁻¹)
- *d* = piezoelectric modulus (C N⁻¹)
- ε = resulting **strain** in the crystal



Often piezoelectricity is discussed using just scalar coefficients d. In reality they are *tensors* d_{ijk} and can be specified more accurately with the help of crystal symmetry.

Piezoelectricity in ZnO

Piezoresponse to shear in ZnO

M. Catti et al. J. Phys. Chem. Solids 2003, 64 2183.

The number of symmetry-allowed distortions depends on the crystal class. Listings of these are available in textbooks (*next slide*).

Tensors (and matrices) for equilibrium properties

Classes 23 and $\overline{4}3m$

0

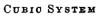
 ΔS

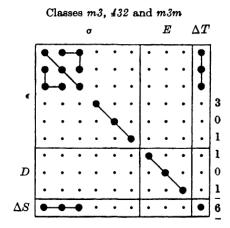
E

 ΔT

Physical Properties of Crystals

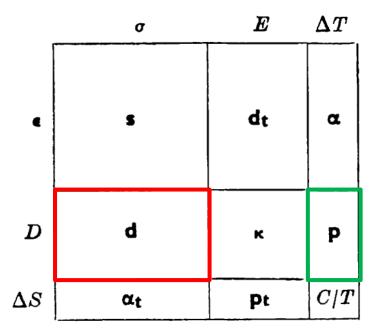
Their Representation by Tensors and Matrices


J. F. NYE



- Physical properties of crystals can be formulated systematically in *tensor notation*
- Piezoelectricity, pyroelectricity, elastic properties, *etc*.
- J. F. Nye: Equilibrium property matrices for all crystal classes (Appendix E)

301



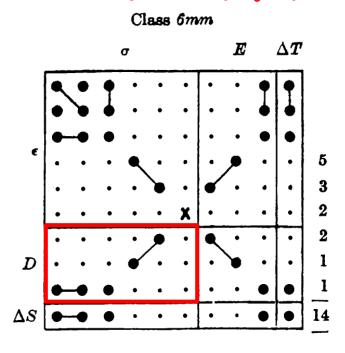
Quantifying the functionalities with physical property tensors (Nye)

APPENDIX E

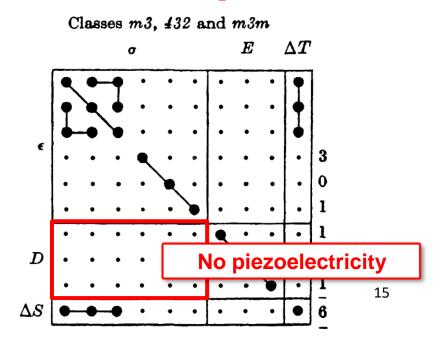
MATRICES FOR EQUILIBRIUM PROPERTIES IN THE 32 CRYSTAL CLASSES

- $\mathbf{s} = \mathbf{elastic}$ compliances
- \mathbf{d} = piezoelectric moduli
- α = thermal expansion coefficients
- $\kappa = \text{permittivities}$
- $\mathbf{p} = \mathbf{pyroelectric}$ coefficients
- C = heat capacity
- T = absolute temperature

Physical property tensors (Nye)


