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Lecture 9: Object category detection



What we would like to be able to do…

• Visual scene understanding 

• What is in the image and where 

• Object categories, identities, 
properties, activities, relations,…
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• Visual scene understanding
• What is in the image and where

Dog 1: Terrier

Motorbike: Suzuki GSX 750

Ground: Gravel

Plant

Wall

Gate

Dog 2: Sitting on Motorbike

Person: John Smith, holding Dog 2

• Object categories, identities, properties, activities, relations, …
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Challenges and Applications



Background clutterChallenges: Background Clutter



Occlusions and truncationChallenges: Occlusion and truncation



Intra class variation
10Challenges: Intra-class variation



Preview of typical results
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Preview of typical results

Aeroplane Bicycle

Cow

Motorbike

Car

HorseCredits: A Zisserman



Preview of tracking by detection

Detect to track and track to detect, Feichtenhofer, Pinz, Zisserman, ICCV 2017



Application: collision preventionMotivation/Applications

www.mobileye.com

Collision prevention

Organizing image 
collectionsSlide: Ross Girshick

www.mobileye.com 

http://www.mobileye.com


Application: Funny Nikon ads
Funny Nikon ads

"The Nikon S60 detects up to 12 faces."

Slide: Svetlana Lazebnik

“Nikon S60 detects up to 12 faces.”



Sliding window detector



Problem of background clutter

• Use sub window: 
• At correct position, no clutter is 

present 
• Slide window to detect objects 
• Change size of the window  

to search over scales

Is it a cat? NoIs it a cat? YesIs it a cat? No



Detection by classification

• Basic component: binary classifier

Yes,
a car
No,

not a car

Detection by Classification
• Basic component: binary classifier

Car/non-car
Classifier

Car/non-car  
classifier

No, 
not a car



Detection by classification

• Detect objects in clutter by search

Car/non-car  
classifier

Detection by Classification
• Detect objects in clutter by search

Car/non-car
Classifier

• Sliding window: exhaustive search over position and scale

Detection by Classification
• Detect objects in clutter by search

Car/non-car
Classifier

• Sliding window: exhaustive search over position and scale

Sliding window: exhaustive  
search over position and scale 



• Detect objects in clutter by search

Detection by Classification
• Detect objects in clutter by search

Car/non-car
Classifier

• Sliding window: exhaustive search over position and scale

Detection by Classification
• Detect objects in clutter by search

Car/non-car
Classifier

• Sliding window: exhaustive search over position and scale

Detection by classification

Car/non-car  
classifier

Sliding window: exhaustive  
search over position and scale 



Detection by Classification
• Detect objects in clutter by search

Car/non-car
Classifier

• Sliding window: exhaustive search over position and scale
(can use same size window over a spatial pyramid of images)

Detection by Classification
• Detect objects in clutter by search

Car/non-car
Classifier
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(can use same size window over a spatial pyramid of images)

Detection by classification

• Detect objects in clutter by search

Car/non-car  
classifier

Sliding window: exhaustive  
search over position and scale 

In practice one can use same  
window size over spatial pyramid



Window (image) classification

• Features usually engineered 
• Classifier learned from data
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Problems with sliding windows

• Aspect ratio 

• Granularity (finite grid) 

• Partial occlusions 

• Multiple responses  
-> Non-maximum suppression
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Accelerating sliding window search



Accelerating sliding window search

• Sliding window search is slow since 
many windows are needed  

• m x n x scale = 100 000 windows for 
320 x 240 image 

• Most windows are clearly negative 

• Is it possible to seed up the search?

Accelerating Sliding Window Search
• Sliding window search is slow because so many windows are 

needed e.g. x £ y £ scale ¼ 100,000 for a 320£240 image

• Most windows are clearly not the object class of interest

• Can we speed up the search?

