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Lecture	12:	Structure	from	motion		
&	multi-view	stereo	

•  Structure	from	motion	is	the	art	of	solving	both	the	
camera	motion	and	sparse	3D	structure	of	the	scene	
from	multiple	(uncalibrated)	images	

		
•  Multi-view	stereo	provides	techniques	for	computing	a	
complete	and	dense	3D	scene	reconstruction	from	
multiple	images	(with	known	projection	matrices)	

	
	

Acknowledgement:	many	slides	from	Svetlana	Lazebnik,	Steve	Seitz,	
Noah	Snavely,	and	others	

	



Structure from motion 



Structure from motion 
•  Given a set of corresponding points in two or more 

images, compute the camera parameters and the 3D point 
coordinates 

Camera 1 
Camera 2 Camera 3 

R1,t1 R2,t2 
R3,t3 

? ? ? Slide credit: 
Noah Snavely 

? 



Structure from motion 
•  Given: m images of n fixed 3D points  

 

λij xij = Pi Xj ,  i = 1, … , m,    j = 1, … , n   

•  Problem: estimate m projection matrices Pi and  
n 3D points Xj from the mn correspondences xij 

 

x1j 

x2j 

x3j 

Xj 

P1 

P2 

P3 



Structure from motion ambiguity 
•  If we scale the entire scene by some factor k and, at 

the same time, scale the camera matrices by the 
factor of 1/k, the projections of the scene points in the 
image remain exactly the same: 

It is impossible to recover the absolute scale of the scene  
solely from image correspondences! 



Structure from motion ambiguity 
•  If we scale the entire scene by some factor k and, at 

the same time, scale the camera matrices by the 
factor of 1/k, the projections of the scene points in the 
image remain exactly the same  
 

•  More generally, if we transform the scene using a 
transformation Q and apply the inverse 
transformation to the camera matrices, then the 
images do not change: 
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Types of ambiguity 
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•  With no constraints on the camera calibration matrix or on the 
scene, we get a projective reconstruction 

•  Need additional information to upgrade the reconstruction to 
affine, similarity, or Euclidean 



Projective ambiguity 
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Projective ambiguity 



Affine ambiguity 
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Affine ambiguity 



Similarity ambiguity 
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Similarity ambiguity 



Projective structure from motion 
•  Given: m images of n fixed 3D points  

 

λij xij = Pi Xj ,  i = 1,… , m,    j = 1, … , n   

•  Problem: estimate m projection matrices Pi and n 3D 
points Xj from the mn correspondences xij 

 

x1j 

x2j 

x3j 

Xj 

P1 

P2 

P3 



Projective structure from motion 
•  Given: m images of n fixed 3D points  

 

λij xij = Pi Xj ,  i = 1,… , m,    j = 1, … , n   

•  Problem: estimate m projection matrices Pi and n 3D 
points Xj from the mn correspondences xij 

•  With no calibration info, cameras and points can only 
be recovered up to a 4x4 projective transformation Q: 

X → QX, P → PQ-1 
•  We can solve for structure and motion when  

2mn >= 11m +3n – 15 
•  For two cameras, at least 7 points are needed 
 



Projective SFM: Two-camera case 
•  Compute fundamental matrix F between the two views 
•  First camera matrix:  [I | 0] 

•  Second camera matrix:  [A | b] 
•  Then b is the epipole (FTb = 0), A = –[b×]F 

See the book by Forsyth & Ponce 



Sequential structure from motion 
• Initialize motion from two images 
using fundamental matrix 
 
• Initialize structure by triangulation 
 
• For each additional view: 

•  Determine projection matrix of 
new camera using all the known 
3D points that are visible in its 
image – calibration  ca

m
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points 



Sequential structure from motion 
• Initialize motion from two images 
using fundamental matrix 
 
• Initialize structure by triangulation 
 
• For each additional view: 

•  Determine projection matrix of 
new camera using all the known 
3D points that are visible in its 
image – calibration  
 

