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LEARNING OUTCOMES

Students get an overall picture about prerequisites of the course, the roles of engineering

models in structure modelling, and finite element method in displacement analysis of

structures. The topics of week 44 are

   Structure modelling

  Prerequisites of MEC-E1050

  Engineering models

  Mathematica language and the finite element solver of MEC-E1050
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WHY FINITE ELEMENTS AND ITS THEORY?

Design of machines and structures: Solution to stress or displacement by analytical

method is often impossible due to complex geometry, heterogeneous material etc.  Lack of

the “exact solution” to an “approximate problem” is not an issue in engineering work.

Finite element method is the standard of solid mechanics: Commercial codes in common

use are based on the finite element method. A graphical user interface may make living

easier, but a user should always understand what the problem is and in what sense it is

solved!

Finite element method has a strong theory: Although approximate solution is acceptable,

knowing nothing about the error is not acceptable.
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FLUID MECHANICS APPLICATION



Week 44-5

CONTINUUM MECHANICS APPLICATION
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1.1 STRUCTURE MODELLING
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IDEALIZED STRUCTURE
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DIVIDE-AND-RULE
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QUANTITIES OF ANALYSIS

The primary aim is to find displacements, rotations, forces and moments at the connection

points of the structural parts. The components of the vector quantities (magnitude and

direction) are taken to be positive in the directions of the coordinate axes.

Vector quantities are invariants in the sense x y z X Y Za a i a j a k a I a J a K     
     , and

can be transformed from one coordinate system to another using the property.
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Y
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MODELLING STEPS

 Crop: Decide the boundary of a structure. Interaction with surroundings need to be

described in terms of known forces, moments, displacements, and rotations. All

uncertainties with this respect bring uncertainty to the model too.

 Idealize:  Simplify the geometry. Ignoring the details not likely to affect the outcome

may simplify the analysis a lot.

  Parameterize: Assign symbols to geometric and material parameter of the idealized

structure. Measure or find the values needed in numerical calculations.

 Divide-and-rule: Represent a complex structure as a set of structural parts interacting

through connection points.
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1.2 ENGINEERING MODELS
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SOLID MODEL

The primary unknowns are ( , , )u x y z , ( , , )v x y z , ( , , )w x y z , ( ( , , )x y z , ( , , )x y z , ( , , )x y z

). Material elements may translate, rotate, and deform. In short, for points P and Q of an

element Q P P PQ PQ Pu u        
     . Displacement follows from stress-strain

relationship (generalized Hooke’s law) and equilibrium of material elements.
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  Let us consider the displacement of a small material element centered at point P . As the

material element is assumed to be small, first two terms of the Taylor series represent

the displacement inside the material element

Q P PQ P( )u u u   
   ,

 where the relative position vector PQ Q Pr r  
   . Division of the displacement gradient

into its anti-symmetric and symmetric parts P P P( )u    
   and using the concept of

an associated vector 


 to an antisymmetric tensor 


, gives

Q P P PQ PQ Pu u        
     .

The terms describe effects of translation, small rigid body rotation, and deformation

(shape distortion) when the rotation part is small. Stress acting on the material element

depends only on strain P
 .
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EXAMPLE. The cross section of a cylindrical body is square of side length h . Density  ,

Young’s modulus E , and Poisson’s ratio  of the linearly elastic isotropic and homogeneous

material are constants. The body is loaded by a constant traction of magnitude 2/P h  at its

free end. Determine stress   and displacement u  using the solid model. Assume that the

transverse (to the axis) displacement is not constrained by the support.

Answer 2
Pu x

Eh
  , 2

Pv y
Eh

  , 2
Pw z

Eh


2xx
P
h

   , 0yy zz xy yz zx        
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 The component forms of the equilibrium equations and constitutive equations of a

linearly elastic isotropic material in a Cartesian ( , , )x y z coordinate system are

/ / /

/ / / 0

/ / /
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.

 Let us assume that the non-zero stress and displacement components are ( )xx x , ( )u x ,

( )v y  and ( )w z . The axial stress follows from the equilibrium equation and the known

traction at the free end x L :
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0xxd
dx


 0 x L     and 2( )xx
PL
h

    2( )xx
Px
h

   .

