Computer Vision

CS-E4850, 5 study credits
Lecturer: Juho Kannala



Lecture 11: Two-view geometry &
stereo vision

 Two-view geometry (a.k.a. epipolar geometry) describes
the geometric constraints between two views

* Stereo vision is the principle of using two views to
measure depths of scene points

Acknowledgement: many slides from Svetlana Lazebnik, Steve Seitz, Yuri
Boykov, Noah Snavely, and others (detailed credits on individual slides)



Reading

» Szeliski’s book, Section 7.2 and Chapter 11 in 15t edition
and/or

* Hartley & Zisserman book, Chapters 9-12
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Multi-view geometry




Multi-view geometry problems

« Structure: Given projections of the same 3D point in two
or more images, compute the 3D coordinates of that point
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Multi-view geometry problems

« Stereo correspondence: Given a point in one of the
Images, where could its corresponding points be in the
other images?

Y
Y4

Camera 1

Rl 9t1

Camera 2

R29t2

Camera 3

R3,t3 Slide credit:

Noah Snavely



Multi-view geometry problems

* Motion: Given a set of corresponding points in two or
more images, compute the camera parameters
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Two-view geometry
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Epipolar geometry
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» Baseline — line connecting the two camera centers

« Epipolar Plane — plane containing baseline (1D family)
* Epipoles
= intersections of baseline with image planes

= projections of the other camera center
= vanishing points of the motion direction
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Epipolar geometry
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» Baseline — line connecting the two camera centers

« Epipolar Plane — plane containing baseline (1D family)
* Epipoles

= intersections of baseline with image planes

= projections of the other camera center

= vanishing points of the motion direction

 Epipolar Lines - intersections of epipolar plane with image
planes (always come in corresponding pairs)
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Example: Converging cameras




Example: Motion parallel to image plane
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Example: Motion perpendicular to image plane
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Example: Motion perpendicular to image plane
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« Points move along lines radiating from the epipole: “focus of expansion”
 Epipole is the principal point

Source: S. Lazebnik
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Epipolar constraint

 |f we observe a point x in one image, where
can the corresponding point x’ be in the other
iImage?
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Epipolar constraint

* Potential matches for x have to lie on the corresponding
epipolar line I’.

* Potential matches for x” have to lie on the corresponding
epipolar line .
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Epipolar constraint example




Source: S. Lazebnik

Epipolar constraint: Calibrated case

X

» Intrinsic and extrinsic parameters of the cameras are known,
world coordinate system is set to that of the first camera

* Then the projection matrices are given by K[I | 0] and K’[R | {]

« We can multiply the projection matrices (and the image points)
by the inverse of the calibration matrices to get normalized
Image coordinates:

=K 'x_, =[I 0]X, =K' 'x

norm pixel norm plxel

—[R 11X
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Epipolar constraint: Calibrated case
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The vectors Rx, 7, and x’ are coplanar
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Epipolar constraint: Calibrated case
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Recall: axb=| a_ 0 =—a||lb, |=[ab

The vectors Rx, 7, and x’ are coplanar
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Epipolar constraint: Calibrated case

X
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Essential Matrix
(Longuet-Higgins, 1981)

The vectors Rx, 7, and x’ are coplanar
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Epipolar constraint: Calibrated case

X

x"Ex=0

« E xis the epipolar line associated with x (I' = E x)

 Recall: alineis given by ax + by + c=0or

a

1"x=0 where 1=|b]|,
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Epipolar constraint: Calibrated case

x"Ex=0

E x is the epipolar line associated with x (I' = E x)
E'x'is the epipolar line associated with x' (I = E"x")
Ee=0 and E'e'=0

E is singular (rank two)

E has five degrees of freedom



Source: S. Lazebnik

Epipolar constraint: Uncalibrated case
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 The calibration matrices K and K’ of the two
cameras are unknown

* We can write the epipolar constraint in terms
of unknown normalized coordinates:

A A A -1 A -1
x"TEx=0 x=K'x, xX=K'Xx
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Epipolar constraint: Uncalibrated case
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Fundamental Matrix
X (Faugeras and Luong, 1992)
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Epipolar constraint: Uncalibrated case
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XTEx=0 mm)x"Fx=0 with F=K "EK™

« F x is the epipolar line associated with x (I' = F x)

« F7x' is the epipolar line associated with x* (I = F'x")
« Fe=0 and F'e'=0

« Fis singular (rank two)

