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Recent literature overviews

Nature Materials 2021, 20, 728—735. https://doi.org/10.1038/s41563-021-01015-1

Discovering and understanding materials through
computation

Steven G. Louie®'?2, Yang-Hao Chan'?3, Felipe H. da Jornada®?, Zhenglu Li®"2 and Diana Y. Qiu®®

Materials modelling and design using computational quantum and classical approaches is by now well established as an essen-
tial pillar in condensed matter physics, chemistry and materials science research, in addition to experiments and analytical
theories. The past few decades have witnessed tremendous advances in methodology development and applications to under-
stand and predict the ground-state, excited-state and dynamical properties of materials, ranging from molecules to nanoscopic/
mesoscopic materials to bulk and reduced-dimensional systems. This issue of Nature Materials presents four in-depth Review
Articles on the field. This Perspective aims to give a brief overview of the progress, as well as provide some comments on future
challenges and opportunities. We envision that increasingly powerful and versatile computational approaches, coupled with
new conceptual understandings and the growth of techniques such as machine learning, will play a guiding role in the future
search and discovery of materials for science and technology.

Nature Materials 2021, 20, 736—749. https://doi.org/10.1038/s41563-021-01013-3

Electronic-structure methods for materials design

Nicola Marzari®'%, Andrea Ferretti®2 and Chris Wolverton©®?3

The accuracy and efficiency of electronic-structure methods to understand, predict and design the properties of materials has
driven a new paradigm in research. Simulations can greatly accelerate the identification, characterization and optimization
of materials, with this acceleration driven by continuous progress in theory, algorithms and hardware, and by adaptation of
concepts and tools from computer science. Nevertheless, the capability to identify and characterize materials relies on the pre-
dictive accuracy of the underlying physical descriptions, and on the ability to capture the complexity of realistic systems. We
provide here an overview of electronic-structure methods, of their application to the prediction of materials properties, and of
the different strategies employed towards the broader goals of materials design and discovery.


https://doi.org/10.1038/s41563-021-01015-1
https://doi.org/10.1038/s41563-021-01013-3

Goals of atomic-level
materials modelling

Goal 1: Explain experimentally observed properties of molecules and materials
Goal 2: Predict the structures and properties of new molecules and materials

— Reduce the amount of experimental work and provide new ideas for
experimental work

The predictive power of the modern materials modelling techniques enables
computational materials design

— Most effective in close collaboration with experimental work




Quantum chemical methods

* In principle, quantum mechanics provides the mathematical machinery to describe
all chemical phenomena exactly.

* We can study chemical systems at the level of individual electrons. However, in
practice, exact solutions are not feasible.

 We need approximate methods and computational power.

* Understanding the limitations of the approximations is a crucial skill for any
computational chemist.
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Density Functional Theory (DFT)

 Computational methodology based on quantum chemistry.
* Most used quantum chemical approach already for over 20 years.

— Nowadays it is more and more common to have DFT calculations as part of
experimental papers

* No system-dependent parametrization required.
* For the purposes of this lecture, we can consider DFT as a black box:

Total energy of

Atomic-level — Optimized
structure (unit cell =% DFET geometry
and coordinates) \
Properties
A structure model of the (for example,
material is always needed spectra)

to predict its properties




Examples of material properties
that can be predicted with DFT

Electronic structure Thermal properties Spectroscopic

Infrared, Raman, inelastic
Electronic band structure Enthalpy and entropy neutron scattering
Electronic density of states Gibbs Free Energy Solid-state NMR

Magnetic ground states and Heat capacity UV-Vis

Thermal expansion X-Ray spectroscopies (e.g.
XPS, XANES, EXAFS)

Mossbauer

Dielectric constant Elastic moduli Electronic transport
Refractive index Piezoelectric moduli (conductivity, thermopower)

Polarizability Pyroelectric moduli Phonon transport
(thermal conductivity)

Thermoelectric properties

Lecture 12

Second-harmonic generation Photoelastic moduli

Spontaneous polarization
(ferroelectricity) Lectures 10 and 11

Lectures 6 and 7




Structure-property correlations

If you want to understand function, study structure

— Francis Crick

e ldeally, structure-property correlations can be discovered by a brute-force approach:

Take a large set of crystal structures (102-10° crystal structures)
Predict the target property for all of them

Derive structure-property correlations from data (e.g. certain valence electron
count or bonding situation leads in desired electronic properties)

Based on the correlation, predict new material compositions for experiments

 How to obtain that large set of crystal structures?

