ELEC-E4130

Lecture 12: Transmission lines
 Ch. 9.4

Impedance recap

Intrinsic Impedance

$$
\eta=\sqrt{\frac{\mu}{\epsilon}}
$$

Wave Impedance

$$
\mathrm{Z}_{\mathrm{t}}=\frac{\mathrm{E}_{\mathrm{t}}}{\mathrm{H}_{\mathrm{t}}}
$$

Characteristic Impedance

$$
\mathrm{Z}_{0}=\frac{\mathrm{V}_{0}^{+}}{\mathrm{I}_{0}^{+}}
$$

$>$ Ratio of total electric field and total magnetic field
$>$ May be space and angle dependent (e.g. dielectric interfaces)
> Dependent only on the material properties of the medium
> Equal to wave impedance for unidirectional, uniform plane waves
$>$ Ratio of voltage to current
> Voltage and current have a well defined relationship in a TEM guide (transmission line). Less well defined in TE or TM

Loaded, Finite Transmission line

> Chapter 9.4 is packed full of algebra. Please go through the algebra again, on your own
> The equations are tedious and the concepts are best understood by going back and forth between algebra and theory

Last class
> In the last class we saw that electrostatics/magnetostatics could be used to compute the capacitance (C) and/or inductance (L) per unit length of a two conductor, TEM transmission line
> Boundary conditions can be used to define voltages and currents on the transmission line walls and to quantify the conductor loss per unit length (\mathbf{R}) and dielectric fill loss per unit length (\mathbf{G})
$>$ The characteristic impedance \mathbf{Z}_{0} and propagation constant \mathbf{Y} of an infinitely long line compose of L,C,R,G was defined

This class
$>$ What happens when we make the transmission line finite, load it with impedance \mathbf{Z}_{L}, and drive it with a generator signal $\mathbf{V}_{\mathbf{g}}$ and generator impedance $\mathbf{Z}_{\mathbf{g}}$

Loaded, Finite Transmission line

A

Loaded, Finite Transmission line

last lecture

$\mathbf{V}_{\mathbf{g}} \rightarrow$ Generator voltage
$\mathrm{V}_{\mathrm{L}} \rightarrow$ Voltage across the load
$\mathrm{V}_{\mathrm{i}} \rightarrow$ Voltage across the combined load + transmission line
$\mathbf{Z}_{\mathrm{g}} \rightarrow$ Generator internal impedance
$\mathbf{Z}_{\mathbf{L}} \rightarrow$ Load impedance
$\stackrel{-}{Z} \mathbf{Z}_{0}^{-}!$transmission line characteristic impedance
$\mathbf{Z}_{\mathrm{i}} \rightarrow$ impedance seen by the
Computed
last lecture
$\mathrm{I}_{\mathrm{L}} \rightarrow$ Current through the load
$\mathbf{I}_{\mathrm{i}} \rightarrow$ Current sourced by the generator

A
Engineering

From last time

Uncoupled, $2^{\text {nd }}$ order, ODE
$\frac{d^{2} V(z)}{d z^{2}}=\gamma^{2} V(z)$
$\frac{\mathrm{d}^{2} \mathrm{I}(\mathrm{z})}{\mathrm{dz}^{2}}=\gamma^{2} \mathrm{I}(\mathrm{z})$

General solution
$\mathrm{V}(\mathrm{z})=\mathrm{V}_{0}^{+} \mathrm{e}^{-\gamma \mathrm{z}}+\mathrm{V}_{0}^{-} \mathrm{e}^{\gamma \mathrm{z}}$
$\mathrm{I}(\mathrm{z})=\mathrm{I}_{0}^{+} \mathrm{e}^{-\gamma \mathrm{z}}+\mathrm{I}_{0}^{-} \mathrm{e}^{\gamma \mathrm{z}}$

