Computer Vision

CS-E4850, 5 study credits
Lecturer: Juho Kannala

Lecture 10: Camera calibration \& single view metrology

- Camera calibration is the process of determining the internal camera parameters, which define the mapping between incoming light rays and image pixels
- Single view metrology provides methods for measuring relative lengths from a single image by utilizing certain assumptions

Acknowledgement: many slides from Svetlana Lazebnik, Derek Hoiem, Steve Seitz, and others (detailed credits on individual slides)

Reading

- Szeliski's book, Sections 6.2 and 6.3 in $1^{\text {st }}$ edition
- Hartley \& Zisserman book, Chapters 6, 7, and 8

Calibrating a single camera

Odilon Redon, Cyclops, 1914

Our goal: Recovery of 3D structure

- Recovery of structure from one image is inherently ambiguous

Single-view ambiguity

Single-view ambiguity

Ames room

Our goal: Recovery of 3D structure

- We will need multi-view geometry

Review: Pinhole camera model

Note that usually y-axis
points down. That convention leads to mathematically equivalent formulas and can be obtained here by 180 degree rotation around z -axis.

world coordinate system

- Normalized (camera) coordinate system: camera center is at the origin, the principal axis is the z -axis, x and y axes of the image plane are parallel to x and y axes of the world
- Goal of camera calibration: go from world coordinate system to image coordinate system

Review: Pinhole camera model

$$
\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \mapsto\left(\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{llll}
f & & & 0 \\
& f & & 0 \\
& & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

$$
\mathrm{x}=\mathrm{PX}
$$

Principal point

- Principal point (p): point where principal axis intersects the image plane
- Normalized coordinate system: origin of the image is at the principal point
- Image coordinate system: origin is in the corner

Principal point offset

We want the principal point to map to (p_{x}, p_{y}) instead of $(0,0)$

$$
(X, Y, Z) \mapsto\left(f X / Z+p_{x}, f Y / Z+p_{y}\right)
$$

$$
\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \mapsto\left(\begin{array}{c}
f X+Z p_{x} \\
f Y+Z p_{y} \\
Z
\end{array}\right)=\left[\begin{array}{cccc}
f & & p_{x} & 0 \\
& f & p_{y} & 0 \\
& & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Principal point offset

Pixel coordinates

Pixel size: $\frac{1}{m_{x}} \times \frac{1}{m_{y}}$
m_{x} pixels per meter in horizontal direction, m_{y} pixels per meter in vertical direction

$$
K=\underset{\text { pixels } / \mathrm{m}}{\left[\begin{array}{lll}
m_{x} & & \\
& m_{y} & \\
& & \mathrm{~m}
\end{array}\right]\left[\begin{array}{llc}
f & & p_{x} \\
& f & p_{y} \\
& & 1
\end{array}\right]}=\left[\begin{array}{lll}
\alpha_{x} & & \beta_{x} \\
& \alpha_{y} & \beta_{y} \\
& & 1
\end{array}\right]
$$

Camera rotation and translation

- In general, the camera coordinate frame will be related to the world coordinate frame by a rotation and a translation
- Conversion from world to camera coordinate system (in non-homogeneous coordinates):
coords. of point in camera frame
coords. of camera center in world frame
coords. of a point in world frame

Camera rotation and translation

$$
\begin{gathered}
X_{c a m}=\binom{\widetilde{X}_{c a m}}{1}=\left[\begin{array}{cc}
R & -R \widetilde{C} \\
0 & 1
\end{array}\right]\binom{\widetilde{X}}{1}=\left[\begin{array}{cc}
R & -R \widetilde{C} \\
0 & 1
\end{array}\right] X \\
x=K[I \mid 0] X_{c a m}=K[R \mid-R \widetilde{X}] X \quad P=K[R \mid t] \quad t=-R \widetilde{C} \quad
\end{gathered}
$$

Camera parameters

- Intrinsic parameters
- Principal point coordinates
- Focal length
- Pixel magnification factors
- Skew (non-rectangular pixels)

$$
\mathbf{K}=\left[\begin{array}{lll}
m_{x} & & \\
& m_{y} & \\
& & 1
\end{array}\right]\left[\begin{array}{llc}
f & & p_{x} \\
& f & p_{y} \\
& & 1
\end{array}\right]=\left[\begin{array}{lll}
\alpha_{x} & & \beta_{x} \\
& \alpha_{y} & \beta_{y} \\
& & 1
\end{array}\right]
$$