1.

Take a known crystal structure and vary the elemental composition (the next
slide has an example for the perovskite structure ABO;)

Screen known crystal structures from crystal structure databases
Crystal structure prediction



Screening hypothetical perovskites

The geometric blueprint of perovskites

Marina R. Filip*' and Feliciano Giustino™"

PNAS, 2018, 115, 5397-5402, https://doi.org/10.1073/pnas.1719179115

Figure: AJK

Approximately 2,000 perovskites are currently known.
How many perovskites are left to discover?

By subsituting ions with known ionic radii into the
perovskite crystal structure, the authors count
3,658,527 hypothetical compounds

They revisit the century-old model proposed by
Goldschmidt to predict the formability of perovskites

They demonstrate that the nonrattling rule postulated
by Goldschmidt can predict the stability of perovskites
with a success rate of 80%.

Using this approach, they predict the existence of
90,000 hitherto unknown perovskites.

Perovskite CaTiO3 (Pm-3m)
Generally ABO,


https://doi.org/10.1073/pnas.1719179115

Materials discovery and design
by high-throughput screening




Crystal structure databases

e ICSD (Inorganic Crystal Structure Database)
— Crystal structures of inorganic compounds (No C-C and C-H bonds)
— Over 230 000 structures (2021-01-10)
— http://libproxy.aalto.fi/login?url=https://icsd.fiz-karlsruhe.de/

* COD (Crystallography Open Database)
— Inorganic, organic, metal-organic compounds, and minerals
— Excludes biopolymers, which are covered by RCSB PDB (Protein Data Bank)
— Over 460 000 structures (2021-01-10)
— Open access database, available at http://www.crystallography.net/

 (CSD (Cambridge Structural Database)
— Small-molecule organic and metal-organic crystal structures
— Over 1 097 000 structures (2021-01-10)
— https://www.ccdc.cam.ac.uk/structures/ (only from campus or with Aalto VPN)
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High-throughput screening of

experimental databases

* There are several large-scale research consortia that have created “high-
throughput screening” methodology for carrying out DFT calculations on the
experimentally known crystal structures

Their results are publicly available in the Internet as searchable databases

* Not a trivial effort due to several reasons:

Supercomputers are needed for DFT calculations on 10° crystal structures
Everything must be carefully automated (too much work for humans)

Crystal structure data is not always perfect (disorder, vacancies), so many
crystal structures cannot be used as such

Materials can have magnetic order, which is not included in the crystal
structure data

WARNING: while DFT generally performs well, not all data in the
computational databases is 100% correct!

* Let’s study Materials Project, a computational materials database as an example

Another similar databased is AFLOW: http://aflowlib.org/

12


http://aflowlib.org/

Materials Project (1)

https://materialsproject.org

Electronic structure and various physical properties for each material
Includes both experimentally known (ICSD) and hypothetical materials
Free to use, but search requires sign-in

— Also possible to access materials directly via Google (see the next slide)

Database Statistics

144,595 76,240 63,876 530,243
INORGANIC COMPOUNDS EANDSTRUCTURES MOLECULES NAHOPOROUS MATERIALS
14,072 3,402 4,730 16,128
ELASTIC TENSORS PIEZOELECTRIC TENSORS INTERCALATION ELECTRODES CONVERSION ELECTRODES
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https://materialsproject.org/

Materials Project (2)

The easiest way to access a single material is to google it:
— Google: materials project ZnO
For example: ZnO (P6;mc): https://materialsproject.org/materials/mp-2133/

