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Recent literature overviews
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Goals of atomic-level
materials modelling

• Goal 1: Explain experimentally observed properties of molecules and materials

• Goal 2: Predict the structures and properties of new molecules and materials

– Reduce the amount of experimental work and provide new ideas for 
experimental work

• The predictive power of the modern materials modelling techniques enables 
computational materials design

– Most effective in close collaboration with experimental work
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Quantum chemical methods

• In principle, quantum mechanics provides the mathematical machinery to describe 
all chemical phenomena exactly.

• We can study chemical systems at the level of individual electrons. However, in 
practice, exact solutions are not feasible.

• We need approximate methods and computational power.

• Understanding the limitations of the approximations is a crucial skill for any 
computational chemist.
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Density Functional Theory (DFT)

• Computational methodology based on quantum chemistry.

• Most used quantum chemical approach already for over 20 years.

– Nowadays it is more and more common to have DFT calculations as part of 
experimental papers

• No system-dependent parametrization required.

• For the purposes of this lecture, we can consider DFT as a black box:
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DFT
Atomic-level 

structure (unit cell 
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the system
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geometry
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(for example, 
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material is always needed
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Examples of material properties
that can be predicted with DFT
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Electronic structure

Electronic band structure

Electronic density of states

Magnetic ground states and 

magnetic ordering

Spectroscopic

Infrared, Raman, inelastic 

neutron scattering

Solid-state NMR

UV-Vis

X-Ray spectroscopies (e.g.

XPS, XANES, EXAFS)

Mössbauer

Dielectric

Dielectric constant

Refractive index

Polarizability

Second-harmonic generation

Spontaneous polarization 

(ferroelectricity)

Physical properties

Elastic moduli

Piezoelectric moduli

Pyroelectric moduli

Photoelastic moduli

Transport

Electronic transport 

(conductivity, thermopower)

Phonon transport 

(thermal conductivity)

Thermoelectric properties

Thermal properties

Enthalpy and entropy

Gibbs Free Energy

Heat capacity

Thermal expansion

Lectures 6 and 7
Lectures 10 and 11

Lecture 12



Structure-property correlations

• Ideally, structure-property correlations can be discovered by a brute-force approach:

– Take a large set of crystal structures (102‒105 crystal structures)

– Predict the target property for all of them

– Derive structure-property correlations from data (e.g. certain valence electron 
count or bonding situation leads in desired electronic properties)

– Based on the correlation, predict new material compositions for experiments

• How to obtain that large set of crystal structures? 

1. Take a known crystal structure and vary the elemental composition (the next 
slide has an example for the perovskite structure ABO3)

2. Screen known crystal structures from crystal structure databases

3. Crystal structure prediction
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If you want to understand function, study structure

‒ Francis Crick



Perovskite CaTiO3 (Pm-3m)
Generally ABO3

Screening hypothetical perovskites
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PNAS, 2018, 115, 5397-5402, https://doi.org/10.1073/pnas.1719179115

• Approximately 2,000 perovskites are currently known.

• How many perovskites are left to discover?

• By subsituting ions with known ionic radii into the 
perovskite crystal structure, the authors count 
3,658,527 hypothetical compounds

• They revisit the century-old model proposed by 
Goldschmidt to predict the formability of perovskites

• They demonstrate that the nonrattling rule postulated 
by Goldschmidt can predict the stability of perovskites 
with a success rate of 80%.

• Using this approach, they predict the existence of 
90,000 hitherto unknown perovskites.

https://doi.org/10.1073/pnas.1719179115


Materials discovery and design 
by high-throughput screening
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Crystal structure databases
• ICSD (Inorganic Crystal Structure Database)

– Crystal structures of inorganic compounds (No C-C and C-H bonds)

– Over 230 000 structures (2021-01-10)

– http://libproxy.aalto.fi/login?url=https://icsd.fiz-karlsruhe.de/

• COD (Crystallography Open Database)

– Inorganic, organic, metal-organic compounds, and minerals

– Excludes biopolymers, which are covered by RCSB PDB (Protein Data Bank)

– Over 460 000 structures (2021-01-10)

– Open access database, available at http://www.crystallography.net/

• CSD (Cambridge Structural Database)

– Small-molecule organic and metal-organic crystal structures

– Over 1 097 000 structures (2021-01-10)

– https://www.ccdc.cam.ac.uk/structures/ (only from campus or with Aalto VPN)
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http://libproxy.aalto.fi/login?url=https://icsd.fiz-karlsruhe.de/
http://www.rcsb.org/
http://www.crystallography.net/
https://www.ccdc.cam.ac.uk/structures/


High-throughput screening of 
experimental databases

• There are several large-scale research consortia that have created “high-
throughput screening” methodology for carrying out DFT calculations on the 
experimentally known crystal structures

– Their results are publicly available in the Internet as searchable databases

• Not a trivial effort due to several reasons:

– Supercomputers are needed for DFT calculations on 105 crystal structures

– Everything must be carefully automated (too much work for humans)

– Crystal structure data is not always perfect (disorder, vacancies), so many 
crystal structures cannot be used as such

– Materials can have magnetic order, which is not included in the crystal 
structure data

– WARNING: while DFT generally performs well, not all data in the 
computational databases is 100% correct!