- Radial distortion

radial distortion

Camera parameters

- Intrinsic parameters
- Principal point coordinates
- Focal length
- Pixel magnification factors
- Skew (non-rectangular pixels)
- Radial distortion
- Extrinsic parameters
- Rotation and translation relative to world coordinate system
- What is the projection of the camera center?
$\mathbf{P}=\mathbf{K}\left[\begin{array}{ll}\mathbf{R} & -\mathbf{R} \widetilde{\mathbf{C}}\end{array}\right]$
coords. of
camera center in world frame

$$
\mathbf{P C}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & -\mathbf{R} \widetilde{\mathbf{C}}
\end{array}\right]\left[\begin{array}{c}
\widetilde{\mathbf{C}} \\
1
\end{array}\right]=0
$$

The camera center is the null space of the projection matrix!

Camera calibration

$$
\left.\begin{array}{c}
\mathbf{x}=\mathbf{K}[\mathbf{R} \quad \mathbf{t}
\end{array}\right] \mathbf{X},\left[\begin{array}{c}
\lambda x \\
\lambda y \\
\lambda
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] ~ \$
$$

Camera calibration

- Given n points with known 3D coordinates \boldsymbol{X}_{i} and known image projections \boldsymbol{x}_{i}, estimate the camera parameters

Camera calibration: Linear method

$$
\lambda \mathbf{x}_{i}=\mathbf{P} \mathbf{X}_{i}
$$

$$
\mathbf{x}_{i} \times \mathbf{P} \mathbf{X}_{i}=0
$$

$$
\left[\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right] \times\left[\begin{array}{l}
\mathbf{P}_{1}^{T} \mathbf{X}_{i} \\
\mathbf{P}_{2}^{T} \mathbf{X}_{i} \\
\mathbf{P}_{3}^{T} \mathbf{X}_{i}
\end{array}\right]=0
$$

$$
\left[\begin{array}{ccc}
0 & -\mathbf{X}_{i}^{T} & y_{i} \mathbf{X}_{i}^{T} \\
\mathbf{X}_{i}^{T} & 0 & -x_{i} \mathbf{X}_{i}^{T} \\
-y_{i} \mathbf{X}_{i}^{T} & x_{i} \mathbf{X}_{i}^{T} & 0
\end{array}\right]\left(\begin{array}{l}
\mathbf{P}_{1} \\
\mathbf{P}_{2} \\
\mathbf{P}_{3}
\end{array}\right)=0
$$

Two linearly independent equations

Camera calibration: Linear method

$$
\left[\begin{array}{ccc}
0^{T} & \mathbf{X}_{1}^{T} & -y_{1} \mathbf{X}_{1}^{T} \\
\mathbf{X}_{1}^{T} & 0^{T} & -x_{1} \mathbf{X}_{1}^{T} \\
\cdots & \cdots & \cdots \\
0^{T} & \mathbf{X}_{n}^{T} & -y_{n} \mathbf{X}_{n}^{T} \\
\mathbf{X}_{n}^{T} & 0^{T} & -x_{n} \mathbf{X}_{n}^{T}
\end{array}\right]\left(\begin{array}{l}
\mathbf{P}_{1} \\
\mathbf{P}_{2} \\
\mathbf{P}_{3}
\end{array}\right)=0 \quad \mathbf{A p}=\mathbf{0}
$$

- P has 11 degrees of freedom
- One 2D/3D correspondence gives us two linearly independent equations
- 6 correspondences needed for a minimal solution
- Homogeneous least squares: find $\mathrm{p}(\|\mathrm{p}\|=1)$ minimizing $\|\mathrm{Ap}\|^{2}$
- Solution given by eigenvector of $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ with smallest eigenvalue

Camera calibration: Linear method

$$
\left[\begin{array}{ccc}
0^{T} & \mathbf{X}_{1}^{T} & -y_{1} \mathbf{X}_{1}^{T} \\
\mathbf{X}_{1}^{T} & 0^{T} & -x_{1} \mathbf{X}_{1}^{T} \\
\cdots & \cdots & \cdots \\
0^{T} & \mathbf{X}_{n}^{T} & -y_{n} \mathbf{X}_{n}^{T} \\
\mathbf{X}_{n}^{T} & 0^{T} & -x_{n} \mathbf{X}_{n}^{T}
\end{array}\right]\left(\begin{array}{l}
\mathbf{P}_{1} \\
\mathbf{P}_{2} \\
\mathbf{P}_{3}
\end{array}\right)=0 \quad \mathbf{A p}=\mathbf{0}
$$