Example:
face 
detection

Example: face detection



Cascaded classification

Classifier 1Image 
window

Cascaded Classification
• Build a sequence of classifiers with increasing complexity
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Classifier
N
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More complex, slower, lower false positive rate

• Reject easy non-objects using simpler and faster classifiers

Possibly a 
face

Possibly a 
facePossibly  

a face
Possibly  
a face

Face

Not a face Not a face Not a face
……

More complex, slower, lower false positive rate

Reject easy non-objects using simpler and faster classifiers

Classifier 2 Classifier N



Cascaded classification

• Slow and expensive classifiers only applied to a few windows  
-> significant speedup 

• Controlling complexity vs. speed: number of features, number of parts..
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Deep networks for object detection



Reminder: Classification CNNs
AlexNet (Krizhevsky et al. 2012)

60 Million parameters

image
classification 

code

Reminder: Classification CNNs

convolutional layers fully connected 
layers

Convolutional layers Fully connected layers

60 Million parameters

AlexNet (Krizhevsky et al. 2012)



ImageNet classification challenge

• 1000 categories 

• 1000 images from each category for 
training (approx. 1M images) 

• 100k images for testing

1000 categories 

• Training:  1000 images  
for each category

• Testing: 100k images

ImageNet Image Classification Challenge



AlexNet (Krizhevsky et al. 2012)AlexNet (Krizhevsky et al. 2012)

60 Million parameters

Top-5 error: 16%

image
classification 

code

ImageNet classification with deep convolutional neural networks, Krizhevsky et al. NIPS 2012

60 Million parameters 
Top-5 error 16%



VGG-16 (Simonyan & Zisserman 2014)

138 Million parameters 
Top-5 error 7%

Very deep convolutional networks for large-scale image recognition, Simonyan et al. arXiv 2014



ResNet (He et al. 2015)

152 layers (60 Million parameters) 
Top-5 error 4%

ResNet (He et al. 2015)

152 layers
Top-5 error:  4%

He et al, Deep Residual Learning for Image Recognition, CVPR 2016Deep residual learning for image recognition, He et al. CVPR 2016



ImageNet classification results (CLS)
ImageNet Challenge Summary
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CNNs for detection - intuition I

• Modern classification architectures, such as ResNet or Inception, use 
convolutional layers throughout 

No fully connected layers 
Less parameters 
Feature vector by spatial pooling 



CNNs for detection - intuition II

Is object localisation for free?-weakly-supervised learning with convolutional neural networks, Oquab et al. CVPR 2015 
Learning deep features for discriminative localisation, Zhou et al. CVPR 2016



CNNs for detection - intuition II

Figure 1. Class activation maps generated by GoogLeNet+GAP using the CAM technique. The class categories selected from ILSVRC
dataset are goldfish, ostrich, spotted salamander, Norwegian elkhound, Sealyham terrier, fireboat, and football helmet.
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Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class

activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

Here we ignore the bias term: we explicitly set the input
bias of the softmax to 0 as it has little to no impact on the
classification performance.

By plugging Fk =
∑

x,y fk(x, y) into the class score,
Sc, we obtain

Sc =
∑

k

wc
k

∑

x,y

fk(x, y) =
∑

x,y

∑

k

wc
kfk(x, y). (1)

We define Mc as the class activation map for class c, where
each spatial element is given by

Mc(x, y) =
∑

k

wc
kfk(x, y). (2)

Thus, Sc =
∑

x,y Mc(x, y), and hence Mc(x, y) directly
indicates the importance of the activation at spatial grid
(x, y) leading to the classification of an image to class c.

Intuitively, based on prior works [34, 30], we expect each
unit to be activated by some visual pattern within its recep-
tive field. Thus fk is the map of the presence of this visual
pattern. The class activation map is simply a weighted lin-
ear sum of the presence of these visual patterns at different
spatial locations. By simply upsampling the class activa-
tion map to the size of the input image, we can identify the
image regions most relevant to the particular category.

In Fig. 3, we show some examples of the CAMs output
using the above approach. We can see that the discrimi-
native regions of the images for various classes are high-
lighted. In Fig. 4 we highlight the differences in the CAMs
for a single image when using different classes c to gener-
ate the maps. We observe that the discriminative regions
for different categories are different even for a given im-
age. This suggests that our approach works as expected.
We demonstrate this quantitatively in the sections ahead.

Figure 3. The CAMs of two classes from ILSVRC [21]. The maps

highlight the discriminative image regions used for image classifi-

cation, the head of the animal for briard and the plates in barbell.

Figure 4. Examples of the CAMs generated from the top 5 pre-

dicted categories for the given image with ground-truth as dome.

The predicted class and its score are shown above each class ac-

tivation map. We observe that the highlighted regions vary across

predicted classes e.g., dome activates the upper round part while

palace activates the lower flat part of the compound.

