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Lecture	11:	Two-view	geometry		&	
stereo	vision	

•  Two-view	geometry	(a.k.a.	epipolar	geometry)	describes	
the	geometric	constraints	between	two	views	

		
•  Stereo	vision	is	the	principle	of	using	two	views	to	
measure	depths	of	scene	points	

	
	
	
	
Acknowledgement:	many	slides	from	Svetlana	Lazebnik,	Steve	Seitz,	Yuri	
Boykov,	Noah	Snavely,	and	others	(detailed	credits	on	individual	slides)	

	
	



Reading	

•  Szeliski’s	book,	Section	7.2	and	Chapter	11	in	1st	edition	
	
and/or	
	
•  Hartley	&	Zisserman	book,	Chapters	9-12	

	

	



Multi-view geometry 
Source: S. Lazebnik 



Multi-view geometry problems 
•  Structure: Given projections of the same 3D point in two 

or more images, compute the 3D coordinates of that point 

Camera 3 
R3,t3 

Slide credit:  
Noah Snavely 

? 

Camera 1 
Camera 2 R1,t1 R2,t2 



Multi-view geometry problems 
•  Stereo correspondence: Given a point in one of the 

images, where could its corresponding points be in the 
other images? 

Camera 3 
R3,t3 

Camera 1 
Camera 2 R1,t1 R2,t2 

Slide credit: 
Noah Snavely 



Multi-view geometry problems 
•  Motion: Given a set of corresponding points in two or 

more images, compute the camera parameters 

Camera 1 
Camera 2 Camera 3 

R1,t1 R2,t2 
R3,t3 

? ? ? Slide credit: 
Noah Snavely 



Two-view geometry 
Source: S. Lazebnik 



•  Epipolar Plane – plane containing baseline (1D family) 
•  Epipoles  
= intersections of baseline with image planes  
= projections of the other camera center 
= vanishing points of the motion direction 

•  Baseline – line connecting the two camera centers 

Epipolar geometry 
X 

x x’ 

Source: S. Lazebnik 



•  Epipolar Plane – plane containing baseline (1D family) 
•  Epipoles  
= intersections of baseline with image planes  
= projections of the other camera center 
= vanishing points of the motion direction 
•  Epipolar Lines - intersections of epipolar plane with image 
  planes (always come in corresponding pairs) 

•  Baseline – line connecting the two camera centers 

Epipolar geometry 
X 

x x’ 

Source: S. Lazebnik 



Example: Converging cameras 
Source: S. Lazebnik 



Example: Motion parallel to image plane 

Source: S. Lazebnik 



Example: Motion perpendicular to image plane 

Source: S. Lazebnik 



Example: Motion perpendicular to image plane 

•  Points move along lines radiating from the epipole: “focus of expansion” 
•  Epipole is the principal point 

Source: S. Lazebnik 



Epipolar constraint 

•  If we observe a point x in one image, where 
can the corresponding point x’ be in the other 
image? 

x x’ 

X 

Source: S. Lazebnik 



•   Potential matches for x have to lie on the corresponding  
epipolar line l’. 

•   Potential matches for x’ have to lie on the corresponding  
epipolar line l. 

Epipolar constraint 

x x’ 

X 

x’ 

X 

x’ 

X 

Source: S. Lazebnik 



Epipolar constraint example 
Source: S. Lazebnik 



X 

x x’ 

Epipolar constraint: Calibrated case 

•  Intrinsic and extrinsic parameters of the cameras are known, 
world coordinate system is set to that of the first camera  

•  Then the projection matrices are given by K[I | 0] and K’[R | t] 
•  We can multiply the projection matrices (and the image points) 

by the inverse of the calibration matrices to get normalized 
image coordinates: 

XtRxKxX,IxKx ][0][ pixel
1

normpixel
1

norm =ʹʹ=ʹ== −−

Source: S. Lazebnik 



X 

x x’ = Rx+t 

Epipolar constraint: Calibrated case 

R 
t 

The vectors Rx, t, and x’ are coplanar  
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Epipolar constraint: Calibrated case 
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Recall: 

The vectors Rx, t, and x’ are coplanar  

Source: S. Lazebnik 



Epipolar constraint: Calibrated case 

0])([ =×⋅ʹ xRtx !x T [t×]Rx = 0

X 

x x’ = Rx+t 

!x TE x = 0

Essential Matrix 
(Longuet-Higgins, 1981) 