- Note: for coplanar points that satisfy $\boldsymbol{\Pi}^{T} \mathbf{X}=0$, we will get degenerate solutions ($\boldsymbol{\Pi}, \mathbf{0}, \mathbf{0}$), $\mathbf{(0 , \Pi , 0})$, or (0,0, $\boldsymbol{\Pi})$

Camera calibration: Linear method

- The linear method only estimates the entries of the projection matrix:

$$
\left[\begin{array}{c}
\lambda x \\
\lambda y \\
\lambda
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- What we ultimately want is a decomposition of this matrix into the intrinsic and extrinsic parameters:

$$
x=K\left[\begin{array}{ll}
R & t
\end{array}\right] X
$$

- This can be achieved via the RQ matrix decomposition (see Sec. 6.2.4 of H\&Z book)

Camera calibration: Linear method

- Advantages: easy to formulate and solve
- Disadvantages
- Doesn't directly tell you camera parameters
- Doesn't model radial distortion
- Can't impose constraints, such as known focal length and orthogonality
- Non-linear methods are preferred
- Define error as sum of squared distances between measured 2D points and estimated projections of 3D points
- Minimize error using Newton's method or other non-linear optimization
- The iterative optimization by non-linear methods can be initialized with the solution provided by the linear method

A taste of multi-view geometry: Triangulation

- Given projections of a 3D point in two or more images (with known camera matrices), find the coordinates of the point

Triangulation

- Given projections of a 3D point in two or more images (with known camera matrices), find the coordinates of the point

Triangulation

- We want to intersect the two visual rays corresponding to \mathbf{x}_{1} and \mathbf{x}_{2}, but because of noise and numerical errors, they don't meet exactly

Triangulation: Geometric approach

- Find shortest segment connecting the two viewing rays and let \mathbf{X} be the midpoint of that segment

Triangulation: Nonlinear approach

Find X that minimizes

$$
d^{2}\left(\mathbf{x}_{1}, \mathbf{P}_{\mathbf{1}} \mathbf{X}\right)+d^{2}\left(\mathbf{x}_{2}, \mathbf{P}_{\mathbf{2}} \mathbf{X}\right)
$$

Triangulation: Linear approach

$$
\begin{array}{lll}
\lambda_{1} \mathbf{x}_{1} \mathbf{P}_{1} \mathbf{X} & \mathbf{x}_{1} \times \mathbf{P}_{1} \mathbf{X}=\mathbf{0} & {\left[\mathbf{x}_{1 \times}\right] \mathbf{P}_{1} \mathbf{X}=\mathbf{0}} \\
\lambda_{2} \mathbf{x}_{2}=\mathbf{P}_{2} \mathbf{X} & \mathbf{x}_{2} \times \mathbf{P}_{2} \mathbf{X}=\mathbf{0} & {\left[\mathbf{x}_{2 \times}\right] \mathbf{P}_{2} \mathbf{X}=\mathbf{0}}
\end{array}
$$

Cross product as matrix multiplication:

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=\left[\mathbf{a}_{x}\right] \mathbf{b}
$$

Triangulation: Linear approach

$$
\begin{array}{llc}
\lambda_{1} \mathbf{x}_{1}=\mathbf{P}_{1} \mathbf{X} & \mathbf{x}_{1} \times \mathbf{P}_{1} \mathbf{X}=\mathbf{0} & {\left[\mathbf{x}_{1 \times}\right] \mathbf{P}_{1} \mathbf{X}=\mathbf{0}} \\
\lambda_{2} \mathbf{x}_{2}=\mathbf{P}_{2} \mathbf{X} & \mathbf{x}_{2} \times \mathbf{P}_{2} \mathbf{X}=\mathbf{0} & {\left[\mathbf{x}_{2 \times}\right] \mathbf{P}_{2} \mathbf{X}=\mathbf{0}}
\end{array}
$$

Two independent equations each in terms of the 4 elements of \mathbf{X} (but only 3 degrees of freedom since scale is ambiguous and can be fixed)