Matrices for equilibrium properties in the 32 crystal classes

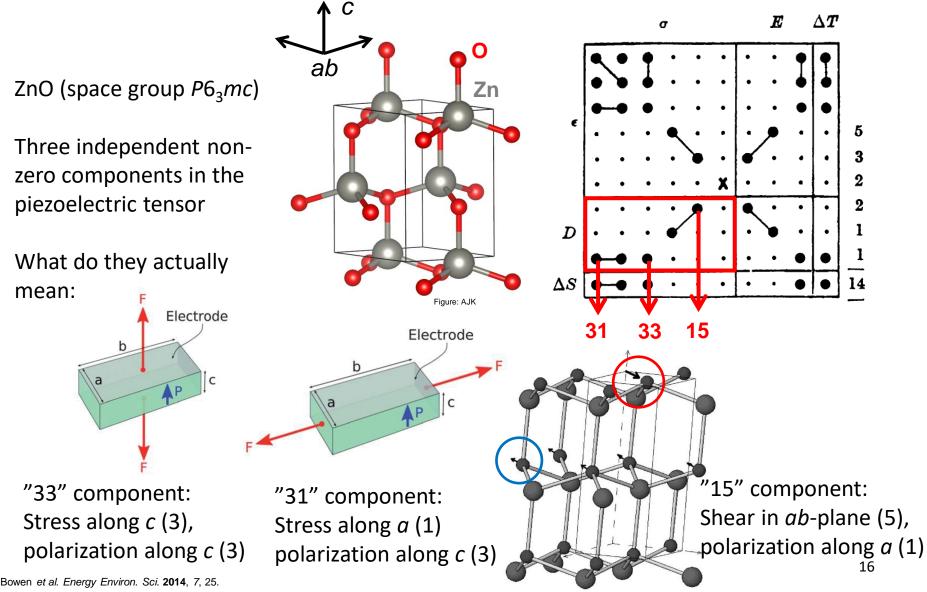
KEY TO NOTATION


- zero component non-zero component equal components
- •—•• components numerically equal, but opposite in sign
 - a component equal to twice the heavy dot component to which it is joined
 - \bigcirc a component equal to minus 2 times the heavy dot component to which it is joined

× $2(s_{11}-s_{12})$

For example, ZnO (*P*6₃*mc*)

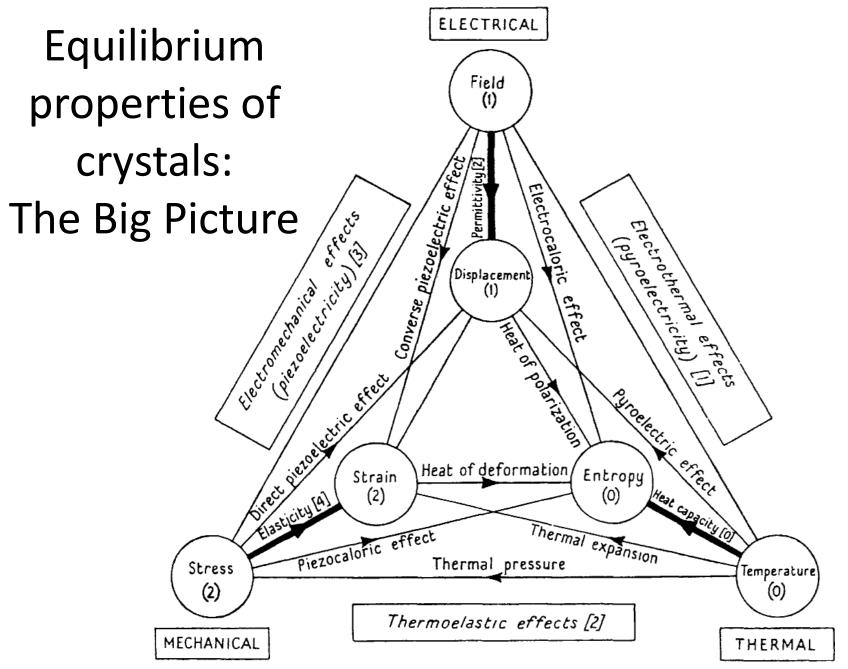
For example, Cu₂O (*Pn*-3*m*)



ZnO piezoelectricity tensor

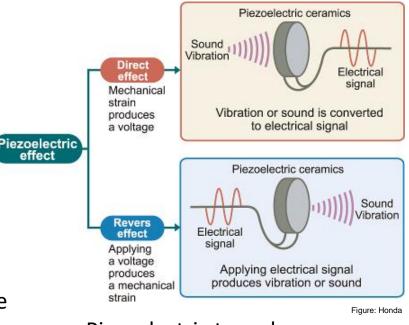
ZnO (space group P6₃mc)

Three independent nonzero components in the piezoelectric tensor


What do they actually mean:

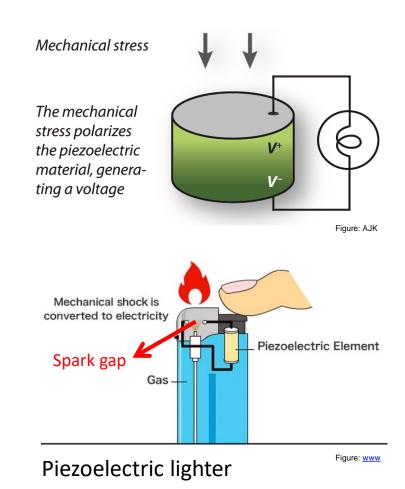
Class 6mm

Piezoelectricity is an equilibrium property


- Equilibrium properties may be described by reference to *thermodynamic equilibrium* states and *thermodynamically* <u>reversible</u> changes
 - Example: isothermal expansion of ideal gas confined by external pressure
- The thermal, electrical, and mechanical properties of a crystal are all related
 - They may be measured when the crystal is in equilibrium with its surroundings
- Compare the equilibrium properties with *transport properties*, which are concerned with *transport processes* and *thermodynamically* <u>irreversible</u> phenomena
 - Example of an irreversible phenomenon: release gas into vacuum
 - Example properties: thermal and electrical conductivity and thermoelectricity
 - A temperature difference in different parts of a solid leads to a heat flow as the system tries to reach equilibrium