Forward traveling waves

$$
\begin{aligned}
& \mathrm{V}(\mathrm{z})=\mathrm{V}_{0}^{+} \mathrm{e}^{-\gamma \mathrm{z}} \\
& \mathrm{I}(\mathrm{z})=\mathrm{I}_{0}^{+} \mathrm{e}^{-\gamma \mathrm{z}}
\end{aligned}
$$

Complex propagation factor

$$
\gamma=\alpha+j \beta=\sqrt{(R+j \omega L)(G+j \omega C)}
$$

Complex wave impedance

$$
Z_{0}=\frac{V_{0}^{+}}{I_{0}^{+}}=-\frac{V_{0}^{-}}{I_{0}^{-}}=R_{0}+j X_{0}=\sqrt{\frac{(R+j \omega L)}{(G+j \omega C)}}
$$

True for any lossy medium with σ_{d}

$$
\frac{\mathrm{G}}{\mathrm{C}}=\frac{\sigma_{\mathrm{d}}}{\epsilon_{\mathrm{d}}}
$$

True for good conductors, σ_{s} large (vanishingly small non TEM fields)

$$
\mathrm{LC}=\mu_{\mathrm{d}} \epsilon_{\mathrm{d}}
$$

Loaded, Finite Transmission line

Assume forward and reverse traveling waves due to impedance mismatch

General solution

$$
\begin{aligned}
& \mathrm{V}(\mathrm{z})=\mathrm{V}_{0}^{+} \mathrm{e}^{-\gamma \mathrm{z}}+\mathrm{V}_{0}^{-} \mathrm{e}^{\gamma \mathrm{z}} \\
& \mathrm{I}(\mathrm{z})=\mathrm{I}_{0}^{+} \mathrm{e}^{-\gamma \mathrm{z}}+\mathrm{I}_{0}^{-} \mathrm{e}^{\gamma \mathrm{z}}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{V}(\mathrm{z}=\ell)=\mathrm{V}_{\mathrm{L}} & =\mathrm{V}_{0}^{+} \mathrm{e}^{-\gamma \ell}+\mathrm{V}_{0}^{-} \mathrm{e}^{\gamma \ell} \\
\mathrm{I}(\mathrm{z}=\ell)=\mathrm{I}_{\mathrm{L}} & =\mathrm{I}_{0}^{+} \mathrm{e}^{-\gamma \ell}+\mathrm{I}_{0}^{-} \mathrm{e}^{\gamma \ell} \\
& =\frac{\mathrm{V}_{0}^{+}}{\mathrm{Z}_{0}} \mathrm{e}^{-\gamma \ell}+\frac{\mathrm{V}_{0}^{-}}{\mathrm{Z}_{0}} \mathrm{e}^{\gamma \ell}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{V}_{0}^{+}=\frac{1}{2}\left(\mathrm{~V}_{\mathrm{L}}+\mathrm{I}_{\mathrm{L}} \mathrm{Z}_{0}\right) \mathrm{e}^{\gamma \ell} \\
\text { algebra } \\
\mathrm{V}_{0}^{-}=\frac{1}{2}\left(\mathrm{~V}_{\mathrm{L}}-\mathrm{I}_{\mathrm{L}} \mathrm{Z}_{0}\right) \mathrm{e}^{-\gamma \ell} \\
\mathrm{V}(\mathrm{z})=\frac{\mathrm{I}_{\mathrm{L}}}{2}\left(\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right) \mathrm{e}^{\gamma(\ell-z)}+\left(\mathrm{Z}_{\mathrm{L}}-\mathrm{Z}_{0}\right) \mathrm{e}^{-\gamma(\ell-z)}\right) \\
\mathrm{I}(\mathrm{z})=\frac{\mathrm{I}_{\mathrm{L}}}{2 \mathrm{Z}_{0}}\left(\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right) \mathrm{e}^{\gamma(\ell-z)}-\left(\mathrm{Z}_{\mathrm{L}}-\mathrm{Z}_{0}\right) \mathrm{e}^{-\gamma(\ell-z)}\right)
\end{gathered}
$$

