

Finite Element Method in Geoengineering GEO-E1050 (draft schedule)

Week	Lectures – Rakentajanaukio 4		Exercises: Otakaari 1	
	Tue, 12:15, R5 265		Wed & Fri, 10:15, Y338	
	Thu, 10.15, R5 265			
44	2.11	Introduction to the course &	3.11	Introduction to the course,
		refreshing existing knowledge		solving a linear elastic problem
		(tensors, coordinates, etc)		in Comsol
44	3.11	Basic derivation of FEM	5.11	Solving a linear elastic problem
	8.30 am			in Optum G2 and Comsol
45	9.11	Basic derivation of FEM	10.11	Introduction to Matlab
		Convergence of FEM		
45	11.11	Some more advanced FEM	12.11	Solving a simple FEM problem
		subjects.		in Matlab
46	16.11	General Derivation of FEM	17.11	Solving a simple FEM problem
		Finite difference method		in Matlab
46	18.11	Test 1 –FEM	19.11	Finite Difference Method
47	23.11	Introduction to constitutive	24.11	Shallow foundation in Optum and Comsol
4.77	25.11	modelling Doubert Planticity Malor	26.44	
47	25.11	Perfect Plasticity, Mohr- Coulomb, Hoek-Brown	26.11	Shallow foundation in Optum and Comsol
10	30.11	Perfect Plasticity, Mohr-	1.12	Tunnel excavations in Comsol
48	30.11	Coulomb, Hoek-Brown	1.12	& Optum G2
48	2.12	Test 2 – Constitutive models	3.12	_
40	2.12	& Finite Difference Method	0.12	Tunnel excavations in Comsol
		L: (Pitfalls of FEA)		& Optum G2
49	7.12	Other numerical methods	8.12	Water flow in Comsol and
		Onici numericai methods		Optum G2
49	9.12	Other numerical methods	10.12	Water flow in Comsol and
		Other numerical methods		Optum G2

Those who cannot attend the tests in the lecture hall will have an opportunity to pass them as oral exams over Zoom. Any corrections of the tests will be in oral over Zoom or in written/oral form at the department. Test 2 in the class takes less than 60 minutes, hence there is usually some time for a short lecture.

It is recommended for you to attend the course in person, though the lectures (and exercise introductions) will be recorded and streamed through Zoom (link:

https://aalto.zoom.us/j/7791646359, Meeting ID: 779 164 6359). Lectures in a colour coded blocks are given in a sequence, provided dates are approximate.

It is recommended (and required in case you are not attending the course on campus) that you install Matlab and Comsol (https://download.aalto.fi/index-en.html) and OptumG2

(https://optumce.com) on your personal computer. When the course starts, you will be given a more comprehensive license for OptumG2. For that you will need an account at Optum, hence please register there for student's license with Aalto account.

The exercises will be taught by Tito Adibaskoro and Abhishek Gupta.