Computer Vision

CS-E4850, 5 study credits
Lecturer: Juho Kannala



Lecture 12: Structure from motion
& multi-view stereo

e Structure from motion is the art of solving both the
camera motion and sparse 3D structure of the scene
from multiple (uncalibrated) images

* Multi-view stereo provides techniques for computing a
complete and dense 3D scene reconstruction from
multiple images (with known projection matrices)

Acknowledgement: many slides from Svetlana Lazebnik, Steve Seitz,
Noah Snavely, and others
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Structure from motion

« Given a set of corresponding points in two or more
Images, compute the camera parameters and the 3D point
coordinates
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Structure from motion

« Given: mimages of n fixed 3D points
/lijxij = Pl.Xj, i=1,..,m j=1,..,n

* Problem: estimate m projection matrices P; and
n 3D points X; from the mn correspondences x;




Structure from motion ambiguity

 If we scale the entire scene by some factor k and, at
the same time, scale the camera matrices by the
factor of 1/k, the projections of the scene points in the
Image remain exactly the same:

It is impossible to recover the absolute scale of the scene
solely from image correspondences!



Structure from motion ambiguity

 If we scale the entire scene by some factor k and, at
the same time, scale the camera matrices by the
factor of 1/k, the projections of the scene points in the
Image remain exactly the same

« More generally, if we transform the scene using a
transformation Q and apply the inverse
transformation to the camera matrices, then the
Images do not change:

x=PX = (PQ")(QX)



Types of ambiguity

Projective (At Preserves intersection and
15dof T tangency

A 1%
Affine (At Preserves parallellism,
12dof 0" 1 volume ratios
Similarity (sRt Preserves angles, ratios of
7dof o7 1 length
Euclidean R t
6dof S Preserves angles, lengths

* With no constraints on the camera calibration matrix or on the
scene, we get a projective reconstruction

* Need additional information to upgrade the reconstruction to
affine, similarity, or Euclidean



Projective ambiguity
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x=PX=(PQp )(QP )




Projective ambiguity




Affine ambiguity
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Affine ambiguity




Similarity ambiguity

x=PX = (PQ; )(Q,X)




Similarity ambiguity




Projective structure from motion

« Given: mimages of n fixed 3D points
iy‘Xi]':Pl'Xj, 1 = 1,...,m, j: 1, e , N

* Problem: estimate m projection matrices P; and n 3D
points X; from the mn correspondences x;




Projective structure from motion

« Given: mimages of n fixed 3D points
iy‘X@'j:Pl‘Xj, 1 = 1,...,m, j: 1, e , N

* Problem: estimate m projection matrices P; and n 3D
points X; from the mn correspondences x;

« With no calibration info, cameras and points can only
be recovered up to a 4x4 projective transformation Q:

X—QX,P—-PQ"
* We can solve for structure and motion when
2mn >=11m +3n—-15
 For two cameras, at least 7 points are needed



Projective SFM: Two-camera case

« Compute fundamental matrix F between the two views
* First camera matrix: [1|0]

« Second camera matrix: [A | b]

 Then b is the epipole (F'b=0), A =—[b.]F

See the book by Forsyth & Ponce



Sequential structure from motion

eInitialize motion from two images
using fundamental matrix
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eInitialize structure by triangulation points
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Sequential structure from motion

eInitialize motion from two images
using fundamental matrix

eInitialize structure by triangulation

*For each additional view:

» Determine projection matrix of
new camera using all the known
3D points that are visible in its
image — calibration

cameras

* Refine and extend structure:
compute new 3D points,
re-optimize existing points that
are also seen by this camera —
triangulation

points
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Sequential structure from motion

eInitialize motion from two images
using fundamental matrix

eInitialize structure by triangulation points

v

*For each additional view:

» Determine projection matrix of
new camera using all the known
3D points that are visible in its
image — calibration

cameras
e e 0000 00
e o0 000 00
® o0 000 0 00
o o0 0000 00
® o0 0000 00
o e 0000000

 Refine and extend structure:

compute new 3D points,
re-optimize existing points that
are also seen by this camera —
triangulation

*Refine structure and motion:
bundle adjustment



Bundle adjustment

 Non-linear method for
refining structure and motion

* Minimize reprojection error
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Self-calibration