• Let’s study Materials Project, a computational materials database as an example

– Another similar databased is AFLOW: http://aflowlib.org/
12

http://aflowlib.org/


Materials Project (1)

• https://materialsproject.org

• Electronic structure and various physical properties for each material

• Includes both experimentally known (ICSD) and hypothetical materials

• Free to use, but search requires sign-in

– Also possible to access materials directly via Google (see the next slide)
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https://materialsproject.org/


Materials Project (2)
• The easiest way to access a single material is to google it:

– Google: materials project ZnO

• For example: ZnO (P63mc): https://materialsproject.org/materials/mp-2133/

– Look at crystal structure, band structure (band gap underestimated by DFT!), 
vibrations (phonons)

• Example 2: searching by density (https://materialsproject.org/#search/materials) 

– VPt8 (I4/mmm) https://materialsproject.org/materials/mp-1079997/

– Study Generate Phase diagram
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https://materialsproject.org/materials/mp-2133/
https://materialsproject.org/materials/mp-1079997/


Crystal Structure Prediction
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Reasons to use
crystal structure prediction

1. Crystal structure of a material is unknown and single crystals are not available for 
X-ray diffraction (XRD)

2. Powder XRD not solvable without initial structure model

3. XRD dataset not complete enough (often the case for thin films)

4. Impossible to obtain experimental XRD data (e.g. geochemistry)

5. Predicting the structure and existence of a material before synthesis
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Crystal structure prediction
methods (1)

• Given a chemical composition such as SrTiO3, what is the thermodynamically most 
stable crystal structure?

• This is a global optimization problem

• Quantum chemical methods can very robustly find local minima, but the global 
optimization of a crystal structure is a daunting problem
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One of the continuing scandals in the physical sciences is that it remains 

in general impossible to predict the structure of even the simplest 

crystalline solids from a knowledge of their chemical composition

‒ Sir John Maddox (Nature 1988, 335, 201)



Crystal structure prediction 
methods (2)

• Potential energy surfaces of materials are complex and 
multidimensional

• Finding the global energy minimum is not feasible by
brute-force methods

• As an example, take a cubic unit cell with volume V and N
identical atoms. 

– Assume that the atoms may occupy discrete
positions with resolution δ = 1 Å.  

– The number of distinct crystal structures (C) 
becomes:

– Already for N ≈ 10-20 atoms, the number of distinct
structures C would be ~10N
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A. R. Oganov, C. W. Glass, J. Chem. Phys. 2006, 124, 244704.
A. R. Oganov, A. O. Lyakhov, M. Valle Acc. Chem. Res. 2011, 44, 227.

Simple projection of a complex

potential energy surface



Crystal structure prediction
methods (3)

• Start from known structure types (+ ”chemical intuition”)

• Screen all known structure types (database mining)

• The above strategies are limited to known structure types

• Discovering new materials requires an exploration of all possible stoichiometries 
for a given chemical system 
(AB, ABx, AxBy, AxByCz…)
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Convex hull plot for 

binary compound AxBy



Crystal structure prediction
methods (4)

• Examples of crystal structure prediction methods used nowadays:

– Simulated annealing

– Basin hopping

– Minima hopping

– Particle swarm optimization

– Genetic and evolutionary algorithms
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Codes for crystal structure
prediction

• There is a large number of codes for crystal structure prediction, both for inorganic
and organic materials.

• Some of them are freely available, some not.

– AIRSS (inorganic)

– CALYPSO (inorganic)

– CrySPY (inorganic)

– DMaCRYS (organic)

– GASP (inorganic)

– Gator (organic)

– GraCe (organic)

– MAISE (inorganic)

– Molpak (organic)

– uPack (organic)

– USPEX (inorganic and organic)

– Xtalopt (inorganic)
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In addition, local optimizations need

to be carried out within the crystal

structure prediction algorithm

(global optimization). Most common

approach: DFT or so-called

parametrized force fields.



Evolutionary crystal structure 
prediction with USPEX
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USPEX: Universal Structure Predictor:
Evolutionary Xtallography

1. Oganov, A. R.; Glass, G. W., Crystal structure prediction using ab initio evolutionary
techniques: Principles and applications, J. Chem. Phys. 2006, 124, 244704.

2. Glass, C. W.; Oganov, A. R.; Hansen, N., USPEX – Evolutionary crystal structure
prediction, Comp. Phys. Commun. 2006, 175, 713.

3. Oganov, A. R.; Lyakhov, A. O.; Valle, M., How Evolutionary Crystal Structure
Prediction Works - and Why, Acc. Chem. Res. 2011, 44, 227.