Global average pooling (GAP) vs global max pool-
ing (GMP): Given the prior work [16] on using GMP for
weakly supervised object localization, we believe it is im-
portant to highlight the intuitive difference between GAP
and GMP. We believe that GAP loss encourages the net-

2923



Faster R-CNN



Classical object detectors

• Two stage procedure: 
1. Propose class agnostic regions in the image (sliding window or proposals) 
2. Classify regions into object classes or background 

• Can this be captured in a deep network?



Faster R-CNN

• Two stage system: 
• Region proposal network (RPN) 
• Classification/regression network 

• Base network VGG16

CNN

Feature map

Proposals

ROI pooling

ROI classifier and regressor

Image
Faster R-CNN: Towards real-time object detection  
with region proposals, Ren et al. NIPS 2015

Base network



Region proposal network (RPN)

• Slide a small window on feature map 

• Window position provides localisation 
with reference to the image 

• Box regression provides finer 
localisation with reference to window

Faster R-CNN: Towards real-time object detection  
with region proposals, Ren et al. NIPS 2015

Region Proposal Network
• Slide a small window on the feature map

• Position of the sliding window provides
localization information with reference to 
the image

• Box regression provides finer localization 
information  with reference to this sliding
window

convolutional feature map

sliding window

classify  
obj./not-obj.

regress  
box locations

Ren, He, Girshick, &  Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.

256-d

Scores Coordinates

Convolutional feature map

Classify  
object/non-object

Regress  
box location



“Anchors”: predefined candidate regions

• Multi-scale/size anchors are used at 
each position: 3 scales x 3 aspect 
ratios yields 9 anchors   

• Each anchor has its own  
prediction function 

• Single-scale features,  
multi-scale predictions 

Faster R-CNN: Towards real-time object detection  
with region proposals, Ren et al. NIPS 2015

Region Proposal Network
• Slide a small window on the feature map

• Position of the sliding window provides
localization information with reference to 
the image

• Box regression provides finer localization 
information  with reference to this sliding
window

convolutional feature map

sliding window

classify  
obj./not-obj.

regress  
box locations

Ren, He, Girshick, &  Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.

256-d

Scores Coordinates

Convolutional feature map

Classify  
object/non-object

Regress  
box location 9 anchors



Training data: positive and negative boxes

• Label training boxes based on  
overlap with ground truth box 

• Pre-train VGG16 CNN on  
ImageNet classification task a positive

training region 
overlap > 70%

a negative
training region 
overlap < 30%

ground truth
region

Faster R-CNN: Towards real-time object detection  
with region proposals, Ren et al. NIPS 2015



Faster R-CNN

Figure from: Contextual priming and feedback for Faster R-CNN, Srivastava et al., ECCV 2016

334 A. Shrivastava and A. Gupta

–

–

Fig. 1. Faster R-CNN. (left) Overview of Region Proposal Network (RPN) and RoI
classification and box regression. (right) Shorthand diagram of Faster R-CNN. (Color
figure online)

from [28,63] using mini-batch SGD. To construct a mini-batch for RPN, 256
anchors are randomly sampled with 1 : 1 foreground to background ratio; and for
FRCN, 128 proposals are sampled with 1 : 3 ratio. We train both modules jointly
using the ‘approximate joint training’. For more details, refer to [28,29,63,67].

Given an image during training, a forward pass through all the conv layers
produces conv5 3 feature map. RPN operates on this feature to propose two sets
of regions, one each for training RPN and FRCN. Independent forward-backward
passes are computed for RPN and FRCN using their region sets, gradients are
accumulated at conv5 3 and back-propagated through the conv layers.

Why Faster R-CNN? Apart from being the current state-of-the-art object
detector, Faster R-CNN is also the first framework that learns where to guide
the ‘attention’ of an object detector along with the detector itself. This end-to-
end learning of proposal generation and object detection provides a principled
testbed for studying the proposed top-down contextual feedback mechanisms.

In the following sections, we first describe how we add a segmentation module
to Faster R-CNN (Sect. 4.1) and then present how we use segmentation for top-
down contextual priming (Sect. 4.2) and iterative feedback (Sect. 4.3).

4 Our Approach

We propose to use semantic segmentation as a top-down feedback signal to
the RPN and FRCN modules in Faster R-CNN, and iteratively to the entire
network. We argue that a raw semantic segmentation output is a compact signal
that captures the desired contextual information such as relationships between
objects (Sect. 2) along with global structures in the image, and hence is a good
representation for top-down feedback.