 Generalized Hooke’s law written for the uniaxial stress implies that

2
xxdu P

dx E Eh


    , 2xx
dv P
dy E Eh

     , 2xx
dw P
dz E Eh

     .

Axial displacement vanishes at the support and the transverse displacement at the axis:

2
du P
dx Eh

  0 x L    and (0) 0u   2( ) Pu x x
Eh

  , 

2
dv P
dy Eh

 1 1
2 2

h y h      and (0) 0v   2( ) Pv y y
Eh

 , 

2
dw P
dz Eh

 
1 1
2 2

h z h      and (0) 0w   2( ) Pw z z
Eh

 . 
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EXAMPLE. Consider a torsion of a cylindrical body of length L  and circular cross-section

of radius R . Shear modulus G of the material is constant. If one end is fixed and the other

end is free to rotate, determine the relationship between torque T  and rotation angle   at

the free end. Assume that ( )u z y  , ( )v z x , and 0w .

Answer rrI GT
L

   where 4
2rrI R

 .

y
x
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PLATE MODEL

                                Reissner-Mindlin                      Kirchhoff

The primary unknowns are ( , )u x y , ( , )v x y , ( , )w x y , ( , )x y , ( , )x y , ( , )x y . Line segments

perpendicular to the mid/reference-plane remain straight in deformation (Reissner-Mindlin)

and perpendicular to the mid-plane (Kirchhoff). Mathematically Q P P PQu u    
   .

Normal stress zz  is negligible.
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EXAMPLE. A simply supported circular body of radius R  and thickness t   is loaded by a

point force P acting at the midpoint as shown in the figure. Determine the transverse

displacement w  at the midpoint by using the plate model. Young’s modulus E and Poisson’s

ratio   of the isotropic material are constants. Assume that displacement depends on the

radial coordinate only.

Answer:
2 2

3
1 3(0) )

16 4
3 (3 (1 )
1

PR PRw
D Et

 
 



  


 



P

R
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BEAM MODEL

                                   Timoshenko                               Bernoulli

The primary unknowns are ( )u x , ( )v x , ( )w x , ( )x , ( )x , ( )x . Normal planes to the

(material) axis of beam remain planes (Timoshenko) and normal to the axis (Bernoulli) in

deformation. Mathematically Q P P PQu u    
  

. Transverse normal stress is negligible i.e.

yy zz xx    .
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BEAM BENDING

Loading case Deflection (tip) Rotation (tip)
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EXAMPLE. A rigidly supported springboard of length L and cross-sectional area A bh

is levelled without loading. Under which conditions displacement at the free end and stress

at the support do not exceed the limit values   and cr , respectively, if a person of weight

W  is standing at the free end? Use the beam model and assume that the stress and the

transverse displacement are related by 2 2/xx Ezd w dx   .

Answer
3

34 WL
Ebh

   and cr26 WL
bh



W

L

x

z
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 The relationship between the axial stress and transverse displacement follows from

Hooke’s law and assumptions of the beam model. Moment equilibrium gives

/2
/2 ( ) 0h

xxh z bdz W L x    

3 2

2 ( ) 0
12
bh d wE W L x

dx
  

  Transverse displacement and its derivative vanish at the support. Hence

2

2 312 ( )d w W L x
dx Ebh

   2
3( ) 2 (3 )Ww x x L x

Ebh
  .

  Therefore
3

3( ) 4 WLw L
Ebh

    and max cr2(0) 6 WL
bh

   . 

W

L

x

z
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RIGID BODY

The primary unknowns are u , v , w ,  ,  ,   of the translation point. Body may translate

and rotate but distance between any two points P and Q is constant. Mathematically, e.g.,

Q P P PQu u    
   . Rigid body idealization is useful when rigidities of structural parts

differ significantly. Forces acting on the body are represented by a force-moment pair.
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1.3 DISPLACEMENT ANALYSIS

  Idealize a complex structure as a set of structural parts, whose behavior can be

approximated by using the usual engineering models (bar, beam, plate, rigid body etc.).