* F has seven degrees of freedom
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Estimating the fundamental matrix
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The eight-point algorithm
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Problem with eight-point algorithm
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Problem with eight-point algorithm
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The normalized eight-point algorithm

(Hartley, 1995)

« Center the image data at the origin, and scale it so
the mean squared distance between the origin and
the data points is 2 pixels

« Use the eight-point algorithm to compute F from the
normalized points

« Enforce the rank-2 constraint (for example, take SVD
of F and throw out the smallest singular value)

» Transform fundamental matrix back to original units: if
T and T’ are the normalizing transformations in the
two images, than the fundamental matrix in original
coordinatesis T'F T
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Nonlinear estimation

« Linear estimation minimizes the sum of squared algebraic
distances between points x’;and epipolar lines F x; (or
points x; and epipolar lines F'x’):

N

1T 2
E(xl. Fx,)
=1

« Nonlinear approach: minimize sum of squared geometric
distances

E[dz(xi’,inHdz(xl.,FTxl.’)]

i=1
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Comparison of estimation algorithms

8-point Normalized 8-point Nonlinear least squares
Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel
Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel




The Fundamental Matrix Song

http://danielwedge.com/fmatrix/
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From epipolar geometry to camera calibration

« Estimating the fundamental matrix is known
as “weak calibration”

* If we know the calibration matrices of the two
cameras, we can estimate the essential
matrix: E = K''"FK

* The essential matrix gives us the relative

rotation and translation between the cameras,
or their extrinsic parameters
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Stereo

Many slides adapted from Steve Seitz
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Binocular stereo

» Given a calibrated binocular stereo pair, fuse it to
produce a depth image

image 1

Dense depth map
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Binocular stereo

» Given a calibrated binocular stereo pair, fuse it to
produce a depth image

Where does the depth information come from?
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Binocular stereo

» Given a calibrated binocular stereo pair, fuse it to
produce a depth image

* Humans can do it
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Stereograms: Invented by Sir Charles Wheatstone, 1838
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Basic stereo matching algorithm
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* For each pixel in the first image
* Find corresponding epipolar line in the right image
« Examine all pixels on the epipolar line and pick the best match
« Triangulate the matches to get depth information

« Simplest case: epipolar lines are corresponding scanlines
 When does this happen?
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Simplest Case: Parallel images

Image planes of cameras
are parallel to each other
and to the baseline

Camera centers are at same
height

Focal lengths are the same
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Simplest Case: Parallel images

« Image planes of cameras
are parallel to each other
and to the baseline

 Camera centers are at same
height

* Focal lengths are the same

» Then epipolar lines fall along

the horizontal scan lines of
the images
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Essential matrix for parallel images
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The y-coordinates of corresponding points are the same!
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Depth from disparity
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Disparity is inversely proportional to depth!
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Depth from disparity
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Triangulation: History

From Wikipedia: Gemma Frisius's 15633
diagram introducing the idea of
triangulation into the science of
surveying. Having established a
baseline, e.q. the cities of Brussels and
Antwerp, the location of other cities,
e.g. Middelburg, Ghent etc., can be
found by taking a compass direction
from each end of the baseline, and
plotting where the two directions cross.
This was only a theoretical presentation
of the concept — due to topographical
restrictions, it is impossible to see
Middelburg from either Brussels or
Antwerp. Nevertheless, the figure soon
became well known all across Europe.
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Stereo image rectification
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Stereo image rectification

* Reproject image planes onto a common
plane parallel to the line between optical centers
» Pixel motion is horizontal after this transformation

« Two homographies (3x3 transform), one for each
input image reprojection

C. Loop and Z. Zhang.
Computing Rectifying Homographies for Stereo Vision. IEEE Conf.
Comnbpniiter \Vicion and Pattarn Recoanition 10090
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Rectification example
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Correspondence search

Left | Right

scanline

Matching cost I\/\’\
/\/\{ disparity

« Slide a window along the right scanline and compare
contents of that window with the reference window in

the left image
« Matching cost: SSD or normalized correlation
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Correspondence search

Left Right

scanline
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Correspondence search

Left Right

scanline

Norm. corr
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Basic stereo matching algorithm
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 If necessary, rectify the two stereo images to transform
epipolar lines into scanlines

* For each pixel x in the first image

* Find corresponding epipolar scanline in the right image
« Examine all pixels on the scanline and pick the best match x’
« Compute disparity x—x’ and set depth(x) = B*f/(x—x’)
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Failures of correspondence search
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Effect of window size

« Smaller window

+ More detalil
— More noise

« Larger window
+ Smoother disparity maps
— Less detail
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Results with window search

Data
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Better methods exist...

