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Lecture	10:	Camera	calibration	&	
single	view	metrology	

•  Camera	calibration	is	the	process	of	determining	the	
internal	camera	parameters,	which	define	the	mapping	
between	incoming	light	rays	and	image	pixels	

	
•  Single	view	metrology	provides	methods	for	measuring	
relative	lengths	from	a	single	image	by	utilizing	certain	
assumptions	
	

Acknowledgement:	many	slides	from	Svetlana	Lazebnik,	Derek	Hoiem,	Steve	Seitz,	
and	others	(detailed	credits	on	individual	slides)	

	
	



Reading	

•  Szeliski’s	book,	Sections	6.2	and	6.3	in	1st	edition	
	
•  Hartley	&	Zisserman	book,	Chapters	6,	7,	and	8	

	

	



Calibrating a single camera 

Odilon Redon, Cyclops, 1914 

Source: S. Lazebnik 



Our goal: Recovery of 3D structure 
•  Recovery of structure from one image is 

inherently ambiguous 

x 

X? 
X? 

X? 

Source: S. Lazebnik 



Single-view ambiguity 
Source: S. Lazebnik 



Single-view ambiguity 

Ames room 

Source: S. Lazebnik 



Our goal: Recovery of 3D structure 
•  We will need multi-view geometry 

Source: S. Lazebnik 



Review: Pinhole camera model 

•  Normalized (camera) coordinate system: camera 
center is at the origin, the principal axis is the z-axis, x 
and y axes of the image plane are parallel to x and y 
axes of the world 

•  Goal of camera calibration: go from world coordinate 
system to image coordinate system 

world coordinate system 

Source: S. Lazebnik 

Note that usually y-axis 
points down. That 
convention leads to 
mathematically 
equivalent formulas 
and can be obtained 
here by 180 degree 
rotation around z-axis. 
--> 
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Review: Pinhole camera model 

PXx =

Source: S. Lazebnik 



Principal point 

•  Principal point (p): point where principal axis intersects the 
image plane  

•  Normalized coordinate system: origin of the image is at the 
principal point 

•  Image coordinate system: origin is in the corner 

px 

py 

Source: S. Lazebnik 
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Principal point offset 

We want the principal 
point to map to (px, py) 
instead of (0,0) 
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Source: S. Lazebnik 
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( )C~X~RX~ cam −=

Camera rotation and translation 

•  In general, the camera 
coordinate frame will be 
related to the world 
coordinate frame by a 
rotation and a translation 

coords. of point  
in camera frame 

coords. of camera center  
in world frame 

coords. of a point 
in world frame 

•  Conversion from world to camera coordinate system  
(in non-homogeneous coordinates): 

Source: S. Lazebnik 
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Source: S. Lazebnik 



Camera parameters 

•  Intrinsic parameters 
•  Principal point coordinates 
•  Focal length 
•  Pixel magnification factors 
•  Skew (non-rectangular pixels) 
•  Radial distortion 
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Camera parameters 

[ ]CRRKP ~
−=

•  Intrinsic parameters 
•  Principal point coordinates 
•  Focal length 
•  Pixel magnification factors 
•  Skew (non-rectangular pixels) 
•  Radial distortion 

•  Extrinsic parameters 
•  Rotation and translation relative  

to world coordinate system 

•  What is the projection of the 
camera center? 

coords. of 
camera center  
in world frame 
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The camera center is the 
null space of the 
projection matrix! 
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Source: S. Lazebnik 



Camera calibration 
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Source: D. Hoiem 



Camera calibration 
•  Given n points with known 3D coordinates Xi 

and known image projections xi, estimate the 
camera parameters 

? P

Xi 

xi 

Source: S. Lazebnik 
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Camera calibration: Linear method 
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Source: S. Lazebnik 



Camera calibration: Linear method 

•  P has 11 degrees of freedom 
•  One 2D/3D correspondence gives us two linearly independent 

equations 
•  6 correspondences needed for a minimal solution 

•  Homogeneous least squares: find p (||p||=1) minimizing ||Ap||2 

•  Solution given by eigenvector of ATA with smallest eigenvalue 
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Source: S. Lazebnik 