Loaded, Finite Transmission line

$$
\mathrm{V}(\mathrm{z})=\frac{\mathrm{I}_{\mathrm{L}}}{2}\left(\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right) \mathrm{e}^{\gamma(\ell-z)}+\left(\mathrm{Z}_{\mathrm{L}}-\mathrm{Z}_{0}\right) \mathrm{e}^{-\gamma(\ell-z)}\right)
$$

$$
\mathrm{I}(\mathrm{z})=\frac{\mathrm{I}_{\mathrm{L}}}{2 \mathrm{Z}_{0}}\left(\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right) \mathrm{e}^{\gamma(\ell-z)}-\left(\mathrm{Z}_{\mathrm{L}}-\mathrm{Z}_{0}\right) \mathrm{e}^{-\gamma(\ell-z)}\right)
$$

$$
\downarrow z^{\prime}=\ell-z
$$

$$
\mathrm{V}\left(\mathrm{z}^{\prime}\right)=\frac{\mathrm{I}_{\mathrm{L}}}{2}\left(\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right) \mathrm{e}^{\gamma z^{\prime}}+\left(\mathrm{Z}_{\mathrm{L}}-\mathrm{Z}_{0}\right) \mathrm{e}^{-\gamma z^{\prime}}\right)
$$

$$
\mathrm{I}\left(\mathrm{z}^{\prime}\right)=\frac{\mathrm{I}_{\mathrm{L}}}{2 \mathrm{Z}_{0}}\left(\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right) \mathrm{e}^{\gamma z^{\prime}}-\left(\mathrm{Z}_{\mathrm{L}}-\mathrm{Z}_{0}\right) \mathrm{e}^{-\gamma z^{\prime}}\right)
$$

Loaded, Finite Transmission line

$$
\begin{aligned}
& V\left(z^{\prime}\right)=I_{L}\left(Z_{L} \cosh \left(\gamma z^{\prime}\right)+Z_{0} \sinh \left(\gamma z^{\prime}\right)\right) \\
& I\left(z^{\prime}\right)=\frac{I_{L}}{Z_{0}}\left(Z_{L} \sinh \left(\gamma z^{\prime}\right)+Z_{0} \cosh \left(\gamma z^{\prime}\right)\right)
\end{aligned}
$$

$$
\mathrm{Z}\left(\mathrm{z}^{\prime}\right)=\frac{V\left(\mathrm{z}^{\prime}\right)}{\mathrm{I}\left(\mathrm{z}^{\prime}\right)}=\mathrm{Z}_{0} \frac{\mathrm{Z}_{\mathrm{L}} \cosh \left(\gamma \mathrm{z}^{\prime}\right)+\mathrm{Z}_{0} \sinh \left(\gamma \mathrm{z}^{\prime}\right)}{\mathrm{Z}_{\mathrm{L}} \sinh \left(\gamma \mathrm{z}^{\prime}\right)+\mathrm{Z}_{0} \cosh \left(\gamma \mathrm{z}^{\prime}\right)}
$$

$\mathrm{Z}\left(\mathrm{z}^{\prime}\right)=\frac{\mathrm{V}\left(\mathrm{z}^{\prime}\right)}{\mathrm{I}\left(\mathrm{z}^{\prime}\right)}=\mathrm{Z}_{0} \frac{\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0} \tanh \left(\gamma \mathrm{z}^{\prime}\right)}{\mathrm{Z}_{0}+\mathrm{Z}_{\mathrm{L}} \tanh \left(\gamma \mathrm{z}^{\prime}\right)}$
$\mathrm{Z}_{\mathrm{i}}=\mathrm{Z}\left(\mathrm{z}^{\prime}=\ell\right)=\mathrm{Z}(\mathrm{z}=0)$

$$
\mathrm{Z}_{\mathrm{i}}=\mathrm{Z}_{0} \frac{\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0} \tanh (\gamma \ell)}{\mathrm{Z}_{0}+\mathrm{Z}_{\mathrm{L}} \tanh (\gamma \ell)}
$$