The vectors Rx, t, and x’ are coplanar  

Source: S. Lazebnik 



X 

x x’ 

Epipolar constraint: Calibrated case 

•  E x is the epipolar line associated with x (l' = E x) 
 

•  Recall: a line is given by ax + by + c = 0 or 
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X 

x x’ 

Epipolar constraint: Calibrated case 

•  E x is the epipolar line associated with x (l' = E x) 
•  ETx' is the epipolar line associated with x' (l = ETx') 
•  E e = 0   and   ETe' = 0 
•  E is singular (rank two) 
•  E has five degrees of freedom  

!x TE x = 0

Source: S. Lazebnik 



Epipolar constraint: Uncalibrated case 

•  The calibration matrices K and K’ of the two 
cameras are unknown 

•  We can write the epipolar constraint in terms 
of unknown normalized coordinates: 

X 

x x’ 

0ˆˆ =ʹ xEx T xKxxKx ʹʹ=ʹ= −− 11 ˆ,ˆ

Source: S. Lazebnik 



Epipolar constraint: Uncalibrated case 

X 

x x’ 

Fundamental Matrix 
(Faugeras and Luong, 1992) 
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Source: S. Lazebnik 



Epipolar constraint: Uncalibrated case 

•  F x  is the epipolar line associated with x (l' = F x) 
•  FTx'  is the epipolar line associated with x' (l = FTx') 
•  F e = 0   and   FTe' = 0 
•  F is singular (rank two) 
•  F has seven degrees of freedom 

X 

x x’ 

0ˆˆ =ʹ xEx T 1with0 −−ʹ==ʹ KEKFxFx TT

Source: S. Lazebnik 



Estimating the fundamental matrix 
Source: S. Lazebnik 



The eight-point algorithm 

Enforce rank-2 
constraint (take SVD  
of F and throw out the 
smallest singular value) 
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Source: S. Lazebnik 



Problem with eight-point algorithm 
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Source: S. Lazebnik 
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Problem with eight-point algorithm 

Poor numerical conditioning 
Can be fixed by rescaling the data 

Source: S. Lazebnik 



The normalized eight-point algorithm 

•  Center the image data at the origin, and scale it so 
the mean squared distance between the origin and 
the data points is 2 pixels 

•  Use the eight-point algorithm to compute F from the 
normalized points 

•  Enforce the rank-2 constraint (for example, take SVD 
of F and throw out the smallest singular value) 

•  Transform fundamental matrix back to original units: if 
T and T’ are the normalizing transformations in the 
two images, than the fundamental matrix in original 
coordinates is T’T F T 

(Hartley, 1995) 

Source: S. Lazebnik 



Nonlinear estimation 

•  Linear estimation minimizes the sum of squared algebraic 
distances between points x’i and epipolar lines F xi (or 
points xi and epipolar lines FTx’i): 

 
•  Nonlinear approach: minimize sum of squared geometric 

distances 
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T

i=1

N

∑ F xi )
2

d2( !xi,F xi )+d
2(xi,F

T !xi )"# $%
i=1

N

∑

xi 

FT !xi Fxi

!xi

Source: S. Lazebnik 



Comparison of estimation algorithms 

8-point Normalized 8-point Nonlinear least squares 

Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel 

Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel 

Source: S. Lazebnik 



The Fundamental Matrix Song 

http://danielwedge.com/fmatrix/ 



From epipolar geometry to camera calibration 

•  Estimating the fundamental matrix is known 
as “weak calibration” 

•  If we know the calibration matrices of the two 
cameras, we can estimate the essential 
matrix: E = K’TFK 

•  The essential matrix gives us the relative 
rotation and translation between the cameras, 
or their extrinsic parameters 

Source: S. Lazebnik 



Stereo 

Many slides adapted from Steve Seitz 

Source: S. Lazebnik 



Binocular stereo 
•  Given a calibrated binocular stereo pair, fuse it to 

produce a depth image 
image 1 image 2 

Dense depth map 

Source: S. Lazebnik 



Binocular stereo 
•  Given a calibrated binocular stereo pair, fuse it to 

produce a depth image 

Where does the depth information come from? 

Source: S. Lazebnik 



Binocular stereo 
•  Given a calibrated binocular stereo pair, fuse it to 

produce a depth image 
•  Humans can do it 

Stereograms: Invented by Sir Charles Wheatstone, 1838 

Source: S. Lazebnik 



Basic stereo matching algorithm 

•  For each pixel in the first image 
•  Find corresponding epipolar line in the right image 
•  Examine all pixels on the epipolar line and pick the best match 
•  Triangulate the matches to get depth information 

 
•  Simplest case: epipolar lines are corresponding scanlines 

•  When does this happen? 