•  Refine and extend structure: 
compute new 3D points,  
re-optimize existing points that 
are also seen by this camera – 
triangulation  
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Sequential structure from motion 
• Initialize motion from two images 
using fundamental matrix 
 
• Initialize structure by triangulation 
 
• For each additional view: 

•  Determine projection matrix of 
new camera using all the known 
3D points that are visible in its 
image – calibration  
 

•  Refine and extend structure: 
compute new 3D points,  
re-optimize existing points that 
are also seen by this camera – 
triangulation  
 

• Refine structure and motion: 
bundle adjustment 
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Bundle adjustment 

•  Non-linear method for 
refining structure and motion 

•  Minimize reprojection error 

wij xij −
1
λij
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visibility flag: 
is point j 
visible in  
view i? 



Self-calibration 
•  Self-calibration (auto-calibration) is the process of 

determining intrinsic camera parameters directly from 
uncalibrated images 

•  For example, when the images are acquired by a 
single moving camera, we can use the constraint that 
the intrinsic parameter matrix remains fixed for all the 
images 
•  Compute initial projective reconstruction and find 3D 

projective transformation matrix Q such that all camera 
matrices are in the form Pi = K [Ri | ti] 

•  Can use constraints on the form of the calibration 
matrix: zero skew 

•  Can use vanishing points 



Modern SFM pipeline 

N. Snavely, S. Seitz, and R. Szeliski, "Photo tourism: Exploring photo collections in 3D," 
SIGGRAPH 2006. 



Feature detection 

Detect features using SIFT [Lowe, IJCV 2004] 

Source: N. Snavely 



Feature detection 

Detect features using SIFT 

Source: N. Snavely 



Feature matching 

Match features between each pair of images 

Source: N. Snavely 



Feature matching 

Use RANSAC to estimate fundamental matrix between 
each pair 

Source: N. Snavely 



Image connectivity graph 

(graph	layout	produced	using		the	Graphviz	toolkit:	http://www.graphviz.org/)	

Source: N. Snavely 



Incremental SFM 
•  Pick a pair of images with lots of inliers  

(and preferably, good EXIF data) 
•  Initialize intrinsic parameters (focal length, principal point) 

from EXIF 
•  Estimate extrinsic parameters (R and t) 

•  Five-point algorithm 
•  Use triangulation to initialize model points 

•  While remaining images exist 
•  Find an image with many feature matches with images in the 

model 
•  Run RANSAC on feature matches to register new image to 

model 
•  Triangulate new points 
•  Perform bundle adjustment to re-optimize everything 



The devil is in the details 

•  Handling degenerate configurations (e.g., homographies) 
•  Eliminating outliers 
•  Dealing with repetitions and symmetries 
•  Handling multiple connected components 
•  Closing loops 
•  …. 



Review: Structure from motion 

•  Ambiguity 
 
•  Projective structure from motion 

•  Bundle adjustment 
•  Modern structure from motion pipeline 



Multi-view stereo 

Many slides adapted from S. Seitz 



Multi-view stereo 
•  Generic problem formulation: given several images of 

the same object or scene, compute a representation of 
its 3D shape 
 
 
 
 
 
 

Reconstruction	(side)	

(top)	



Multi-view stereo 
•  Generic problem formulation: given several images of 

the same object or scene, compute a representation of 
its 3D shape 

•  “Images of the same object or scene” 
•  Arbitrary number of images (from two to thousands) 
•  Arbitrary camera positions (special rig, camera network  

or video sequence) 
•  Camera projection matrices are assumed to be known 



Multi-view stereo 
•  Generic problem formulation: given several images of 

the same object or scene, compute a representation of 
its 3D shape 

•  “Images of the same object or scene” 
•  Arbitrary number of images (from two to thousands) 
•  Arbitrary camera positions (special rig, camera network  

or video sequence) 
•  Camera projection matrices are assumed to be known 

•  “Representation of 3D shape” 
•  Depth maps 
•  Meshes 
•  Point clouds 
•  Patch clouds 
•  Volumetric models 
•  …. 