Loaded, Finite Transmission line

Matched load $\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0}$
$\mathrm{Z}\left(\mathrm{z}^{\prime}\right)=\frac{\mathrm{V}\left(\mathrm{z}^{\prime}\right)}{\mathrm{I}\left(\mathrm{z}^{\prime}\right)}=\mathrm{Z}_{0} \frac{\mathrm{Z}_{0}+\mathrm{Z}_{0} \tanh \left(\gamma \mathrm{z}^{\prime}\right)}{\mathrm{Z}_{0}+\mathrm{Z}_{0} \tanh \left(\gamma \mathrm{z}^{\prime}\right)}=\mathrm{Z}_{0}$

$>$ Behave as if the line is infinite
$>$ No reverse traveling wave
\Rightarrow No reflection

$$
V_{i}=\frac{Z_{i}}{Z_{g}+Z_{i}} V_{g} \quad I_{i}=\frac{1}{Z_{g}+Z_{i}} V_{g}
$$

Loaded, Finite Transmission line

Open Circuit Load: $Z_{L} \rightarrow \infty$

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{io}}=\frac{\mathrm{Z}_{0}}{\tanh (\gamma \ell)} \\
& \downarrow \text { Lossless line } \\
& \mathrm{Z}_{\mathrm{io}}=\frac{\mathrm{R}_{0}}{\mathrm{j} \tan (\beta \ell)} \\
& \mathrm{Z}_{\mathrm{io}}=-\mathrm{j} \mathrm{R}_{0} \cot (\beta \ell)
\end{aligned}
$$

Short Circuit Load: $Z_{L}=0$
$\mathrm{Z}_{\mathrm{is}}=\mathrm{Z}_{0} \tanh (\gamma \ell)$
\downarrow Lossless line
$Z_{\text {is }}=j \mathrm{R}_{0} \tan (\beta \ell)$

Loaded, Finite Transmission line

Quarter wave section
Half wave section

$$
\begin{aligned}
& \ell=(2 n-1) \frac{\lambda}{4} \\
& \beta=\frac{2 \pi}{\lambda}
\end{aligned}
$$

$$
\ell=n \frac{\lambda}{2}
$$

$$
\beta=\frac{2 \pi}{\lambda}
$$

$$
\tan (\beta \ell)=\tan \left((2 n-1) \frac{\pi}{2}\right) \rightarrow \pm \infty
$$

$$
\tan (\beta \ell)=\tan (n \pi)=0
$$

$$
\mathrm{Z}_{\mathrm{i}}=\frac{Z_{0}^{2}}{\mathrm{Z}_{\mathrm{L}}}
$$

$$
\mathrm{Z}_{\mathrm{i}}=\mathrm{Z}_{\mathrm{L}}
$$

In Class Exercise 1

A 50Ω lossless transmission line is to be matched to a resistive load impedance with $Z_{L}=100 \Omega$ via a quarter wave section as shown in the figure thereby eliminating reflections along the feedline. Find the characteristic impedance of the quarter wave transformer

In Class Exercise 1, Solution

To eliminate reflections, the input impedance looking into the quarterwave line should be equal to Z_{01}, the characteristic impedance of the feedline: $Z_{i n}=50 \Omega$

A 50Ω lossless transmission line is to be matched to a resistive load impedance with $Z_{L}=100 \Omega$ via a quarter wave section as shown in the figure thereby eliminating reflections along the feedline. Find the characteristic impedance of the quarter wave transformer

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{i}}=\mathrm{Z}_{01}=\frac{\mathrm{Z}_{02}^{2}}{\mathrm{Z}_{\mathrm{L}}} \\
& \mathrm{Z}_{\mathrm{i}}=\mathrm{Z}_{02}=\sqrt{\mathrm{Z}_{02} \mathrm{Z}_{\mathrm{L}}}=\sqrt{50 \cdot 100}=70.7 \Omega
\end{aligned}
$$