This is again a linear least-squares problem which can be solved as shown previously

Single-view metrology

Magritte, Personal Values, 1952
Many slides from S. Seitz, D. Hoiem

Camera calibration revisited

- What if world coordinates of reference 3D points are not known?
- We can use scene features such as vanishing points

Recall: Vanishing points

- All lines having the same direction share the same vanishing point

Computing vanishing points

$$
\mathbf{X}_{t}=\left[\begin{array}{c}
x_{0}+t d_{1} \\
y_{0}+t d_{2} \\
z_{0}+t d_{3} \\
1
\end{array}\right]=\left[\begin{array}{c}
x_{0} / t+d_{1} \\
y_{0} / t+d_{2} \\
z_{0} / t+d_{3} \\
1 / t
\end{array}\right] \quad \mathbf{X}_{\infty}=\left[\begin{array}{c}
d_{1} \\
d_{2} \\
d_{3} \\
0
\end{array}\right]
$$

- \mathbf{X}_{∞} is a point at infinity, \mathbf{v} is its projection: $\mathbf{v}=\mathbf{P} \mathbf{X}_{\infty}$
- The vanishing point depends only on line direction
- All lines having direction dintersect at \mathbf{X}_{∞}

Calibration from vanishing points

- Consider a scene with three orthogonal vanishing directions:

- Note: $\mathbf{v}_{1}, \mathbf{v}_{2}$ are finite vanishing points and \mathbf{v}_{3} is an infinite vanishing point

Calibration from vanishing points

- Consider a scene with three orthogonal vanishing directions:

- We can align the world coordinate system with these directions

Calibration from vanishing points

$\mathbf{P}=\left[\begin{array}{l|l|l|l}* & * & * & * \\ * & * & * & * \\ * & * & * & *\end{array}\right]=\left[\begin{array}{llll}\mathbf{p}_{1} & \mathbf{p}_{2} & \mathbf{p}_{3} & \mathbf{p}_{4}\end{array}\right]$

- $\mathbf{p}_{1}=\mathbf{P}(1,0,0,0)^{\mathrm{T}}$ - the vanishing point in the x direction
- Similarly, \mathbf{p}_{2} and \mathbf{p}_{3} are the vanishing points in the y and z directions
- $\mathbf{p}_{4}=\mathbf{P}(0,0,0,1)^{\mathrm{T}}-$ projection of the origin of the world coordinate system
- Problem: we can only know the four columns up to independent scale factors, additional constraints needed to solve for them

Calibration from vanishing points

- Let us align the world coordinate system with three orthogonal vanishing directions in the scene:

$$
\begin{aligned}
& \mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \mathbf{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \lambda_{i} \mathbf{v}_{i}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}]\left[\begin{array}{l}
\mathbf{e}_{i} \\
0
\end{array}\right]=\mathbf{K} \mathbf{R} \mathbf{e}_{i} \\
& \mathbf{e}_{i}=\lambda_{i} \mathbf{R}^{T} \mathbf{K}^{-1} \mathbf{v}_{i}, \quad \mathbf{e}_{i}^{T} \mathbf{e}_{j}=0 \\
& \mathbf{v}_{i}^{T} \mathbf{K}^{-T} \mathbf{R}^{T} \mathbf{K}^{-1} \mathbf{v}_{j}=\mathbf{v}_{i}^{T} \mathbf{K}^{-T} \mathbf{K}^{-1} \mathbf{v}_{j}=0
\end{aligned}
$$

- Each pair of vanishing points gives us a constraint on the focal length and principal point

Calibration from vanishing points

1 finite vanishing point, 2 infinite vanishing points

2 finite vanishing points, 1 infinite vanishing point

3 finite vanishing points

Cannot recover focal length, principal point is the third vanishing point

Can solve for focal length, principal point

Rotation from vanishing points

$$
\begin{gathered}
\lambda_{i} \mathbf{v}_{i}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}]\left[\begin{array}{c}
\mathbf{e}_{i} \\
0
\end{array}\right]=\mathbf{K R} \mathbf{e}_{i} \\
\lambda_{1} \mathbf{K}^{-1} \mathbf{v}_{1}=\mathbf{R} \mathbf{e}_{1}=\left[\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3}
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\mathbf{r}_{1}
\end{gathered}
$$

Thus, $\lambda_{i} \mathbf{K}^{-1} \mathbf{v}_{i}=\mathbf{r}_{i}$.
Get λ_{i} by using the constraint $\left\|\mathbf{r}_{i}\right\|^{2}=1$.