— Look at crystal structure, band structure (band gap underestimated by DFT!),
vibrations (phonons)

Example 2: searching by density (https://materialsproject.org/#search/materials)
— VPt (/4/mmm) https://materialsproject.org/materials/mp-1079997/
— Study Generate Phase diagram

G(x)g|e materials project ZnO X m § Q

2, Kaikki ] Kuvahaku [>] Videot @ Kartat & Ostokset i Lisaa Tyokalut

Noin 9 690 000 tulosta (0,37 sekuntia)

https://materialsproject.org » materials » Kaanna tama sivu

mp-2133: ZnO (hexagonal, P6_3mc, 186) - Materials Project

ZnO is Wurtzite structured and crystallizes in the hexagonal P6_3mc space group. The structure
is three-dimensional. Zn2+ is bonded to four equivalent 02- ..

https://materialsproject.org » materials ~ K&anna tama sivu

mp-2229: ZnO (cubic, Fm-3m, 225) - Materials Project

Zn0 is Halite, Rock Salt structured and crystallizes in the cubic Fm-3m space group. The
structure is three-dimensional. Zn2+ is bonded to six equivalent ... 14
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Crystal Structure Prediction




vk W

Reasons to use
crystal structure prediction

Crystal structure of a material is unknown and single crystals are not available for
X-ray diffraction (XRD)

Powder XRD not solvable without initial structure model

XRD dataset not complete enough (often the case for thin films)

Impossible to obtain experimental XRD data (e.g. geochemistry)

Predicting the structure and existence of a material before synthesis

Diffracted Intensity (arb.units)
|

L | | L
10 20 30 40 50 60
2Theta (degrees)
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Crystal structure prediction
methods (1)

One of the continuing scandals in the physical sciences is that it remains
In general impossible to predict the structure of even the simplest
crystalline solids from a knowledge of their chemical composition

— Sir John Maddox (Nature 1988, 335, 201)

* Given a chemical composition such as SrTiO;, what is the thermodynamically most
stable crystal structure?

 This is a global optimization problem

* Quantum chemical methods can very robustly find local minima, but the global
optimization of a crystal structure is a daunting problem

17



Crystal structure prediction
methods (2)

Potential energy surfaces of materials are complex and
multidimensional

Finding the global energy minimum is not feasible by
brute-force methods

As an example, take a cubic unit cell with volume Vand N
identical atoms.

— Assume that the atoms may occupy discrete

positions with resolution 6 = 1 A, : o
Simple projection of a complex

becomes:

1 (V /87!
(V/8%) [(V/8)-N]!IN!
— Already for N = 10-20 atoms, the number of distinct
structures C would be ~10V

A. R. Oganov, C. W. Glass, J. Chem. Phys. 2006, 124, 244704.
A. R. Oganoy, A. O. Lyakhov, M. Valle Acc. Chem. Res. 2011, 44, 227. 18



Crystal structure prediction
methods (3)

Start from known structure types (+ “chemical intuition”)
Screen all known structure types (database mining)
The above strategies are limited to known structure types

Discovering new materials requires an exploration of all possible stoichiometries
for a given chemical system
(AB, AB,, A,B,, ABC,..)
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Crystal structure prediction
methods (4)

Review Article | Published: 04 April 2019

Structure prediction drives materials
discovery

Artem R. Oganov &3 Chris J. Pickard &, Qiang Zhu & Richard J. Needs

Nature Reviews Materials 4, 331-348(2019) | Cite this article

* Examples of crystal structure prediction methods used nowadays:

Simulated annealing

Basin hopping

Minima hopping

Particle swarm optimization

Genetic and evolutionary algorithms

20



Codes for crystal structure
prediction

 There is a large number of codes for crystal structure prediction, both for inorganic
and organic materials.