Lossless Lines with resistive termination: VSWR

Forward traveling wave Reverse traveling wave $\gamma=\mathrm{j} \beta$	$V\left(z^{\prime}\right)=\frac{\mathrm{I}_{\mathrm{L}}}{2}\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right) \mathrm{e}^{\mathrm{j} \beta \mathrm{z}^{\prime}}\left(1+\Gamma \mathrm{e}^{-2 j \beta z^{\prime}}\right)$
$\left.\mathrm{V}\left(\mathrm{z}^{\prime}\right)=\frac{\mathrm{I}_{\mathrm{L}}}{2}\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right) \mathrm{e}^{\gamma z^{\prime}}+\left(\mathrm{Z}_{\mathrm{L}}-\mathrm{Z}_{0}\right) \mathrm{e}^{-\gamma z^{\prime}}\right)$	$\mathrm{V}\left(\mathrm{z}^{\prime}\right)=\frac{\mathrm{I}_{\mathrm{L}}}{2}\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right) \mathrm{e}^{\mathrm{j} \beta \mathrm{z}^{\prime}}\left(1+\|\Gamma\| \mathrm{e}^{\mathrm{j}\left(\theta_{\Gamma}-2 \beta \mathrm{z}^{\prime}\right)}\right)$
Factor out forward traveling wave	$\begin{aligned} \mathrm{V}\left(\mathrm{z}^{\prime}\right)= & \left\|\mathrm{V}_{\max }\right\|=1+\|\Gamma\| \\ & \text { when } \theta_{\Gamma}-2 \beta \mathrm{z}^{\prime} \end{aligned}$
$\mathrm{V}\left(\mathrm{z}^{\prime}\right)=\frac{\mathrm{I}_{\mathrm{L}}}{2}\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right) \mathrm{e}^{\gamma z^{\prime}}\left(1+\frac{\left(\mathrm{Z}_{\mathrm{L}}-\mathrm{Z}_{0}\right) \mathrm{e}^{-\gamma z^{\prime}}}{\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right) \mathrm{e}^{\gamma z^{\prime}}}=-\begin{array}{l}\text { Reverse } \\ \text { Forward }\end{array}\right.$	$\begin{aligned} \mathrm{V}\left(\mathrm{z}^{\prime}\right)= & \left\|\mathrm{V}_{\min }\right\|=1-\|\Gamma\| \\ & \text { when } \theta_{\Gamma}-2 \beta \mathrm{z}^{\prime}= \pm(2 n+1) \tau \end{aligned}$
$\mathrm{V}\left(\mathrm{z}^{\prime}\right)=\frac{\mathrm{I}_{\mathrm{L}}}{2}\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right) \mathrm{e}^{\gamma z^{\prime}}\left(1+\frac{\left(\mathrm{Z}_{\mathrm{L}}-\mathrm{Z}_{0}\right)}{\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right)} \mathrm{e}^{-2 \gamma z^{\prime}}\right)$	Voltage Standing Wave Ratio (VSWR)
$\mathrm{V}\left(\mathrm{z}^{\prime}\right)=\frac{\mathrm{I}_{\mathrm{L}}}{2}\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right) \mathrm{e}^{\gamma z^{\prime}}\left(1+\Gamma \mathrm{e}^{-2 \gamma z^{\prime}}\right)$	$S=\frac{\left\|V_{\max }\right\|}{\left\|V_{\min }\right\|}=\frac{1+\|\Gamma\|}{1-\|\Gamma\|}$
$\Gamma=\frac{\mathrm{Z}_{\mathrm{L}}-\mathrm{Z}_{0}}{\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}}=\|\Gamma\| \mathrm{e}^{\mathrm{j} \theta_{\Gamma}}$	$\|\Gamma\|=\frac{1-S}{1+S}$

VSWR alternative view

* wikipedia

Maximum constructive interference between forward and reverse traveling waves

$$
\left|V_{\max }\right|=\left|V_{0}^{+}\right|+\left|V_{0}^{-}\right|=\left|V_{0}^{+}\right|+\left|\Gamma V_{0}^{+}\right|=\left|V_{0}^{+}\right|(1+|\Gamma|)
$$