J. F. Nye, Physical Properties of Crystals, Oxford University Press 1957, 1985

Piezoelectricity: applications (1)


- Piezoelectricity was discovered in 1880 by Jacques and Pierre Curie (direct effect)
- Converse piezoelectric effect predicted mathematically by Gabriel Lippmann (1881) and immediately confirmed by Curies
- It only took until 1917 when piezoelectrics were already used in warfare
- Ultrasonic submarine detector created by Paul Langevin and coworkers
 - Ultrasound-generating transducer made out of quartz crystals (transducer = converts one form of energy to another)
 - Hydrophone to detect the returned echo
- The success of piezoelectric sonar resulted in huge boom for discovering new materials
- Discovery of ferroelectric piezoelectrics such as BaTiO₃ during WW2 -> radios

Piezoelectric transducer

Piezoelectricity: applications (2)

- Generation of high voltages
- Spark-ignition (gas stoves, cigarette lighters)
 - Piezoelectric voltages can be thousands of volts
- Generation of electronic frequencies (*e.g.* for radio equipment)
- Microbalances
- Vibration sensors
- Actuators (precise positioning, piezomotors)
 - Scanning probe microscopies like AFM and STM
 - Atomic level accuracy of positioning with piezoelectric crystals

Property data for piezoelectrics

REVIEW

View Article Online View Journal | View Issue

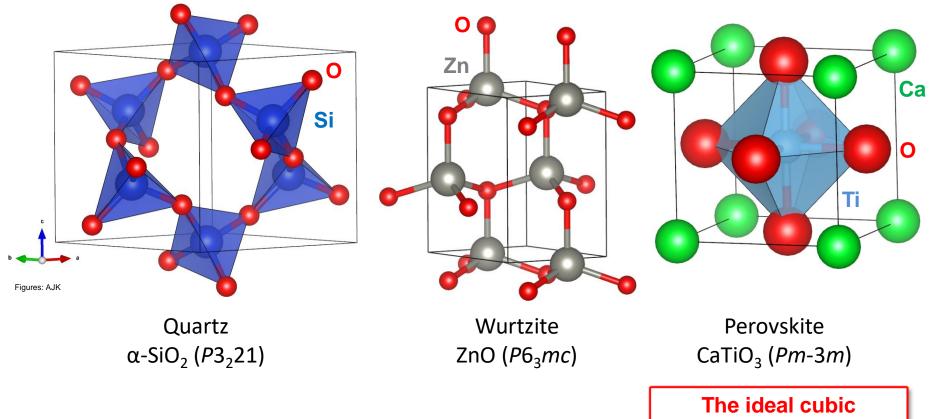
Piezoelectric and ferroelectric materials and structures for energy harvesting applications

Cite this: Energy Environ. Sci., 2014, 7, 25

C. R. Bowen,*^a H. A. Kim,^a P. M. Weaver^b and S. Dunn^c

	GaN	ZnO	SiO ₂	BaTiO ₃	PZT-5H ("soft")	PMN-PT	LiNbO ₃	PVDF
Structure	Wurzite	Wurzite	α-quartz	Perovsk.	Perovsk.	Perovsk.	LiNbO ₃	Polymer
Piezoelectric	Х	Х	Х	х	Х	Х	Х	Х
Pyroelectric	Х	Х	-	х	Х	Х	Х	Х
Ferroelectric	-	-	-	х	х	Х	Х	Х
<i>d</i> ₃₃ (pC N ⁻¹)	3.7	12.4	-2.3 (d ₁₁)	149	593	2820	6	-33
<i>d</i> ₃₁ (pC N ⁻¹)	-1.9	-5.0		-58	-274	-1330	-1.0	21
<i>d</i> ₁₅ (pC N ⁻¹)	3.1	-8.3	0.67 (d ₁₄)	242	741	146	69	-27