Camera calibration: Linear method 

•  Note: for coplanar points that satisfy ΠTX=0, 
we will get degenerate solutions (Π,0,0),  
(0,Π,0), or (0,0,Π) 
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Source: S. Lazebnik 



Camera calibration: Linear method 
•  The linear method only estimates the entries of the 

projection matrix: 

•  What we ultimately want is a decomposition of this 
matrix into the intrinsic and extrinsic parameters: 

•  This can be achieved via the RQ matrix 
decomposition (see Sec. 6.2.4 of H&Z book) 
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Camera calibration: Linear method 
•  Advantages: easy to formulate and solve 
•  Disadvantages 

•  Doesn’t directly tell you camera parameters 
•  Doesn’t model radial distortion 
•  Can’t impose constraints, such as known focal length and 

orthogonality 
 

•  Non-linear methods are preferred 
•  Define error as sum of squared distances between 

measured 2D points and estimated projections of 3D points 
•  Minimize error using Newton’s method or other non-linear 

optimization 
•  The iterative optimization by non-linear methods can be 

initialized with the solution provided by the linear method 

 Source: D. Hoiem 



A taste of multi-view geometry: Triangulation 

•  Given projections of a 3D point in two or more 
images (with known camera matrices), find 
the coordinates of the point 

Source: S. Lazebnik 



Triangulation 
•  Given projections of a 3D point in two or more 

images (with known camera matrices), find 
the coordinates of the point 

O1 O2 

x1 
x2 

X? 

Source: S. Lazebnik 



Triangulation 
•  We want to intersect the two visual rays 

corresponding to x1 and x2, but because of 
noise and numerical errors, they don’t meet 
exactly 

O1 O2 

x1 
x2 

X? 

Source: S. Lazebnik 



Triangulation: Geometric approach 
•  Find shortest segment connecting the two 

viewing rays and let X be the midpoint of that 
segment 

O1 O2 

x1 
x2 

X 

Source: S. Lazebnik 



Triangulation: Nonlinear approach 
Find X that minimizes 

O1 O2 

x1 
x2 

X? 

P1X 
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Source: S. Lazebnik 



Triangulation: Linear approach 
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Triangulation: Linear approach 
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Two independent equations each in terms of the 4 
elements of X (but only 3 degrees of freedom since 
scale is ambiguous and can be fixed) 

Source: S. Lazebnik 

This is again a linear least-squares problem which  
can be solved as shown previously 



Single-view metrology 

Many slides from S. Seitz, D. Hoiem 

Magritte, Personal Values, 1952 

Source: S. Lazebnik 



Camera calibration revisited 
•  What if world coordinates of reference 3D 

points are not known? 
•  We can use scene features such as vanishing 

points 

  

Vanishing 
 point 

Vanishing 
 line 

Vanishing 
 point 

 Vertical vanishing 
 point 

(at infinity) 

Slide from Efros, Photo from Criminisi 



Recall: Vanishing points 

image plane 

line in the scene 

vanishing point v 

•  All lines having the same direction share the same 
vanishing point 

camera 
center 

Source: S. Lazebnik 



Computing vanishing points 

•  X∞ is a point at infinity, v is its projection: v = PX∞ 

•  The vanishing point depends only on line direction  
•  All lines having direction d intersect at X∞ 

v 
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Source: S. Lazebnik 



Calibration from vanishing points 
•  Consider a scene with three orthogonal vanishing 

directions: 

 
 

•  Note: v1, v2 are finite vanishing points and v3 is an 
infinite vanishing point 

v2 
v1 . 

v3 

. 

Source: S. Lazebnik 



Calibration from vanishing points 
•  Consider a scene with three orthogonal vanishing 

directions: 

 
 

•  We can align the world coordinate system with 
these directions 

v2 
v1 . 

v3 

. 