Maximum destructive interference between forward and reverse traveling waves

$$
\left|\mathrm{V}_{\min }\right|=\left|\mathrm{V}_{0}^{+}\right|-\left|\mathrm{V}_{0}^{-}\right|=\left|\mathrm{V}_{0}^{+}\right|-\left|\Gamma \mathrm{V}_{0}^{+}\right|=\left|\mathrm{V}_{0}^{+}\right|(1-|\Gamma|)
$$

$$
S=\frac{\left|V_{\max }\right|}{\left|V_{\min }\right|}=\frac{\left|V_{0}^{+}\right|(1+|\Gamma|)}{\left|V_{0}^{+}\right|(1-|\Gamma|)}=\frac{1+|\Gamma|}{1-|\Gamma|}
$$

$$
|\Gamma|=\frac{1-S}{1+S}
$$

VSWR: where can I see it?

Connectorized

Amplifier

$50 \Omega \quad 20 \mathrm{MHz}$ to 3 GHz

Features

- Wide bandwidth, 20 MHz to 3 GHz
- Low noise figure, 2.7 dB typ.
- Output power up to 12.8 dBm typ.
- Protected by US patent 6,790,049

Applications

- Buffer amplifier

Cellular

- PCS

Lab

- Instrumentation
- Test equipment

Full Transmission Line Circuit

Kirchhoff nodal analysis @ z=0, z'= ℓ
Input Voltage and current phasors

$$
V_{i}=V_{g}-I_{i} Z_{g}
$$

Voltage and current phasors, arb. Line

$$
\left\{\begin{array}{l}
\mathrm{V}_{\mathrm{i}}=\mathrm{V}\left(\mathrm{z}^{\prime}=\ell\right)=\frac{\mathrm{I}_{\mathrm{L}}}{2}\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right) \mathrm{e}^{\gamma \ell}\left(1+\Gamma \mathrm{e}^{-2 \gamma \ell}\right) \\
\mathrm{I}_{\mathrm{i}}=\mathrm{I}\left(\mathrm{z}^{\prime}=\ell\right)=\frac{\mathrm{I}_{\mathrm{L}}}{2 \mathrm{Z}_{0}}\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right) \mathrm{e}^{\gamma \ell}\left(1-\Gamma \mathrm{e}^{-2 \gamma \ell}\right)
\end{array}\right.
$$

$$
\begin{aligned}
& V\left(z^{\prime}\right)=\frac{\mathrm{I}_{\mathrm{L}}}{2}\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right) \mathrm{e}^{\gamma \mathrm{z}^{\prime}}\left(1+\Gamma \mathrm{e}^{-2 \gamma z^{\prime}}\right) \\
& \mathrm{I}\left(\mathrm{z}^{\prime}\right)=\frac{\mathrm{I}_{\mathrm{L}}}{2 \mathrm{Z}_{0}}\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right) \mathrm{e}^{\gamma \mathrm{z}^{\prime}}\left(1-\Gamma \mathrm{e}^{-2 \gamma z^{\prime}}\right)
\end{aligned}
$$

$$
\begin{gathered}
\frac{\mathrm{I}_{\mathrm{L}}}{2}\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right) \mathrm{e}^{\gamma \ell}=\mathrm{V}_{\mathrm{g}} \frac{\mathrm{Z}_{0}}{\mathrm{Z}_{0}+\mathrm{Z}_{\mathrm{g}}} \frac{1}{1-\Gamma_{\mathrm{g}} \Gamma \mathrm{e}^{-2 \gamma \ell}} \\
\Gamma_{\mathrm{g}}=\frac{\mathrm{Z}_{\mathrm{g}}-\mathrm{Z}_{0}}{\mathrm{Z}_{\mathrm{g}}+\mathrm{Z}_{0}}
\end{gathered}
$$