  Write down the equilibrium equations at the connections (Newton III), the force-

displacement relationships of the structural parts, and constraints concerning the nodal

displacements (displacements and rotations should match).

  Solve the nodal displacements and rotations and the forces and moments acting on the

structural parts (elements in FEM) from the equation system.

  Determine the stress in the structural parts one-by-one according to the engineering

model used (optional step).
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NEWTON’s LAWS OF MOTION

I In an inertial frame of reference, an object either remains at rest or continues to move

at a constant velocity, unless acted upon by a force.

II The vector sum of the forces on an object is equal to the mass of that object multiplied

by the acceleration of the object (assuming that the mass is constant).

III When one body exerts a force on a second body, the second body simultaneously exerts

a force equal in magnitude and opposite in direction on the first body.

Newton’s laws in their original forms apply to particles only. The formulation for rigid

bodies and deformable bodies requires slight modifications.
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EXAMPLE. A connector bar is welded at its ends to rigid walls. If the right end wall

displacement is a , determine the displacements of connection points 1, 2, and 3 and the

forces acting on structural parts. Cross sectional area A and Young’s modulus of the material

E are constants and the displacement force relationship of a bar is the same as that of a spring

with coefficient /k EA L . Model the structure as a collection of two bars (1 and 2).

Answer 1 0u  , 2 3
1
2

u u a  , 4u a , 1 3
1
2

F F ka   , 2 4
1
2

F F ka  .

a

L

X

L

EA EA

Z
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 As the structural parts can be considered as springs of coefficient /k EA L ,

1 1 2( )F k u u  , 2 2 1( )F k u u  , 3 3 4( ) /F EA u u L  , 4 4 3( ) /F EA u u L 

 The displacement constraints due to the left edge welding, displacement of the right end

wall, and integrity of structure at the connection of the structural parts are 1 0u  , 4u a

, and 2 3u u .

 The force constraints are due to Newton III which requires that 2F  and 3F  are equal in

magnitude and opposite in signs or 2 3 0F F  .

2 2,u F 3 3,u F 4 4,u F1 1,u F
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 Altogether, the 8 equations determining the 4 displacement components 1u , 2u , 3u , 4u

and the 4 force components 1F , 2F , 3F , 4F  are given by

1 1 2( )F k u u  , 2 2 1( )F k u u  , 3 3 4( )F k u u  , 4 4 3( )F k u u  ,

1 0u  , 4u a , 2 3u u , 2 3 0F F  .

 The linear equation system can be solved, e.g., by considering the equations in a proper

order (to be discussed later in more detail), by Gauss elimination, by Mathematica, …

1 0u  , 2
1
2

u a , 3
1
2

u a , 4u a , 

1
1
2

F ka  , 2
1
2

F ka , 3
1
2

F ka  , 4
1
2

F ka . 
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1.4 FE-CODE OF MEC-E1050

X

Z

L

3

21

2

1

L
F

3

x

x
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STRUCTURE

“Structure is a collection of elements (earlier structural parts) connected by nodes (earlier

connection points). Displacement of the structure is defined by nodal translations and

rotations of which some are known and some unknown.”

{ , }prb ele fun  where

1 2{ , , }ele prt prt   ............................................................................................. elements

1 2{ , , }fun val val   .................................................................................................. nodes

Elements

{ , , }prt typ pro geo   where

BAR | TORSION | BEAM | RIGID| |typ    ............................................................ model

1 2{ , , , }npro p p p   ..........................................................................................properties
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1 1 2 1 2 3Point[{ }] | Line[{ , }] | Triangle[{ , , }] | |geo n n n n n n   ............................... geometry

Nodes

{ , , }val crd tra rot where

{ , , }crd X Y Z  ................................................................................. structural coordinates

{ , , }X Y Ztra u u u  .......................................................................... translation components

{ , , }X Y Zrot     ............................................................................... rotation components
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ELEMENTS

Elements represent the structural parts modelled as solids, plates, beams, or rigid bodies or

their simplified versions, external point and boundary forces and moments.