Self-calibration (auto-calibration) is the process of
determining intrinsic camera parameters directly from
uncalibrated images

For example, when the images are acquired by a

single moving camera, we can use the constraint that

the intrinsic parameter matrix remains fixed for all the

Images

« Compute initial projective reconstruction and find 3D

projective transformation matrix Q such that all camera
matrices are in the form P, = K [R, | t]

Can use constraints on the form of the calibration

matrix: zero skew

Can use vanishing points



Modern SFM pipeline

-ﬁf" vl A

N. Snavely, S. Seitz, and R. Szeliski, "Photo tourism: Exploring photo collections in 3D.,"
SIGGRAPH 2006.




Feature detection

Detect features using SIFT [Lowe, [JCV 2004]

Source: N. Snavely



Feature detection

Detect features using SIFT

Source: N. Snavely



Feature matching

Match features between each pair of images

Source: N. Snavely



Feature matching

Use RANSAC to estimate fundamental matrix between
each pair

Source: N. Snavely



Image connectivity graph

(graph layout produced using the Graphviz toolkit: http://www.graphviz.org/)

Source: N. Snavely



Incremental SFM

* Pick a pair of images with lots of inliers
(and preferably, good EXIF data)

Initialize intrinsic parameters (focal length, principal point)

from EXIF

Estimate extrinsic parameters (R and t)
* Five-point algorithm
Use triangulation to initialize model points

* While remaining images exist

Find an image with many feature matches with images in the
model

Run RANSAC on feature matches to register new image to
model

Triangulate new points
Perform bundle adjustment to re-optimize everything



The devil is in the details

Handling degenerate configurations (e.g., homographies)
Eliminating outliers

Dealing with repetitions and symmetries

Handling multiple connected components

Closing loops



Review: Structure from motion

* Ambiguity

* Projective structure from motion
* Bundle adjustment
* Modern structure from motion pipeline



Multi-view stereo

Many slides adapted from S. Seitz



Multi-view stereo

« Generic problem formulation: given several images of
the same object or scene, compute a representation of
its 3D shape
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Multi-view stereo

« Generic problem formulation: given several images of
the same object or scene, compute a representation of

its 3D shape

* “Images of the same object or scene”
 Arbitrary number of images (from two to thousands)

» Arbitrary camera positions (special rig, camera network
or video sequence)

« Camera projection matrices are assumed to be known
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Multi-view stereo

« Generic problem formulation: given several images of
the same object or scene, compute a representation of
its 3D shape

* “Images of the same object or scene”
 Arbitrary number of images (from two to thousands)

» Arbitrary camera positions (special rig, camera network
or video sequence)

« Camera projection matrices are assumed to be known

« "Representation of 3D shape”
* Depth maps
« Meshes
» Point clouds
« Patch clouds
* Volumetric models



Multi-view stereo: Basic idea

Source: Y. Furukawa



Multi-view stereo: Basic idea

Source: Y. Furukawa



Multi-view stereo: Basic idea

Source: Y. Furukawa



Multi-view stereo: Basic idea

Source: Y. Furukawa



Multiple-baseline stereo

* Pick a reference image, and slide the corresponding
window along the corresponding epipolar lines of all
other images, using inverse depth relative to the first
Image as the search parameter
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Figure 2: An example scene. The grid
paserm i the backaround bas Baseline b 2b 3b 4b Sb 6b 7b 8b 9b

ambiguity of matching.

M. Okutomi and T. Kanade, “A Multiple-Baseline Stereo System.,” |IEEE Trans. on
Pattern Analysis and Machine Intelligence, 15(4):353-363 (1993).




Multiple-baseline stereo

* Forlarger baselines, must search larger
area in second image
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Multiple-baseline stereo

Use the sum of
SSD scores to rank
matches

. B=b2b....8b

evaluation function

—t . . BubAbgbSd
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Fig. 5. SSD values versus inverse distance: (a) B = b; (b) B = 2b;
B = 3b; (d) B = 4b; () B = 5b; (f) B = 6b; (2) B = Th; (h) B = 8b.