Graph cuts Ground truth

Y. Boykov, O. Veksler, and R. Zabih,
Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

For the latest and greatest: http://www.middlebury.edu/stereo/
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How can we improve window-based matching?

« The similarity constraint is local (each reference
window is matched independently)

» Need to enforce non-local correspondence
constraints
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Non-local constraints

* Uniqueness

* For any point in one image, there should be at most one
matching point in the other image

/

/ o Violates unigueness
\ constraint

Left | lmage Right image ok
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Non-local constraints

* Uniqueness

* For any point in one image, there should be at most one
matching point in the other image

* Ordering

» Corresponding points should be in the same order in both views
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Non-local constraints

* Uniqueness

* For any point in one image, there should be at most one
matching point in the other image

Ordering

» Corresponding points should be in the same order in both views
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Ordering constraint doesn’t hold
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Non-local constraints

* Uniqueness

* For any point in one image, there should be at most one
matching point in the other image

* Ordering

» Corresponding points should be in the same order in both views

* Smoothness
* We expect disparity values to change slowly (for the most part)
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Scanline stereo

« Try to coherently match pixels on the entire scanline
« Different scanlines are still optimized independently

Left image I Right image
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“Shortest paths” for scan-line stereo

L Left image...

Right imag

occlusion
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Can be implemented with dynamic programming
Ohta & Kanade '85, Cox et al. ‘96 Siide credit Y. Boykov
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Coherent stereo on 2D grid

« Scanline stereo generates streaking artifacts

« Can’t use dynamic programming to find spatially
coherent disparities/ correspondences on a 2D grid
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Stereo matching as energy minimization

E(D) = 2 W) - Wi+ D@)) +24 Y p(DG)-D(j))

neighborsi
J \ e -/ J

Y Y
data term smoothness term

« Energy functions of this form can be minimized using
graph cuts

Y. Boykov, O. Veksler, and R. Zabih,
Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001
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Stereo matching as energy minimization

* Probabilistic interpretation: we want to find a Maximum A
Posteriori (MAP) estimate of disparity image D:

P(D|1,.1,) = P(I,.1, | D)P(D)
—log P(D|1,,1,) > -log P({,,1, | D)-log P(D)

data([19]29D)+}’ mooth(D)




Source: S. Lazebnik

Stereo matching as energy minimization

* Note: the above formulation does not treat the two
Images symmetrically, does not enforce uniqueness,
and does not take occlusions into account

 |tis possible to come up with an energy that does all
these things, but it's a bit more complex

» Defined over all possible sets of matches, not over all
disparity maps with respect to the first image

* Includes an occlusion term
* The smoothness term looks different and more complicated

V. Kolmogorov and R. Zabih,
Computing Visual Correspondence with Occlusions using Graph Cuts, ICCV 2001
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Optical flow estimation for stereo

Source: http://people.csail.mit.edu/celiu/OpticalFlow/

flow color coding
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Active stereo with structured light

* Project “structured” light patterns onto the object
» Simplifies the correspondence problem
* Allows us to use only one camera

camera

[F

projector

L. Zhang, B. Curless, and S. M. Seitz.
Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic
Programming. 3DPVT 2002
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Active stereo with structured light
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L. Zhang, B. Curless, and S. M. Seitz.
Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic
Programming. 3DPVT 2002

Surface
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Active stereo with structured light

Surface

PR
7T,

lllummant Camera

http://en.wikipedia.org/wiki/Structured-light 3D scanner
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Kinect: Structured infrared light

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/




Laser scanning

Object

Direction of travel

Laser sheet

%\ CCD image plane

& Y Cylindrical lens £
Laser CCD

Digital Michelangelo Project

Levoy et al.
http://graphics.stanford.edu/projects/mich/

Optical triangulation
* Project a single stripe of laser light
« Scan it across the surface of the object
« This is a very precise version of structured light scanning

Source: S. Seitz



Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz



Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz



Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz



Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz



Laser scanned models

56 million triangles)

(

1.0 mm resolution

The Digital Michelangelo Project, Levoy et al.

. S. Seitz

Source



Aligning range images

« A single range scan is not sufficient to describe a
complex surface

* Need techniques to register multiple range images

B. Curless and M. Levoy,

A Volumetric Method for Building Complex Models from Range Images, SIGGRAPH
100R




Source: S. Lazebnik

Aligning range images

« A single range scan is not sufficient to describe a
complex surface

* Need techniques to register multiple range images

... which brings us to multi-view stereo