Multi-view stereo: Basic idea 

Source: Y. Furukawa 



Multi-view stereo: Basic idea 

Source: Y. Furukawa 



Multi-view stereo: Basic idea 

Source: Y. Furukawa 



Multi-view stereo: Basic idea 

Source: Y. Furukawa 



•  Pick a reference image, and slide the corresponding 
window along the corresponding epipolar lines of all 
other images, using inverse depth relative to the first 
image as the search parameter 

M. Okutomi and T. Kanade, “A Multiple-Baseline Stereo System,”  IEEE Trans. on 
Pattern Analysis and Machine Intelligence,  15(4):353-363 (1993).  

Multiple-baseline stereo 



Multiple-baseline stereo 

•    For larger baselines, must search larger  
    area in second image 

1/z 

1/z 

pixel matching score 



Multiple-baseline stereo 

Use the sum of 
SSD scores to rank 
matches 



I1 I2 I10 

Multiple-baseline stereo results 

M. Okutomi and T. Kanade, “A Multiple-Baseline Stereo System,”  IEEE Trans. on 
Pattern Analysis and Machine Intelligence,  15(4):353-363 (1993).  



Plane Sweep Stereo 

•  Sweep family of planes at different depths w.r.t. a reference camera 
•  For each depth, project each input image onto that plane  
•  This is equivalent to a homography warping each input image into the 

reference view 
•  What can we say about the scene points that are at the right depth?  

reference camera 

input image 

R. Collins. A space-sweep approach to true multi-image matching. CVPR  1996.  

input image 



Plane Sweep Stereo 

Image 1 
Image 2 

Sweeping 
plane 

Scene 
surface 



Plane Sweep Stereo 

•  For each depth plane 
•  For each pixel in the composite image stack, compute the variance 

•  For each pixel, select the depth that gives the lowest variance 
 

•  Can be accelerated using graphics hardware 

R. Yang and M. Pollefeys. 
Multi-Resolution Real-Time Stereo on Commodity Graphics Hardware, CVPR 2003 



Merging depth maps 
•  Given a group of images, choose 

each one as reference and compute 
a depth map w.r.t. that view using a 
multi-baseline approach 

•  Merge multiple depth maps to a 
volume or a mesh (see, e.g., 
Curless and Levoy 96) 

Map 1 Map 2 Merged 



Volumetric stereo 

•    In plane sweep stereo, the sampling of the scene 
    depends on the reference view 
•    We can use a voxel volume to get a view- 
    independent representation 



Volumetric stereo 

Discretized  
Scene Volume 

Input Images 
(Calibrated) 

Goal:  Assign RGB values to voxels in V 
photo-consistent with images 



Photo-consistency 

All Scenes 
Photo-Consistent 

Scenes 

True 
Scene 

•    A photo-consistent scene is a scene that exactly 
reproduces your input images from the same camera 
viewpoints 
•   You can’t use your input cameras and images to tell 
the difference between a photo-consistent scene and 
the true scene 



Space Carving 

Space Carving Algorithm 

Image 1 Image N 

…... 

•  Initialize to a volume V containing the true scene 

•  Repeat until convergence 

•  Choose a voxel on the outside of the volume 

•  Carve if not photo-consistent 
•  Project to visible input images 

K. N. Kutulakos and S. M. Seitz, A Theory of Shape by Space Carving, ICCV 1999 



Space Carving Results:  African Violet 

Input Image (1 of 45)  Reconstruction 

Reconstruction Reconstruction Source: S. Seitz 



Space Carving Results:  Hand 

Input Image 
(1 of 100)  

Views of Reconstruction 



Which shape do you get? 