The horizontal axis is normalized such that 8bF = 1. Fig. 7. Combining multiple baseline stereo pairs.



Multiple-baseline stereo results

M. Okutomi and T. Kanade, “A Multiple-Baseline Stereo System.,” |IEEE Trans. on
Pattern Analysis and Machine Intelligence, 15(4):353-363 (1993).




Plane Sweep Stereo

input image S —

input image

reference camera

Sweep family of planes at different depths w.r.t. a reference camera
For each depth, project each input image onto that plane

This is equivalent to a homography warping each input image into the
reference view

What can we say about the scene points that are at the right depth?

R. Collins. A space-sweep approach to true multi-image matching. CVPR 1996.




Plane Sweep Stereo

Scene
surface

__ Sweeping
plane

Image 2
Image 1



Plane Sweep Stereo

* For each depth plane
« For each pixel in the composite image stack, compute the variance
 For each pixel, select the depth that gives the lowest variance

« Can be accelerated using graphics hardware

R. Yang and M. Pollefeys.
Multi-Resolution Real-Time Stereo on Commodity Graphics Hardware, CVPR 2003




Merging depth maps

« Given a group of images, choose
each one as reference and compute
a depth map w.r.t. that view using a
multi-baseline approach

 Merge multiple depth maps to a
volume or a mesh (see, e.qg.,
Curless and Levoy 96)

Map 1 - Map 2

‘Merged




Volumetric stereo

* In plane sweep stereo, the sampling of the scene
depends on the reference view

* We can use a voxel volume to get a view-
iIndependent representation



Volumetric stereo

Discretized
Scene Volume

Input Images
(Calibrated)

—

Goal: Assign RGB values to voxels in V

photo-consistent with images



Photo-consistency

* A photo-consistent scene is a scene that exactly
reproduces your input images from the same camera

viewpoints

* You can’t use your input cameras and images to tell
the difference between a photo-consistent scene and
the true scene

True
Scene
All Scenes

Photo-Consistent
Scenes




Space Carving

Image 1

\ / Image N
S e

Space Carving Algorithm

 Initialize to a volume V containing the true scene

* Choose a voxel on the outside of the volume
* Project to visible input images
» Carve if not photo-consistent

* Repeat until convergence

K. N. Kutulakos and S. M. Seitz, A Theory of Shape by Space Carving, /ICCV 1999




Space Carving Results: African Violet

Input Image (1 of 45) Reconstruction

ReconStrUCtiOn ReconStrUCtion Source: S. Seitz



Space Carving Results: Hand

Input Image
(1 of 100)

Views of Reconstruction



Which shape do you get?

True Scene Photo Hull

The Photo Hull is the UNION of all photo-consistent scenes in V
» Itis a photo-consistent scene reconstruction
» Tightest possible bound on the true scene

Source: S. Seitz



Reconstruction from Silhouettes

« The case of binary images: a voxel is photo-
consistent if it lies inside the object’s silhouette in all
views

Binary Images =———p ' ‘ I




Reconstruction from Silhouettes

« The case of binary images: a voxel is photo-
consistent if it lies inside the object’s silhouette in all
views

v

Binary Images =——»

Finding the silhouette-consistent shape (visual hull):
« Backproject each silhouette
 Intersect backprojected volumes



Volume intersection

B. Baumgart, Geometric Modeling for Computer Vision, Stanford Artificial Intelligence
Laboratory, Memo no. AIM-249, Stanford University, October 1974.




Photo-consistency vs. silhouette-consistency

True Scene Photo Hull Visual Hull



Carved visual hulls

« The visual hull is a good starting point for optimizing
photo-consistency
« [Easy to compute
« Tight outer boundary of the object

« Parts of the visual hull (rims) already lie on the surface and are
already photo-consistent

Yasutaka Furukawa and Jean Ponce,
Carved Visual Hulls for Image-Based Modeling, ECCV 2006.




Carved visual hulls

1. Compute visual hull

2. Use dynamic programming to find rims (photo-consistent parts
of visual hull)

3. Carve the visual hull to optimize photo-consistency keeping
the rims fixed

Yasutaka Furukawa and Jean Ponce,
Carved Visual Hulls for Image-Based Modeling, ECCV 2006.