4.1 Augmenting Faster R-CNN with Segmentation

The first step is to augment Faster R-CNN framework with an additional seg-
mentation module. This module should ideally: (1) be fast, so that we do not give

CNN
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The Spatial Pooling (SP) layer

• Performs max-pooling for the feature responses in a given region 
• Can be used to extract many region-specific feature vectors using 

same convolutional feature output

Spatial pyramid pooling (SPP) in deep convolutional networks for visual recognition, He et al. ECCV 2014

The Spatial Pooling (SP) layer

• The spatial pooling layer (SP) max-pools the convolutional feature responses 
in a given region

• This can be used to extract many region-specific feature vectors by reusing the 
same convolutional features.

He, Zhang,Ren & Sun, “Spatial Pyramid Pooling (SPP)  in Deep Convolutional Networks for Visual Recognition”, ECCV 2014

any given region

c5c1 c2 c3 c4

feature
vector

maxpooling

Any given region Feature vector



The Spatial Pooling (SP) layer as a building blockAs a building block

The Spatial Pooling (SP) layer

SP extracts a feature vector for 
each of the R regions.

The output are thus R tensors of 
size 1 1 C.

SPfeature
map

list of
R regions

R region-specific
feature vectors

He, Zhang,Ren & Sun, “Spatial Pyramid Pooling (SPP)  in Deep Convolutional Networks for Visual Recognition”, ECCV 2014

Feature map

List of  
R regions

R region-specific 
feature vectors

SP extracts a feature vector  
for each of the R regions 

The outputs are R tensors 
of size 1x1xC

Spatial pyramid pooling (SPP) in deep convolutional networks for visual recognition, He et al. ECCV 2014



The Spatial Pyramid Pooling (SPP) layer

• Similar to SP, but pools features in tiles 
of a grid-like subdivision of the region  
(SP with multiple subdivisions) 

• Feature vector captures the spatial 
layout of the original region 

• Converts the region to  
a fixed size vector

SP with multiple subdivisions

The Spatial Pyramid Pooling Layer

SPP is similar to SP, but pools features in the tiles of a grid-like subdivision
of the region.

The resulting feature vector captures the spatial layout of the original region.

Converts the region to a fixed size vector

max pooling



Faster R-CNN

• Same CNN conv5 features used for: 
• The region proposal network 
• Classifying/regressing the regions 

• Thus CNN runs only once on image 

• Trained end-to-end 

• Base network VGG16
CNN

Feature map

Proposals

ROI pooling

ROI classifier and regressor

Image
Faster R-CNN: Towards real-time object detection  
with region proposals, Ren et al. NIPS 2015

Base network



Example detections
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Why “Faster R-CNN”?

• First: R-CNN 

• Inference time approx.  
50s per image

Input image

ConvNet

ConvNet

ConvNet

SVMs

SVMs

SVMs

Warped image regions

Forward each region 
through ConvNet

Classify regions with SVMs

Region proposals

Rich feature hierarchies for accurate object detection  
and semantic segmentation, Girshick et al., CVPR 2014



Why “Faster R-CNN”?

• Second: Fast R-CNN 

• Inference time approx.  
2s per image

Fast R-CNN, Girshick., ICCV 2015

ConvNet

Forward whole image through ConvNet

“conv5” feature map of image

“RoI Pooling” layer

Linear +
softmax

FCs Fully-connected layers

Softmax classifier

Region 
proposals

Linear Bounding-box regressors



Why “Faster R-CNN”?

• Third: Faster R-CNN 

• Inference time approx.  
198ms per image

CNN

Feature map

Proposals

ROI pooling

ROI classifier and regressor

Image

Base network

Faster R-CNN: Towards real-time object detection  
with region proposals, Ren et al. NIPS 2015



Evaluating object detectors



Evaluating object detectors

• Classical benchmark:  
 
 
The PASCAL Visual Object Classes (VOC) dataset and Challenge  
2007-2012 
 
Mark Everingham, Luc Van Gool, Chris Williams, John Winn, Andrew 
Zisserman 



PASCAL VOC dataset content

• Objects from 20 classes:  
aeroplane, bicycle, boat, bottle, bus, car, cat, chair, cow, dining 
table, dog, horse, motorbike, person, potted plant, sheep, train, TV 

• Real world images downloaded from Flickr (not filtered for “quality”) 

• Complex scenes, multiple scales, lighting, occlusions,….