Constraint

1{JOINT,{}|{{ , , }},Point[{ }]}X Y Zu u u n  ...................................... displacement constraint

1 2{JOINT,{},Line[{ , }]}n n  ........................................................... displacement constraint

1{RIGID,{}|{{ , , },{ , , }},Point[{ }]}X Y Z X Y Zu u u n    ... displacement/rotation constraint

1 2{RIGID,{},Line[{ , }]}n n  ......................................................................... rigid constraint

1{SLIDER,{ , , },Point[{ }]}X Y Zn n n n  ......................................................... slider constraint

Force

1{FORCE,{ , , },Point[{ }]}X Y ZF F F n  ................................................................. point force

1{FORCE,{ , , , , , },Point[{ }]}X Y Z X Y ZF F F M M M n  .......................................... point load
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1 2{FORCE,{ , , },Line[{ , }]}X Y Zf f f n n  .................................................... distributed force

1 2 3{FORCE,{ , , },Polygon[{ , , }]}X Y Zf f f n n n  ......................................... distributed force

Beam model

1 2{BAR,{{ },{ },{ , , }},Line[{ , }]}X Y ZE A f f f n n  ..................................................bar mode

1 2{TORSION,{{ },{ },{{ , , }}},Line[{ , }]}X Y ZG A m m m n n  .............................  torsion mode

1 2{BEAM,{{ , },{ , , },{ , , }},Line[{ , }]}yy zz X Y ZE G A I I f f f n n  .................................... beam

1 2{BEAM,{{ , },{ , , ,{ , , }},{ , , }},Line[{ , }]}yy zz X Y Z X Y ZE G A I I j j j f f f n n  ............... beam

Plate model

1 2 3{PLANE,{{ , },{ },{ , , }},Polygon[{ , , }]}X Y ZE t f f f n n n  ........................ thin slab mode

1 2 3 4{PLANE,{{ , },{ },{ , , }},Polygon[{ , , , }]}X Y ZE t f f f n n n n  ................... thin slab mode

1 2 3{PLATE,{{ , },{ },{ , , }},Polygon[{ , , }]}X Y ZE t f f f n n n  ......................... bending mode

1 2 3{SHELL,{{ , },{ },{ , , }},Polygon[{ , , }]}X Y ZE t f f f n n n  ......................................... plate
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Solid model

1 2 3 4{SOLID,{{ , },{ , , }},Tetrahedron[{ , , , }]}X Y ZE f f f n n n n  ................................... solid

1 2 3 4 5 6 7 8{SOLID,{{ , },{ , , }},Hexahedron[{ , , , , , , , }]}X Y ZE f f f n n n n n n n n  ............... solid

1 2 3 4{SOLID,{{ , },{ , , , , , ,}},Tetrahedron[{ , , , }]}X Y Z X Y ZE f f f m m m n n n n  .............. solid
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OPERATIONS

Operations act on structure as defined by prb . The main operations of MEC-E1050 are

solving the unknowns in displacement analysis and displaying the problem definition in a

formatted form.

REFINE[ ]prb prb   .......................................................... refine structure representation

Out FORMATTED[ ]prb  ...................................................... display problem definition

Out STANDARDFORM[ ]prb  ..................................... display virtual work expression

SOLVE[ ]sol prb  .............................................................................. solve the unknowns
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EXAMPLE 1.1. A connector bar is welded at its ends to rigid walls. If the right end wall

displacement is a , determine the displacements of connection points 1, 2, and 3 and the

forces acting on structural parts. Cross sectional area A and Young’s modulus of the material

E are constants and the displacement force relationship of a bar is the same as that of a spring

with coefficient /k EA L . Model the structure as a collection of two bars (1 and 2).

Answer 1 0u  , 2 3
1
2

u u a  , 4u a , 1 3
1
2

F F ka   , 2 4
1
2

F F ka  .

a

L

X

L

EA EA

Z
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 Problem description by { , }prb ele fun and two operations acting on it
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 Outcome of the operations is the structure description in table format and solution to the

unknowns of the displacement problem (in format of a rule)
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EXAMPLE 1.2. A connector bar is welded at its ends to rigid walls. If the right end wall

displacement is a , determine the displacement of point 2. Cross sectional area A and

Young’s modulus of the material E are constants. Model the structure as a collection of two

bars (1 and 2).

