
CS-E4850 Computer Vision
Exercise Round 9

The problems should be solved before the exercise session and solutions returned via the
MyCourses page. Upload two files: (1) a PDF file containing your written answers to
all problems, (2) a Matlab m-file containing the source code for the problem 2. Scanned
handwritten solutions are ok for problem 1. Notice also that the last two problems can
be done without solving problem 1 since the solutions are already written out in the
subtasks of problem 1 (i.e. only the derivations are missing and asked in problem 1).

If you have not studied basics of neural networks in previous courses and the problem
context of these exercises is not clear, it may be helpful to check the slides of the first four
lectures of prof. Hinton’s course “Introduction to neural networks and machine learning”:
http://www.cs.toronto.edu/~hinton/coursera_slides.html
http://www.cs.toronto.edu/~hinton/coursera_lectures.html (lecture videos).

Exercise 1. Neural networks and backpropagation. (Pen & paper problem)

This exercise presents the backpropagation algorithm for a multi-layer neural network
with L layers. To keep things as simple as possible, we do not include bias terms in the
network. Thus, the only parameters of the network are the weights for the connections
between the neurons of consecutive layers. The consecutive layers are fully connected,
i.e., each neuron in a certain layer is directly connected to all neurons of the previous
layer. In the hidden layers, the nonlinear function of each neuron is the logistic function
σ, σ(z) = 1/(1 + e−z). In the final output layer the nonlinear function is a softmax
function s with nL outputs. The number of neurons in layer l is denoted by nl.

Given input vector x with dimension n0, the output y = f(x) produced by our
network f is mathematically defined by the following recursion

z(1) = W(1)x y(1) = σ(z(1)),

z(l) = W(l)y(l−1) y(l) = σ(z(l)), l = 2, . . . , L− 1

z(L) = W(L)yL−1 y(L) = s(z(L))

y = y(L),

where the weight matrix W(l) for layer l has size nl×nl−1, the logistic function is applied
to a vector element-wise, and y(L) = s(z(L)) denotes the output vector of the softmax
layer with elements

s(z
(L)
i) =

ez
(L)
i

ΣnL
k=1e

z
(L)
k

, i = 1, . . . , nL.

1

The softmax layer is typically used in classification problems so that the number of
outputs nL equals the number of classes. We may observe that the sum of the elements
of the output vector y(L) equals 1, and hence, they can be interpreted as the predicted
probabilities of the classes.

Given training samples, x1, . . . ,xm and their target class probabilities t1, . . . , tm, the
weights of the neural network can be trained by minimising the cross-entropy loss which
is defined as follows

E =
1

m

m∑
j=1

−tj · log(yj), (1)

where · denotes vector dot product and log is the natural logarithm applied to the vector
element-wise. The target vectors tj are typically "one-hot vectors", i.e. vectors where the
element corresponding to the correct class is 1 and other elements are 0. Sometimes the
cross-entropy loss is supplemented with so called weight-decay term, which regularises
the solution and penalises large weigths by adding their sum of squares to the loss, as
follows:

E =

(
1

m

m∑
j=1

−tj · log(yj)

)
+
λ

2
||w||2 (2)

where λ is a positive scalar and the vector w contains all the weights, i.e. the elements
of all matrices W(l).

By starting from some random initial guessw0, the weights can be improved iteratively
via gradient-descent minimisation of the loss, i.e.

wτ = wτ−1 − α
∂E

∂w
,

where τ indicates the iteration count and parameter α is called learning rate.
The gradient ∂E/∂w of the cross-entropy loss (1) for a single training sample (i.e. for

case m = 1) can be calculated with the backpropagation algorithm, which utilises the
chain rule of differential calculus recursively, as follows:

∂E

∂z(L)
=

∂E

∂y(L)

∂y(L)

∂z(L)

∂E

∂y(L−1) =
∂E

∂z(L)
∂z(L)

∂y(L−1) =
∂E

∂z(L)
W(L) and

∂E

∂w
(L)
uv

=
∂E

∂z(L)
∂z(L)

∂w
(L)
uv

=
∂E

∂z
(L)
u

y(L−1)v ,

whereafter we can continue for all l = L− 1, . . . , 1 by computing

∂E

∂z(l)
=

∂E

∂y(l)

∂y(l)

∂z(l)
=

∂E

∂y(l)

∂σ(z(l))

∂z(l)

∂E

∂y(l−1) =
∂E

∂z(l)
∂z(l)

∂y(l−1) =
∂E

∂z(l)
W(l) ∂E

∂w
(l)
uv

=
∂E

∂z(l)
∂z(l)

∂w
(l)
uv

=
∂E

∂z
(l)
u

y(l−1)v ,

where ∂E/∂w(l)
uv is the partial derivative with respect to element (u, v) of matrix W(l).