4. Lyakhov, A. O.; Oganov, A. R.; Stokes, H. T.; Zhu, Q., New developments in 
evolutionary structure prediction algorithm USPEX, Comp. Phys. Commun. 2013, 
184, 1172.
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https://uspex-team.org/

https://uspex-team.org/


Genetic and evolutionary
algorithms

• A key concept is the population of individuals

• Genetic algorithms (GA) typically use a binary representation for the individuals 
(“01001…”)

• Binary representation of a crystal structure limits the search to a discretized grid 
within a pre-determined unit cell. 

• In Evolutionary Algorithms (EA), the individuals (crystal structures) are represented 
with real numbers, corresponding to the lattice parameters and atomic 
coordinates

• This choice makes the evolutionary variation operations (heredity, mutations) 
more difficult to implement

• At the same time it greatly increases the efficiency of the global optimization (the 
search space is continuous, not discrete)
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Structure prediction with USPEX
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Generate initial population from random structures

(e.g. 20 structures – these can be completely insane)

Find local minima for all structures

(with standard quantum chemistry, typically DFT)

Select the fittest (e.g. lowest-energy) structures as parents

for the new generation: heredity and mutations are applied

When the procedure converges, take the best structures

and run accuracte quantum chemical calculations

Input: chemical composition

Not converged

Converged



Variation operators in USPEX
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USPEX in practice
• A typical USPEX run involves thousands of local optimizations

– Can take hours, days, or even weeks depending on the level of theory and 
available computational resources

• Typically hundreds or thousands of crystal structures are produced

• The fittest structures typically need to be re-optimized at a higher level of theory

• Analysis of the resulting structures can be time-consuming

27Some examples of convex hulls for tin chalcogenides
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Structure of Na-hP4 
(P63/mmc) predicted by 
USPEX

Na-Na distance decreases from
3.72 Å to 1.89 Å

Na 3s valence electrons are pushed to the
interstitial space

Na metal transforms to optically transparent
”self-salt” (Na+ / interstitial e−)



Predicting materials with optimal 
properties
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Example: search for thermodynamically stable materials that have the

highest possible hardness



Summary on crystal structure
prediction for inorganic materials

• Crystal structure prediction is a powerful tool for 

– Complementing experimental studies, where inadequate data is available for 
structure solution

– Prediction of new materials before any experiments

• Evolutionary crystal structure prediction algorithms such as USPEX are among the 
most powerful methods

• Crystal structure prediction is still computationally relatively expensive

• A major development direction is the global optimization of both the structure
and properties at the same time

– Hardness, optical properties, thermoelectricity, …

• Incorporating temperature effects and entropic effects in the prediction algorithms 
is still a major challenge 
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Extra slides: 
USPEX and inorganic-organic

coordination polymers
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Heiska, J.; Nisula, M.; Rautama, E.-L.; Karttunen, A. J.; Karppinen, M. 
Dalton. Trans. 2020, 49, 1591–1599.



Inorganic-organic coordination polymers

Li+ (four-coordinated)

Terephthalate

(C8H4O4
2−)

P21/c

Synthetized in layer-by-layer

fashion with ALD/MLD

Closely related to Metal-Organic

Frameworks (MOF)

Li coordination polymers are

applicable as Li-ion thin-film

battery materials
M. Nisula, M. Karppinen, 

Nano Lett. 2016, 16, 1276.

(Metal centers linked by organic ligands)

Li2TP (dilithium terephthalate)

-

-
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Dilithium Quinone (Li2Q)

Hydroquinone + Li

Structure of Li2Q is not known from

previous bulk studies

Structure solution with the help of 

quantum chemistry (DFT-PBE0)

Na2Q is known (P42/ncm), but it is 

not a true minimum for Li2Q

Symmetry decreases to 

orthorhombic subgroup Pccn

LiLi
LiHMDS

M. Nisula, J. Linnera, A. J. Karttunen, M. Karppinen, Chem. Eur. J. 2017, 23, 2988.

Pccn
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Li2Q: Experiment and DFT-PBE0

XRD (1 µm thick film) IR

M. Nisula, J. Linnera, A. J. Karttunen, M. Karppinen, Chem. Eur. J. 2017, 23, 2988.

New type of coordination polymer with ALD/MLD!

Has not been synthetized as bulk material
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Dilithium 2-aminoterephthalate 
(Li2TP-NH2)

2-Aminoterephthalic acid (TPA-NH2) with Li → Li2TP-NH2

Bulk structure not known

No related bulk stuctures (e.g. for Na)

Structure solution from the GIXD data is not feasible

Structure prediction approach needed → USPEX
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Li
Li

Li

(Si)

(Si)

Grazing-incidence XRD (GIXD)

Heiska, J.; Nisula, M.; Rautama, E.-L.; Karttunen, A. J.; Karppinen, M. 
Dalton. Trans. 2020, 49, 1591–1599.



Lowest-energy Li2TP-NH2 structure
predicted by USPEX

Pc

Li+ (four-coordinated)

Next (closely related) 

structures 

~5 kJ/mol higher in E

-

-
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Li2TP-NH2: comparison with experiment

→ Reflections missing

from experimental data

GIXD

IR