Source: S. Lazebnik 



Simplest Case: Parallel images 
•  Image planes of cameras 

are parallel to each other 
and to the baseline 

•  Camera centers are at same 
height 

•  Focal lengths are the same 
 

Source: S. Lazebnik 



Simplest Case: Parallel images 
•  Image planes of cameras 

are parallel to each other 
and to the baseline 

•  Camera centers are at same 
height 

•  Focal lengths are the same 
•  Then epipolar lines fall along 

the horizontal scan lines of 
the images 

Source: S. Lazebnik 



Essential matrix for parallel images 
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Source: S. Lazebnik 



Depth from disparity 
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Depth from disparity 
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Source: S. Lazebnik 



Triangulation: History 

From Wikipedia: Gemma Frisius's 1533 
diagram introducing the idea of 
triangulation into the science of 
surveying. Having established a 
baseline, e.g. the cities of Brussels and 
Antwerp, the location of other cities, 
e.g. Middelburg, Ghent etc., can be 
found by taking a compass direction 
from each end of the baseline, and 
plotting where the two directions cross. 
This was only a theoretical presentation 
of the concept — due to topographical 
restrictions, it is impossible to see 
Middelburg from either Brussels or 
Antwerp. Nevertheless, the figure soon 
became well known all across Europe. 

Source: S. Lazebnik 



Stereo image rectification 
Source: S. Lazebnik 



Stereo image rectification 

•  Reproject image planes onto a common 
 plane parallel to the line between optical centers 

•  Pixel motion is horizontal after this transformation 
•  Two homographies (3x3 transform), one for each 

input image reprojection 

C. Loop and Z. Zhang. 
Computing Rectifying Homographies for Stereo Vision. IEEE Conf. 
Computer Vision and Pattern Recognition, 1999. 

Source: S. Lazebnik 



Rectification example 
Source: S. Lazebnik 



Matching cost 

disparity 

Left Right 

scanline 

Correspondence search 

•  Slide a window along the right scanline and compare 
contents of that window with the reference window in 
the left image 

•  Matching cost: SSD or normalized correlation 

Source: S. Lazebnik 



Left Right 

scanline 

Correspondence search 

SSD 

Source: S. Lazebnik 



Left Right 

scanline 

Correspondence search 

Norm. corr 

Source: S. Lazebnik 



Basic stereo matching algorithm 

•  If necessary, rectify the two stereo images to transform 
epipolar lines into scanlines 

•  For each pixel x in the first image 
•  Find corresponding epipolar scanline in the right image 
•  Examine all pixels on the scanline and pick the best match x’ 
•  Compute disparity x–x’ and set depth(x) = B*f/(x–x’) 

Source: S. Lazebnik 



Failures of correspondence search 

Textureless surfaces Occlusions, repetition 

Non-Lambertian surfaces, specularities 

Source: S. Lazebnik 



Effect of window size 

•  Smaller window 
+   More detail 
–   More noise 

 
•  Larger window 

+   Smoother disparity maps 
–   Less detail 

W = 3 W = 20 

Source: S. Lazebnik 



Results with window search 

Window-based matching Ground truth 

Data 

Source: S. Lazebnik 



Better methods exist... 

Graph cuts Ground truth 

For the latest and greatest:  http://www.middlebury.edu/stereo/  

Y. Boykov, O. Veksler, and R. Zabih, 
Fast Approximate Energy Minimization via Graph Cuts,  PAMI 2001 

Source: S. Lazebnik 



How can we improve window-based matching? 
•  The similarity constraint is local (each reference 

window is matched independently) 
•  Need to enforce non-local correspondence 

constraints 

Source: S. Lazebnik 



Non-local constraints 
•  Uniqueness  

•  For any point in one image, there should be at most one 
matching point in the other image 

Source: S. Lazebnik 



Non-local constraints 
•  Uniqueness  

•  For any point in one image, there should be at most one 
matching point in the other image 

•  Ordering 
•  Corresponding points should be in the same order in both views 

Source: S. Lazebnik 



Non-local constraints 
•  Uniqueness  

•  For any point in one image, there should be at most one 
matching point in the other image 