Finally, in the case of multiple training samples, i.e. m > 1, we can compute the
partial derivates of the weights for each sample as above and then average them to get
the partial derivate with respect to the entire batch of training samples.

2

Task: Your task is to compute the expressions for the partial derivates ∂E/∂w(l)
uv in a

special case, where we have two layers in the network, the hidden layer has 7 neurons,
and the softmax layer has 10 neurons, i.e. L = 2, n1 = 7 and n2 = 10. Draw a schematic
picture of the network and proceed with the following stages:

1. Use the cross-entropy loss of Eq. (1) and assume m = 1. That is, first compute the
partial derivatives for single training sample x, t.
(Hint: You do not need to do anything else than just write the loss (1) in case
m = 1. This is just an introduction to stages 2-7 where the mentioned partial
derivates will be calculated in a step-wise manner for the case m = 1. The main
purpose of this sub-task is to note that one can first focus on the case m = 1.)

2. Show that ∂E/∂z(2) = (y(2) − t)>. Hint: Differentiate the softmax function and
assume that the elements of each tj sum to one.

3. Show that ∂E/∂y(1) = (y(2) − t)>W(2).

4. Show that ∂E/∂w(2)
uv = (y

(2)
u − tu)y(1)v and hence ∂E/∂W(2) = (y(2) − t)y(1)>.

5. Show that ∂y(1)/∂z(1) = diag(y(1). ∗ (1 − y(1))), where .∗ denotes element-wise
multiplication, 1 is a vector of ones and diag(·) converts the input vector to a
diagonal matrix (similar to Matlab function diag). Hint: Start by differentiating
the logistic function. You should get ∂σ(z)/∂z = σ(z)(1− σ(z)).

6. Show that ∂E/∂z(1) = (y(2) − t)>W(2)diag(y(1).∗ (1− y(1))).

7. Show that ∂E/∂w(1)
uv = ∂E

∂z
(1)
u

xv and hence ∂E/∂W(1) =
(
∂E
∂z(1)

)>
x>, where vector

∂E
∂z(1)

is computed above.

8. Finally, if we have multiple training samples (i.e. m > 1) we can average the el-
ements of the corresponding matrices ∂E/∂W(2) and ∂E/∂W(1) that contain the
partial derivatives of the network weights for each sample.

9. Further, if we use weight decay as in Eq. (2), its contribution to each partial deriva-
tive is simply λ times the value of the corresponding weight (i.e. λw(l)

uv) and it can
be added in the end.

Exercise 2. Image classification using a neural network. (Matlab exercise)
The first exercise problem above gives the solution to Part 2 of the second programming
assignment of professor Hinton’s course “Introduction to neural networks and machine
learning”. The assignment and related material are available at
https://www.cs.toronto.edu/~tijmen/csc321/assignments/a2/.

Download the code (a2.m) and data (data.mat) from the above web page and com-
plete the programming task of Part 2 according to the instructions. The solution for the
pen and paper part of the task is already given above. Hence, the programming part is
a relatively straightforward implementation and can be done without carrying out the
derivations since the results of the derivations are already given in Exercise 1 above.

When you have completed the programming part, run a2(0,10,30,0.01,0,false,10)
and report the resulting training data classification loss in the returned PDF file.

3

Exercise 3. Optimisation using backpropagation. (Matlab exercise)
Do Part 3 of the assignment which is available at
http://www.cs.toronto.edu/~tijmen/csc321/assignments/a2/

The task is to experiment with the given example code and report your findings.
There is no need to program anything in this part but completing it requires that Part 2
is successfully solved.

4