Calibration from vanishing points: Summary

- Solve for K (focal length, principal point) using three orthogonal vanishing points
- Get rotation directly from vanishing points once calibration matrix is known
- Advantages
- No need for calibration chart, 2D-3D correspondences
- Could be completely automatic
- Disadvantages
- Only applies to certain kinds of scenes
- Inaccuracies in computation of vanishing points
- Problems due to infinite vanishing points

Making measurements from a single image

http://en.wikipedia.org/wiki/Ames room

Comparing heights

Measuring height

Which is higher - the camera or the man in the parachute?

Measuring height without a ruler

Compute Z from image measurements

- Need more than vanishing points to do this

Projective invariant

- We need to use a projective invariant: a quantity that does not change under projective transformations (including perspective projection)

Projective invariant

- We need to use a projective invariant: a quantity that does not change under projective transformations (including perspective projection)
- The cross-ratio of four points:

$$
\frac{\left\|\mathbf{P}_{3}-\mathbf{P}_{1}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{3}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{1}\right\|}
$$

The cross ratio

A Projective Invariant

- Something that does not change under projective transformations (including perspective projection)

The cross-ratio of 4 collinear points

$$
\frac{\left\|\mathbf{P}_{3}-\mathbf{P}_{1}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{3}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{1}\right\|}
$$

$$
\mathbf{P}_{i}=\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right]
$$

Can permute the point ordering $\quad \frac{\left\|\mathbf{P}_{1}-\mathbf{P}_{3}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{1}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{3}\right\|}$

- $4!=24$ different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry

Measuring height

$$
\begin{aligned}
& \frac{\|\mathbf{B}-\mathbf{T}\|\|\infty-\mathbf{R}\|}{\|\mathbf{B}-\mathbf{R}\|\|\infty-\mathbf{T}\|}=\frac{H}{R} \\
& \text { scene cross ratio } \\
& \frac{\|\mathbf{b}-\mathbf{t}\|\left\|\mathbf{v}_{Z}-\mathbf{r}\right\|}{\|\mathbf{b}-\mathbf{r}\|\left\|\mathbf{v}_{Z}-\mathbf{t}\right\|}=\frac{H}{R} \\
& \text { image cross ratio }
\end{aligned}
$$

image points as $\mathbf{p}=\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$

Measuring height without a ruler

Source: S. Lazebnik
vanishing line (horizon)

2D lines in homogeneous coordinates

- Line equation: $a x+b y+c=0$

$$
\mathbf{I}^{T} \mathbf{x}=0 \quad \text { where } \quad \mathbf{l}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- Line passing through two points: $\mathbf{l}=\mathbf{x}_{1} \times \mathbf{x}_{2}$
- Intersection of two lines: $\mathbf{x}=\mathbf{l}_{1} \times \mathbf{l}_{2}$
- What is the intersection of two parallel lines?

Source: S. Lazebnik

Measurements on planes

Approach: unwarp then measure What kind of warp is this?

Image rectification

To unwarp (rectify) an image

- solve for homography H given p and p^{\prime}
- how many points are necessary to solve for H ?

Image rectification: example

Piero della Francesca, Flagellation, ca. 1455

Application: 3D modeling from a single image

J. Vermeer, Music Lesson, 1662

A. Criminisi, M. Kemp, and A. Zisserman, Bringing Pictorial Space to Life: computer techniques for the analysis of paintings, Proc. Computers and the History of Art, 2002
http://research.microsoft.com/en-us/um/people/antcrim/ACriminisi 3D Museum.wmv

Application: 3D modeling from a single image

D. Hoiem, A.A. Efros, and M. Hebert, "Automatic Photo Pop-up", SIGGRAPH 2005. http://dhoiem.cs.illinois.edu/projects/popup/popup_movie_450_250.mp4

Application: Image editing

Inserting synthetic objects into images: http://vimeo.com/28962540

K. Karsch and V. Hedau and D. Forsyth and D. Hoiem, "Rendering Synthetic Objects into Legacy Photographs," SIGGRAPH Asia 2011

Application: Object recognition

D. Hoiem, A.A. Efros, and M. Hebert, "Putting Objects in Perspective", CVPR 2006