From feature matching to dense stereo

Extract features

Get a sparse set of initial matches

Iteratively expand matches to nearby locations
Use visibility constraints to filter out false matches
Perform surface reconstruction

1.
2.
3.
4.
5.

Yasutaka Furukawa and Jean Ponce,
Accurate, Dense, and Robust Multi-View Stereopsis, CVPR 2007.




From feature matching to dense stereo

http://www.cs.washington.edu/homes/furukawa/qallery/

Yasutaka Furukawa and Jean Ponce,
Accurate, Dense, and Robust Multi-View Stereopsis, CVPR 2007.




Stereo from community photo collections

» Need structure from motion to recover unknown
camera parameters

* Need view selection to find good groups of images on
which to run dense stereo

flickr:. voco

Home You Organize & Create Contacts Groups Explore Upload
Search Photos Groups People
- Full Text
|Everyone's Uploads v] [statue of liberty ] SEARCH |yynussiien
Sort: Relevant  Recent  Interesting View. Small  Medium = Detail = Slideshow

e
il
From michaun - o = - -
From lepublicnme From Jesus...

From Bights . Take From laurenbou..

From Julio.. From StephiGra...

From dmp0309

N

From laurenbou... From StephiGra... From Mojumbo22...



Towards Internet-Scale Multi-View Stereo

i 1-.10?1~

. VT . P B
Dubrovnik ——"*—— Piazza San Marco —

Colosseum

St. Peter’s Basilica Trevi Fountain

YouTube video, high-quality video

Yasutaka Furukawa, Brian Curless, Steven M. Seitz and Richard Szeliski,
Towards Internet-scale Multi-view Stereo,CVPR 2010.




The Visual Turing Test for Scene Reconstruction

Rendered Images (Right) vs. Ground Truth Images (Left)
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Q. Shan, R. Adams, B. Curless, Y. Furukawa, and S. Seitz,
"The Visual Turing Test for Scene Reconstruction," 3DV 2013.




Fast stereo for Internet photo collections

« Start with a cluster of registered views

* QObtain a depth map for every view using plane
sweeping stereo with normalized cross-correlation

M'Liﬂ

Frahm et al., “Building Rome on a Cloudless Day,” ECCV 2010.




Plane sweeping stereo

* Need to register individual depth maps into a single
3D model

* Problem: depth maps are very noisy

far

near

Frahm et al., “Building Rome on a Cloudless Day,” ECCV 2010.




Results

YouTube Video

Frahm et al., “Building Rome on a Cloudless Day,” ECCV 2010.




Kinect: Structured infrared light

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/




KinectFusion: Real-time 3D Reconstruction and Interaction
Using a Moving Depth Camera*

Shahram Izadi', David Kim'*, Otmar Hilliqes David Molyneaux'*, Richard Newcombe?,
Pushmeet Kohli', Jamw Shotton', Steve Hodges', Dustin F reeman'>,
Andl(’u Davison?, Andrew Fitzgibbon'

"Microsoft Research Cambridge, UK *Imperial College London, UK
*Newcastle University, UK 4Lancaster University, UK ?University of Toronto, Canada

‘

Figure 1: KinectFusion enables real-time detailed 3D reconstructlons of mdoor scenes using only the depth data from a

tandard Kinect camera. A) user points Kinect at coffee table scene. B) Phong shaded reconstructed 3D model (the wireframe
frustum shows current tracked 3D pose of Kinect). C) 3D model texture mapped using Kinect RGB data with real-time particles
simulated on the 3D model as reconstruction occurs. D) Multi-touch interactions performed on any reconstructed surface. E)

Real-time segmentation and 3D tracking of a physical object.

Paper link (ACM Symposium on User Interface Software and Technology,
October 2011)

YouTube Video




Summary: 3D geometric vision

« Single-view geometry
* The pinhole camera model
The perspective projection matrix
Intrinsic and extrinsic parameters
Calibration
Single-view metrology, calibration using vanishing points

* Multiple-view geometry
« Triangulation
* The epipolar constraint
— Essential matrix and fundamental matrix
« Stereo
— Binocular, multi-view
« Structure from motion

— Reconstruction ambiguity
— Projective SFM