The Photo Hull is the UNION of all photo-consistent scenes in V 
•  It is a photo-consistent scene reconstruction 
•  Tightest possible bound on the true scene 

True Scene 

V 

Photo Hull 

V 

Source: S. Seitz 



Reconstruction from Silhouettes 

Binary Images 

•  The case of binary images: a voxel is photo-
consistent if it lies inside the object’s silhouette in all 
views 



Reconstruction from Silhouettes 

Binary Images 

Finding the silhouette-consistent shape (visual hull):   
•  Backproject each silhouette 
•  Intersect backprojected volumes 

•  The case of binary images: a voxel is photo-
consistent if it lies inside the object’s silhouette in all 
views 



Volume intersection 

B. Baumgart, Geometric Modeling for Computer Vision, Stanford Artificial Intelligence 
Laboratory, Memo no. AIM-249, Stanford University, October 1974.  



Photo-consistency vs. silhouette-consistency 

True Scene Photo Hull Visual Hull 



Carved visual hulls 
•  The visual hull is a good starting point for optimizing  

photo-consistency 
•  Easy to compute 
•  Tight outer boundary of the object 
•  Parts of the visual hull (rims) already lie on the surface and are 

already photo-consistent 

Yasutaka Furukawa and Jean Ponce, 
Carved Visual Hulls for Image-Based Modeling, ECCV 2006.  



Carved visual hulls 
1.  Compute visual hull  
2.  Use dynamic programming to find rims (photo-consistent parts 

of visual hull) 
3.  Carve the visual hull to optimize photo-consistency keeping 

the rims fixed 

Yasutaka Furukawa and Jean Ponce, 
Carved Visual Hulls for Image-Based Modeling, ECCV 2006.  



From feature matching to dense stereo 
1.  Extract features 
2.  Get a sparse set of initial matches 
3.  Iteratively expand matches to nearby locations 
4.  Use visibility constraints to filter out false matches 
5.  Perform surface reconstruction 

Yasutaka Furukawa and Jean Ponce, 
Accurate, Dense, and Robust Multi-View Stereopsis, CVPR 2007.  



From feature matching to dense stereo 

Yasutaka Furukawa and Jean Ponce, 
Accurate, Dense, and Robust Multi-View Stereopsis, CVPR 2007.  

http://www.cs.washington.edu/homes/furukawa/gallery/ 



Stereo from community photo collections 
•  Need structure from motion to recover unknown 

camera parameters 
•  Need view selection to find good groups of images on 

which to run dense stereo 



Towards Internet-Scale Multi-View Stereo 

YouTube video, high-quality video 

 Yasutaka Furukawa, Brian Curless, Steven M. Seitz and Richard Szeliski, 
Towards Internet-scale Multi-view Stereo,CVPR 2010.  



The Visual Turing Test for Scene Reconstruction 

Q. Shan, R. Adams, B. Curless, Y. Furukawa, and S. Seitz, 
"The Visual Turing Test for Scene Reconstruction," 3DV 2013. 



Fast stereo for Internet photo collections 
•  Start with a cluster of registered views 
•  Obtain a depth map for every view using plane 

sweeping stereo with normalized cross-correlation 

Frahm et al., “Building Rome on a Cloudless Day,” ECCV 2010. 



Plane sweeping stereo   
•  Need to register individual depth maps into a single 

3D model 
•  Problem: depth maps are very noisy 

far 

near 

Frahm et al., “Building Rome on a Cloudless Day,” ECCV 2010. 



Results 

YouTube Video 

Frahm et al., “Building Rome on a Cloudless Day,” ECCV 2010. 



Kinect: Structured infrared light 

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/ 



Kinect Fusion 

YouTube Video 

Paper link (ACM Symposium on User Interface Software and Technology, 
October 2011) 



Summary: 3D geometric vision 
•  Single-view geometry 

•  The pinhole camera model 
•  The perspective projection matrix 
•  Intrinsic and extrinsic parameters 
•  Calibration 
•  Single-view metrology, calibration using vanishing points 

•  Multiple-view geometry 
•  Triangulation 
•  The epipolar constraint 

–  Essential matrix and fundamental matrix 
•  Stereo  

–  Binocular, multi-view 
•  Structure from motion 

–  Reconstruction ambiguity 
–  Projective SFM 