•  Ordering 
•  Corresponding points should be in the same order in both views 

Ordering constraint doesn’t hold 

Source: S. Lazebnik 



Non-local constraints 
•  Uniqueness  

•  For any point in one image, there should be at most one 
matching point in the other image 

•  Ordering 
•  Corresponding points should be in the same order in both views 

•  Smoothness 
•  We expect disparity values to change slowly (for the most part) 

Source: S. Lazebnik 



Scanline stereo 
•  Try to coherently match pixels on the entire scanline 
•  Different scanlines are still optimized independently 

Left image Right image 

Source: S. Lazebnik 



“Shortest paths” for scan-line stereo 
Left image 

Right image 

Can be implemented with dynamic programming 
 Ohta & Kanade ’85, Cox et al. ‘96 
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Slide credit: Y. Boykov 

Source: S. Lazebnik 



Coherent stereo on 2D grid 
•  Scanline stereo generates streaking artifacts 

 
 
 
 
 
 
 
 
 
 

•  Can’t use dynamic programming to find spatially 
coherent disparities/ correspondences on a 2D grid 

Source: S. Lazebnik 



Stereo matching as energy minimization 

I1 I2 D 

•  Energy functions of this form can be minimized using 
graph cuts 

Y. Boykov, O. Veksler, and R. Zabih, 
Fast Approximate Energy Minimization via Graph Cuts,  PAMI 2001 
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Source: S. Lazebnik 



Stereo matching as energy minimization 

•  Probabilistic interpretation: we want to find a Maximum A 
Posteriori (MAP) estimate of disparity image D: 

)()|,(),|( 2121 DPDIIPIIDP ∝

I1 I2 D 

W1(i ) W2(i+D(i )) D(i ) 
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Source: S. Lazebnik 



Stereo matching as energy minimization 
•  Note: the above formulation does not treat the two 

images symmetrically, does not enforce uniqueness, 
and does not take occlusions into account 

•  It is possible to come up with an energy that does all 
these things, but it’s a bit more complex 
•  Defined over all possible sets of matches, not over all 

disparity maps with respect to the first image 
•  Includes an occlusion term 
•  The smoothness term looks different and more complicated 

V. Kolmogorov and R. Zabih, 
Computing Visual Correspondence with Occlusions using Graph Cuts, ICCV 2001 

Source: S. Lazebnik 



Optical flow estimation for stereo 

Source: http://people.csail.mit.edu/celiu/OpticalFlow/ 

Source: S. Lazebnik 



Active stereo with structured light 

•  Project “structured” light patterns onto the object 
•  Simplifies the correspondence problem 
•  Allows us to use only one camera 

camera  

projector 

L. Zhang, B. Curless, and S. M. Seitz. 
Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic 
Programming. 3DPVT 2002 

Source: S. Lazebnik 



Active stereo with structured light 

L. Zhang, B. Curless, and S. M. Seitz. 
Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic 
Programming. 3DPVT 2002 

Source: S. Lazebnik 



Active stereo with structured light 

http://en.wikipedia.org/wiki/Structured-light_3D_scanner 

Source: S. Lazebnik 



Kinect: Structured infrared light 

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/ 

Source: S. Lazebnik 



Laser scanning 

Optical triangulation 
•  Project a single stripe of laser light 
•  Scan it across the surface of the object 
•  This is a very precise version of structured light scanning 

Digital Michelangelo Project 
Levoy et al. 

http://graphics.stanford.edu/projects/mich/ 
 

Source: S. Seitz 



Laser scanned models 

The Digital Michelangelo Project, Levoy et al. 

Source: S. Seitz 



Laser scanned models 

The Digital Michelangelo Project, Levoy et al. 
Source: S. Seitz 



Laser scanned models 

The Digital Michelangelo Project, Levoy et al. 

Source: S. Seitz 



Laser scanned models 

The Digital Michelangelo Project, Levoy et al. 

Source: S. Seitz 



Laser scanned models 

The Digital Michelangelo Project, Levoy et al. 

Source: S. Seitz 

1.0 mm resolution (56 million triangles)  



Aligning range images 
•  A single range scan is not sufficient to describe a 

complex surface 
•  Need techniques to register multiple range images 

 
 

B. Curless and M. Levoy, 
A Volumetric Method for Building Complex Models from Range Images, SIGGRAPH 
1996 



Aligning range images 
•  A single range scan is not sufficient to describe a 

complex surface 
•  Need techniques to register multiple range images 

 
… which brings us to multi-view stereo 

Source: S. Lazebnik 