 Some of them are freely available, some not.
— AIRSS (inorganic)
— CALYPSO (inorganic)
— CrySPY (inorganic)
— DMaCRYS (organic)

In addition, local optimizations need
to be carried out within the crystal

— GASP (inorganic) structure prediction algorithm

— Gator (organic) (global optimization). Most common
— GraCe (organic) approach: DFT or so-called

_ MAISE (inorganic) parametrized force fields.

— Molpak (organic)
— uPack (organic)
— USPEX (inorganic and organic)

— Xtalopt (inorganic)
21



Evolutionary crystal structure
prediction with USPEX

USPEX Computational
4. Wy Materials
2% Discovery

22



USPEX: Universal Structure Predictor:
Evolutionary Xtallography

USPEX Computational
‘:'\ Materials

4
% Discovery

https://uspex-team.org/

1. Oganoy, A. R.; Glass, G. W., Crystal structure prediction using ab initio evolutionary
techniques: Principles and applications, J. Chem. Phys. 2006, 124, 244704.

2. Glass, C. W.; Oganoy, A. R.; Hansen, N., USPEX — Evolutionary crystal structure
prediction, Comp. Phys. Commun. 2006, 175, 713.

3. Oganoy, A. R.; Lyakhov, A. O.; Valle, M., How Evolutionary Crystal Structure
Prediction Works - and Why, Acc. Chem. Res. 2011, 44, 227.

4. Lyakhov, A. O.; Oganoy, A. R.; Stokes, H. T.; Zhu, Q., New developments in
evolutionary structure prediction algorithm USPEX, Comp. Phys. Commun. 2013,
184, 1172.
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Genetic and evolutionary
algorithms

A key concept is the population of individuals

Genetic algorithms (GA) typically use a binary representation for the individuals
(“01001...")

Binary representation of a crystal structure limits the search to a discretized grid
within a pre-determined unit cell.

In Evolutionary Algorithms (EA), the individuals (crystal structures) are represented
with real numbers, corresponding to the lattice parameters and atomic
coordinates

This choice makes the evolutionary variation operations (heredity, mutations)
more difficult to implement

At the same time it greatly increases the efficiency of the global optimization (the
search space is continuous, not discrete)

24



Structure prediction with USPEX

Input: chemical composition

Generate initial population from random structures
(e.g. 20 structures — these can be completely insane)

Find local minima for all structures
(with standard quantum chemistry, typically DFT)

Not converged

Select the fittest (e.g. lowest-energy) structures as parents
for the new generation: heredity and mutations are applied

Converged

When the procedure converges, take the best structures
and run accuracte quantum chemical calculations




Variation operators in USPEX

(a) heredity
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(c) softmode mutation
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USPEX in practice

e Atypical USPEX run involves thousands of local optimizations

— Can take hours, days, or even weeks depending on the level of theory and
available computational resources

e Typically hundreds or thousands of crystal structures are produced
* The fittest structures typically need to be re-optimized at a higher level of theory
* Analysis of the resulting structures can be time-consuming
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Some examples of convex hulls for tin chalcogenides 27



Transparent dense sodium

NATURE| Vol 458[12 March 2009 LETTERS
Yanming Ma'?, Mikhail Eremets’, Artem R. Oganov>*%, Yu Xie', lvan Trojan®, Sergey Medvedev’,
Andriy O. Lyakhov*t, Mario Valle® & Vitali Prakapenka®

156 GPa 199 GPa

Na-Na distance decreases from

3.72At01.89 A Structure of Na-hP4
(P6;/mmc) predicted by
Na 3s valence electrons are pushed to the USPEX

interstitial space

Na metal transforms to optically transparent

“self-salt” (Na* / interstitial e”)
28



Predicting materials with optimal
properties

Example: search for thermodynamically stable materials that have the
highest possible hardness

Coevolutionary search for optimal materials in the space
of all possible compounds