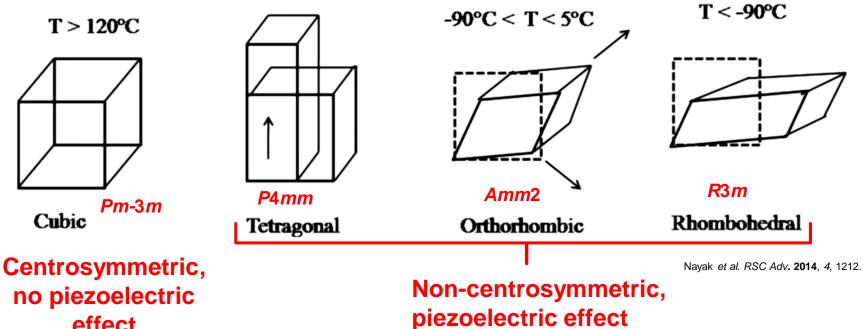
 $Pb[Zr_{x}Ti_{1-x}]O_{3}$

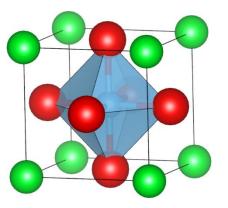

 $(1-x)Pb[Mg_yNb_{1-y}]O_3 - xPbTiO_3$

Polyvinylidene

fluoride

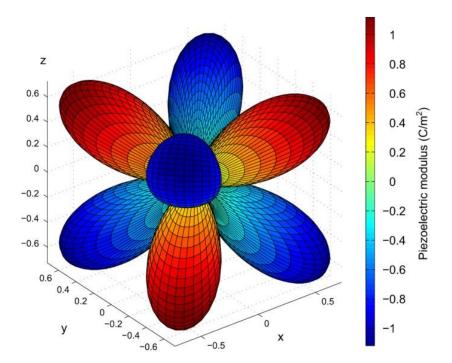
Н


Important crystal structures for piezoelectrics


structure is centrosymmetric and not piezoelectric, see the next slide 22

BaTiO₃ phases (perovskite structure)

 $5^{\circ}C < T < 120^{\circ}C$



effect

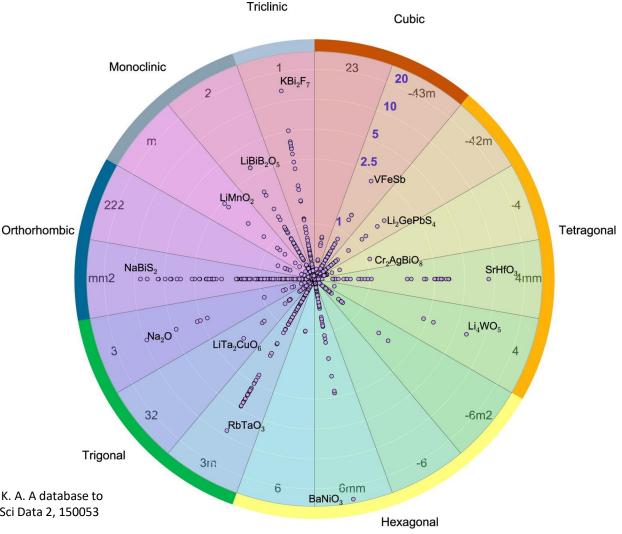
High-throughput screening for piezoelectric materials (1)

- Piezoelectricity has been determined experimentally or computationally only for a small fraction of all inorganic compounds which display compatible crystallographic symmetry
- Persson and coworkers used Density Functional Theory (DFT) to calculate the piezoelectric tensors for nearly 1000 inorganic compounds.¹
 - The amount of available piezoelectricity data was increased by more than an order of magnitude.

Visualization of the piezoelectric tensor: directional dependence of the longitudinal piezoelectric constant in cubic LaOF.

¹ de Jong, M., Chen, W., Geerlings, H., Asta, M., Persson, K. A. A database to enable discovery and design of piezoelectric materials. Sci Data 2, 150053 (2015). <u>https://doi.org/10.1038/sdata.2015.53</u>

High-throughput screening for piezoelectric materials (2)

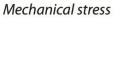

A graphical representation of the piezoelectric dataset, currently comprising of 941 materials.

A series of concentric circles indicate constant values of the maximum longitudinal piezoelectric modulus, $\|e_{ij}\|_{max}$.