Source: S. Lazebnik 



Calibration from vanishing points 

•  p1 = P(1,0,0,0)T – the vanishing point in the x direction 
•  Similarly, p2 and p3 are the vanishing points in the y 

and z directions 
•  p4 = P(0,0,0,1)T – projection of the origin of the world 

coordinate system 
•  Problem: we can only know the four columns up to 

independent scale factors, additional constraints 
needed to solve for them 
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Calibration from vanishing points 
•  Let us align the world coordinate system with three 

orthogonal vanishing directions in the scene: 

•  Each pair of vanishing points gives us a constraint 
on the focal length and principal point 
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Calibration from vanishing points 

Can solve for focal length, principal point Cannot recover focal 
length, principal point is 
the third vanishing point 

Source: S. Lazebnik 



Rotation from vanishing points 

Thus,  
Get λi by using the constraint ||ri||2=1. 
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Calibration from vanishing points: Summary 
•  Solve for K (focal length, principal point) using three 

orthogonal vanishing points 
•  Get rotation directly from vanishing points once 

calibration matrix is known 

•  Advantages 
•  No need for calibration chart, 2D-3D correspondences 
•  Could be completely automatic 

•  Disadvantages 
•  Only applies to certain kinds of scenes 
•  Inaccuracies in computation of vanishing points 
•  Problems due to infinite vanishing points 

Source: S. Lazebnik 



Making measurements from a single image 

http://en.wikipedia.org/wiki/Ames_room 
Source: S. Lazebnik 



Comparing heights 

Vanishing 
Point 

Slide by Steve Seitz 



Measuring height 

1 

2 

3 

4 

5 
5.3 

2.8 
3.3 

Camera height 

Slide by Steve Seitz 



	Which	is	higher	–	the	camera	or	the	man	in	
the	parachute?	



O 

Measuring height without a ruler 

ground plane 

Compute Z from image measurements 
•  Need more than vanishing points to do this 

Z 

Source: S. Lazebnik 



Projective invariant 
•  We need to use a projective invariant: a quantity that 

does not change under projective transformations 
(including perspective projection) 

Source: S. Lazebnik 



Projective invariant 
•  We need to use a projective invariant: a quantity that 

does not change under projective transformations 
(including perspective projection) 

•  The cross-ratio of four points: 

P1 
P2 

P3 
P4 
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Source: S. Lazebnik 



The cross ratio 
A Projective Invariant 

•  Something that does not change under projective transformations 
(including perspective projection) 

P1 
P2 

P3 
P4 

1423
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−−

The cross-ratio of 4 collinear points 
 

Can permute the point ordering 
•  4! = 24 different orders (but only 6 distinct values) 

This is the fundamental invariant of projective geometry 
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Measuring height without a ruler 
Source: S. Lazebnik 
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2D lines in homogeneous coordinates 
•  Line equation:  ax + by + c = 0 

•  Line passing through two points: 
 
•  Intersection of two lines: 

•  What is the intersection of two parallel lines? 
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1 2 3 4 

1 
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3 

4 

Measurements on planes 

Approach:  unwarp then measure 
What kind of warp is this? 

Source: S. Lazebnik 



Image rectification 

To unwarp (rectify) an image 
•  solve for homography H given p and p′ 
–  how many points are necessary to solve for H? 

p 
p′ 

Source: S. Lazebnik 



Image rectification: example 

Piero	della	Francesca,	Flagellation,	ca.	1455	

Source: S. Lazebnik 



Application: 3D modeling from a single image 

J. Vermeer, Music Lesson, 1662 

http://research.microsoft.com/en-us/um/people/antcrim/ACriminisi_3D_Museum.wmv 

A. Criminisi, M. Kemp, and A. Zisserman, 
Bringing Pictorial Space to Life: computer techniques for the 
analysis of paintings, Proc. Computers and the History of Art, 
2002 



Application: 3D modeling from a single image 

D. Hoiem, A.A. Efros, and M. Hebert, "Automatic Photo Pop-up", SIGGRAPH 2005. 

http://dhoiem.cs.illinois.edu/projects/popup/popup_movie_450_250.mp4 



Application: Image editing 
Inserting synthetic objects into images: 

http://vimeo.com/28962540 
 
 

K. Karsch and V. Hedau and D. Forsyth and D. Hoiem, “Rendering Synthetic Objects into 
Legacy Photographs,” SIGGRAPH Asia 2011 



Application: Object recognition 

D. Hoiem, A.A. Efros, and M. Hebert, "Putting Objects in Perspective", CVPR 2006 