Zahed Allahyari (®'*** and Artem R. Oganov (&% %

Over the past decade, evolutionary algorithms, data mining, and other methods showed great success in solving the main problem
of theoretical crystallography: finding the stable structure for a given chemical composition. Here, we develop a method that
addresses the central problem of computational materials science: the prediction of material(s), among all possible combinations of
all elements, that possess the best combination of target properties. This nonempirical method combines our new coevolutionary
approach with the carefully restructured “Mendelevian” chemical space, energy filtering, and Pareto optimization to ensure that the
predicted materials have optimal properties and a high chance to be synthesizable. The first calculations, presented here, illustrate
the power of this approach. In particular, we find that diamond (and its polytypes, including lonsdaleite) are the hardest possible
materials and that bcc-Fe has the highest zero-temperature magnetization among all possible compounds.

npj Computational Materials (2020)6:55 ; https://doi.org/10.1038/s41524-020-0322-9
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Summary on crystal structure
prediction for inorganic materials

Crystal structure prediction is a powerful tool for

— Complementing experimental studies, where inadequate data is available for
structure solution

— Prediction of new materials before any experiments

Evolutionary crystal structure prediction algorithms such as USPEX are among the
most powerful methods

Crystal structure prediction is still computationally relatively expensive

A major development direction is the global optimization of both the structure
and properties at the same time

— Hardness, optical properties, thermoelectricity, ...

Incorporating temperature effects and entropic effects in the prediction algorithms
is still a major challenge
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Extra slides:
USPEX and inorganic-organic
coordination polymers

Heiska, J.; Nisula, M.; Rautama, E.-L.; Karttunen, A. J.; Karppinen, M.
Dalton. Trans. 2020, 49, 1591-1599.

31



Inorganic-organic coordination polymers

(Metal centers linked by organic ligands)

Li, TP (dilithium terephthalate)

Li* (four-coordinated)

P2J/e PR, R, R oy 0 O Terephthalate

A4 W A _4 4 O'; <:> ':O_ (CgH,0,%)
Synthetized in layer-by-layer
fashion with ALD/MLD

Closely related to Metal-Organic
Frameworks (MOF)

Li coordination polymers are
applicable as Li-ion thin-film
battery materials

M. Nisula, M. Karppinen,
Nano Lett. 2016, 16, 1276. 32



Dilithium Quinone (Li,Q)

Hydroquinone + Li
LiIHMDS

HoOOH — LIOOOLi
Structure of Li,Q is not known from MM"\\ ‘l

previous bulk studies

Structure solution with the help of ‘
guantum chemistry (DFT-PBEDO)

Na,Q is known (P4,/ncm), but it is
not a true minimum for Li,Q

Symmetry decreases to
orthorhombic subgroup Pccn

M. Nisula, J. Linnera, A. J. Karttunen, M. Karppinen, Chem. Eur. J. 2017, 23, 2988. 33



Li,Q: Experiment and DFT-PBEQO

XRD (1 pm thick film)
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New type of coordination polymer with ALD/MLD!

Has not been synthetized as bulk material

M. Nisula, J. Linnera, A. J. Karttunen, M. Karppinen, Chem. Eur. J. 2017, 23, 2988. 34



Dilithium 2-aminoterephthalate

2-Aminoterephthalic acid (TPA-NH,) with Li — Li,TP-NH,

O

o .

ﬁw = | T
HO —_— OLi

NH, Lio " (Si)

O 2
O 5 15 25 35 45 55

Grazing-incidence XRD (GIXD)
Bulk structure not known

No related bulk stuctures (e.g. for Na)
Structure solution from the GIXD data is not feasible
Structure prediction approach needed — USPEX

Heiska, J.; Nisula, M.; Rautama, E.-L.; Karttunen, A. J.; Karppinen, M.
Dalton. Trans. 2020, 49, 1591-1599.



Lowest-energy LI, TP-NH, structure
predicted by USPEX

Li* (four-coordinated)

Next (closely related)
structures
~5 kJ/mol higher in E
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—

Li, TP-NH,: comparison with experiment

Intensity (arb. units)

—Experimental [J{CIVAP — Reflections missing
—DFT-PBEQ (simulated) from experimental data
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