Dataset Content
• 20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat, 

chair, cow, dining table, dog, horse, motorbike, person, potted 
plant, sheep, train, TV

• Real images downloaded from flickr, not filtered for “quality”

• Complex scenes, scale, pose, lighting, occlusion, ...



ExamplesExamples
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Examples
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Bicycle Bird Boat Bottle

Car Cat Chair Cow



Examples

Dining Table

Potted Plant

Dog Horse Motorbike Person

Sheep Sofa Train TV/Monitor

Examples

Dining Table

Potted Plant

Dog Horse Motorbike Person

Sheep Sofa Train TV/Monitor

Examples



PASCAL VOC statistics

• Minimum 600 training objects per category 
• Approx. 2000 cars, 1500 dogs, 8500 people 
• Approximately similar distribution across training and test setsDataset statistics: VOC 2012

• Minimum ~600 training objects per category
• ~2,000 cars, 1,500 dogs, 8,500 people

• Approximately equal distribution across training and test 
datasets

Training Testing

Images 11,540 10,994

Objects 27,450 27,078



Progress in object detection (PASCAL VOC)
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Application: Faster R-CNN face detector

• VGG16 pre-trained on ImageNet 
• Detector trained on the WIDER dataset (12k images 160k faces)

Original
Image

Application: Faster R-CNN face detector
- VGG16 pre-trained on ImageNet
- Trained on the WIDER face dataset: 12,880 images and 159,424 faces

Credits: Sam Albanie, Qiong Cao

Credits: Sam Albanie, Qiong Cao



Single stage detectors



Two strands of detection architectures

• Detectors using region proposal networks (RPN) 
• Two stages: 1) RPN, followed by 2) features from  

regions for classification and regression of box 
• Possibly slow due to two steps 
• Examples: Faster RCNN, R-FCN 

• Detector using unified framework (no explicit RPN) 
• Regions are build into the architecture (convolutional layers) -> possibly fast 
• Examples: YOLO, SSD, TinyFaces



One-stage detectors

Redmond et al. CVPR 2017, Shen et al. ICCV 2017, Liu et al. ECCV 2016,  
Fu et al. arXiv 2017, Lin et al. ICCV 2017, Zhang et al. CVPR 2018

Class
Person

Class
Person

Class
Background

Anchors

Anchors

Anchors

ConvNet



Single Shot MultiBox Detector (SSD)

• Fully convolutional detector (no RPN) 

• Pre-defines regions: 
• Predict categories and box offsets 
• Multiple aspect ratios per cell 
• Similar to Faster R-CNN anchor boxes

SSD: Single Shot MultiBox Detector, Liu et al., ECCV 2016



Single Shot MultiBox Detector (SSD)
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SSD runs at 59 fps 
cf. 7 fps for Faster R-CNN

SSD: Single Shot MultiBox Detector, Liu et al., ECCV 2016



Single Shot MultiBox Detector - video example

SSD: Single Shot MultiBox Detector, Liu et al., ECCV 2016



Summary and comparison 

Summary and Comparison

Speed/accuracy trade-offs for modern convolutional object detectors
Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop
Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song,
Sergio Guadarrama, Kevin Murphy, CVPR 2017

Feature 
Extractor

Faster 
RCNN

R-FCN

SSD

Speed
Accuracy
Memory

...

Unified tensorflow architecture
Compare speed, accuracy and memory usageSpeed/accuracy trade-offs for modern convolutional object detectors, Huang et al. CVPR 2017  

Unified tensor flow architecture for comparing speed, accuracy, and memory usage



Accuracy vs speed (COCO)

Speed/accuracy trade-offs for modern convolutional object detectors, Huang et al. CVPR 2017 



Object instance segmentation 



Instance segmentation

• Given an image produce instance-level segmentation 
• Which class does each pixel belong to? 
• Which instance does each pixel belong to?

Instance Segmentation

• Given an image produce instance-level segmentation:
– which class does each pixel belong to? And

– which instance does each pixel belong to?

Instance Segmentation

• Given an image produce instance-level segmentation:
– which class does each pixel belong to? And

– which instance does each pixel belong to?



Mask R-CNN

• Extend Faster R-CNN to predict mask as well as a box

Mask R-CNN, He et al., CVPR 2017



Mask R-CNN - video example

Mask R-CNN, He et al., CVPR 2017 https://www.youtube.com/watch?v=UWtac4cFERM