Full Transmission Line Circuit

Voltage and current phasors, arb. Line

$$
\begin{aligned}
& \mathrm{V}\left(\mathrm{z}^{\prime}\right)=\frac{\mathrm{T}_{\mathrm{L}}}{2}\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right) \mathrm{e}^{\gamma \mathrm{z}^{\prime}}\left(1+\Gamma \mathrm{e}^{-2 \gamma \mathrm{z}^{\prime}}\right) \\
& \mathrm{I}\left(\mathrm{z}^{\prime}\right)=\frac{1}{\mathrm{Z}_{0}} \frac{\mathrm{~L}}{2}\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right) \mathrm{e}^{\gamma \mathrm{z}^{\prime}}\left(1-\Gamma \mathrm{e}^{-2 \gamma \mathrm{z}^{\prime}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}\left(\mathrm{z}^{\prime}\right)=\mathrm{V}_{\mathrm{g}} \frac{\mathrm{Z}_{0}}{\mathrm{Z}_{0}+\mathrm{Z}_{\mathrm{g}}} \mathrm{e}^{\gamma\left(\mathrm{z}^{\prime}-\ell\right)} \frac{1+\Gamma \mathrm{e}^{-2 \gamma \mathrm{z}^{\prime}}}{1-\Gamma_{\mathrm{g}} \Gamma \mathrm{e}^{-2 \gamma \ell}} \\
& \mathrm{I}\left(\mathrm{z}^{\prime}\right)=\mathrm{V}_{\mathrm{g}} \frac{1}{\mathrm{Z}_{0}+\mathrm{Z}_{\mathrm{g}}} \mathrm{e}^{\gamma\left(\mathrm{z}^{\prime}-\ell\right)} \frac{1+\Gamma \mathrm{e}^{-2 \gamma \mathrm{z}^{\prime}}}{1-\Gamma_{\mathrm{g}} \Gamma \mathrm{e}^{-2 \gamma \ell}}
\end{aligned}
$$

$$
\frac{\mathrm{I}_{\mathrm{L}}}{2}\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right)=\mathrm{V}_{\mathrm{g}} \mathrm{e}^{-\gamma \ell} \frac{\mathrm{Z}_{0}}{\mathrm{Z}_{0}+\mathrm{Z}_{\mathrm{g}}} \frac{1}{1-\Gamma_{\mathrm{g}} \Gamma \mathrm{e}^{-2 \gamma \ell}}
$$

In Class Exercise 2

A 50Ω transmission line is terminated in a load with $Z_{L}=(100+j 50) \Omega$. Find the voltage reflection coefficient and the voltage standing wave ratio (VSWR)

In Class Exercise 2

A 50Ω transmission line is terminated in a load with $Z_{L}=(100+j 50) \Omega$. Find the voltage reflection coefficient and the voltage standing wave ratio (VSWR)

$$
\begin{aligned}
\Gamma & =\frac{\mathrm{Z}_{\mathrm{L}}-\mathrm{Z}_{0}}{\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}}=\frac{100+j 50-50}{100+j 50+50}=\frac{50+j 50}{150+j 50}=0.45 e^{j 0.15 \pi} \\
\mathrm{~S} & =\frac{1+0.45}{1-0.45}=2.6
\end{aligned}
$$

Summary

> Two conductor waveguides (TEM transmission lines) can be described by the characteristic impedance Z_{0}, propagation constant $\mathrm{\gamma}$, and length ℓ
$>$ Drive transmission line with a dimensionless generator with impedance Z_{g}
$>$ Couple transmission line to load with impedance Z_{L}
$>$ Use transmission line Z_{0}, γ and ℓ to define forward and reverse traveling voltage and current waves
$>$ Use currents and voltages to define effective input impedance seen by the generator $\rightarrow \mathrm{Z}_{\mathrm{i}}$
> Convert problem to lumped element
> Transmission lines have physical length so matching occurs when
$>\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0}$ (NO reflection)
$>$ not when $\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0}{ }^{*}$ (YES reflection)