Answer 2
1
2

u a   (Mathematica notebook)

a

L

X

L

EA EA

Z
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PREREQUISITE: MATRIX ALGEBRA I

Addition  C A B ij ij ijC A B 

Multiplication (scalar) C A ij ijC A

Multiplication (matrix) C AB {1 }k nij ik kjC A B 

Unit matrix I 1ij i j   , 0ij i j  

Symmetric matrix TA A ij jiA A

Skew symmetric matrix T A A ij jiA A 

Positive definite matrix T 0x Ax 0 x



Week 44-42

PREREQUISITE: MATRIX ALGEBRA II

Transpose TA T
ij jiA A

Inverse 1 1  AA A A I 1
{1 }k n ik kj ijA A 

 

Derivative x /i ix dx dt

Linear equation system  Find x  such that Ax b

Eigenvalue problem Find all ( , ) x  such that ( ) 0 A I x

Eigenvalue composition 1A X X , where 1[ ]nX x x and 1[ ]ndiag  λ 

Matrix function If 1A X X , then 1( ) (f f A X X
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EXAMPLE. Determine the square 2A  and inverse 1A of A  if

  5   2
1   3

 
   

A   (note:
a b
c d
 

  
 

A  1 1 d b
c aad bc

  
    

A )

Matrix squared 2 5 2 5 2 23 16
1 3 1 3 8 7

     
             

A 

Inverse matrix
1

1   5   2 3   21
1   3 1   517


    
       

A 

From the viewpoint of computational complexity, solving a system of linear equations

Ax b by Gauss elimination makes more sense than using the matrix inverse with 1x A b

!



Week 44-44

PREREQUISITE: MATRIX ALGEBRA III

Partitioned matrix 11 12

21 22
=
 
 
 

a a
A

a a
  & 1

2
=
 
 
 

b
B

b

Transpose
T T
11 21T
T T
12 22

=
 
 
  

a a
A

a a

Multiplication 11 12 1 11 1 12 2

21 22 2 21 1 22 2
=

     
          

a a b a b a b
AB

a a b a b a b

The rules are the same as with the ordinary matrices. The sizes of the blocks need to be

consistent in operations like transposing and multiplication!

block or sub-matrix
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EXAMPLE. Determine the displacements iw , if {1,2,3}i  the vector of displacements a

, stiffness matrix K , and the loading vector F  of the equilibrium equations 0 Ka F  are

given by

1

2

3

w
w
w

 
   
 
 

a ,
2 1 0
1 2 1
0 1 1

k
 

    
  

K ,  and
0
0
1

P
 
   
 
 

F .

Answer 1
Pw
k

 , 2 2 Pw
k

 , and 3 3 Pw
k

 .
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 With linear equation systems of more than two unknows, using a matrix inverse is not

practical. Gauss elimination is based on row operations aiming at an upper diagonal

matrix. After that, solution for the unknowns is obtained step-by-step starting from the

last equation. In the present problem

1

2

3

2 1 0 0
1 2 1 0
0 1 1 1

w
k w P

w

     
          
        

.

 Let us multiply the 2:nd equation by 2 and add to it equation 1 to get

1

2

3

2 1 0 0
2 4 2 0
0 1 1 1

w
k w P

w

     
          
        


1

2

3

2 1 0 0
0 3 2 0
0 1 1 1

w
k w P

w

     
         
        

.
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 Let us multiply 3:rd equation by 3 and add to it the 2:nd equation to get the upper

triangular matrix.

1

2

3

2 1 0 0
0 3 2 0
0 3 3 3

w
k w P

w

     
         
        


1

2

3

2 1 0 0
0 3 2 0
0 0 1 3

w
k w P

w

     
         
        

.

 After these steps, solution is obtained step-by-step starting from the last equation:

3 3kw P  3 3 Pw
k

 , 

2 3(3 2 ) 0k w w   2 3
2 2
3

Pw w
k

  , 

1 2(2 ) 0k w w   1 2
1
2

Pw w
k

  . 