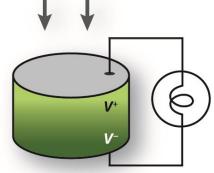
Concentric circles corresponding to moduli of 1, 2.5, 5, 10 and 20 C/m^2 are indicated explicitly in the figure.

The compounds are broken up according to the crystal system and the different point group symmetry-classes

de Jong, M., Chen, W., Geerlings, H., Asta, M., Persson, K. A. A database to enable discovery and design of piezoelectric materials. Sci Data 2, 150053 (2015). <u>https://doi.org/10.1038/sdata.2015.53</u>


Piezoelectricity: prospective applications

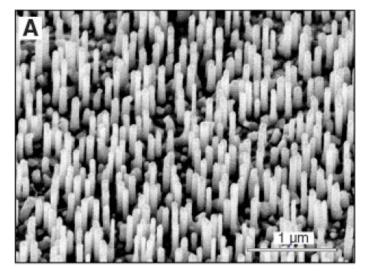
- Nanostructured piezoelectrics are being ٠ investigated for several applications
 - Piezotronics (piezo-electronics, e.g.) piezopotential-based transistors)
 - Energy harvesting (convert mechanical energy to electricity)

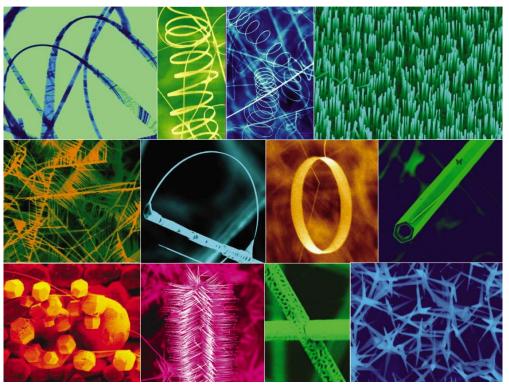


Wind

Sound waves

The mechanical stress polarizes the piezoelectric material, generating a voltage

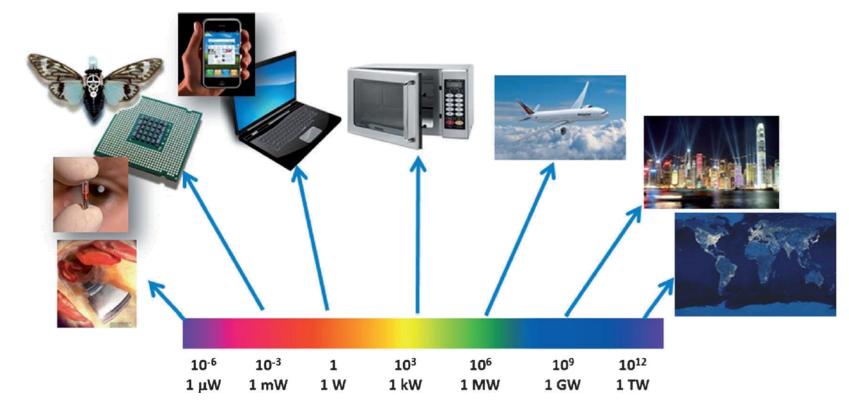

Super-Flexible Nanogenerator for Energy Harvesting from Gentle Wind and as an Active Deformation Sensor


Sangmin Lee, Sung-Hwan Bae, Long Lin, Ya Yang, Chan Park, Sang-Woo Kim, Adv. Funct. Mater. 2012, DOI: 10.1002/adfm.201202867 Seung Nam Cha, Hyunjin Kim, Young Jun Park, and Zhong Lin Wang*

Nanostructured piezoelectrics

Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays

Zhong Lin Wang^{1,2,3*} and Jinhui Song¹ SCIENCE VOL 312 14 APRIL 2006



ZnO nanostructures synthesized under controlled conditions by thermal evaporation of solid powders (Wang, *Materials Today*, **2004**, *7*, 26).

Energy harvesting

Nanotechnology-Enabled Energy Harvesting for Self-Powered Micro-/Nanosystems

Zhong Lin Wang* and Wenzhuo Wu Angew. Chem. Int. Ed. 2012, 51, 11700-11721

Figure 1. Power requirements for different applications: In the future there will be a great demand for mobile/implantable electronics with extremely low power consumption.

Free book: Z. L. Wang, Nanogenerators for Self-powered Devices and Systems, 2011 (Link)