Quantum Mechanics PHYS-C0252 lecture starts 10:15

First lecture on 1.11.2021

Lecturers: Mikko Möttönen and Tapio Ala-Nissilä Teaching assistants: Andras "Marci" Gunyho and Niko Savola

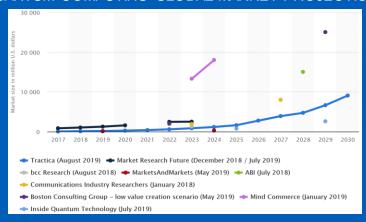
QUANTUM **TECHNOLOGY** WILL CHANGE THE WORLD (FOR BETTER)

CHEMISTRY AND PHARMA

ENERGY

SUSTAINABILITY

FINTECH

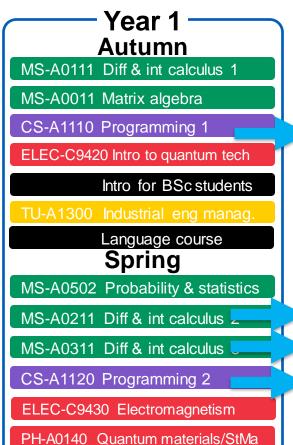


CYBER SECURITY

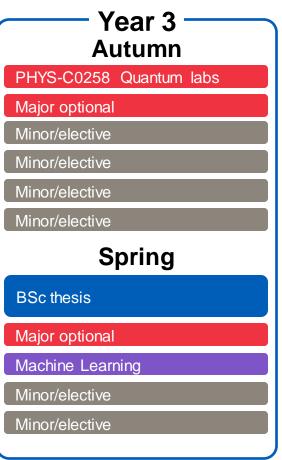
INDUSTRY RAMPING UP

QUANTUM COMPUTING GLOBAL MARKET PROJECTIONS

ANNUAL REVENUE OF QUANTUM TECH INDUSTRY
IN FINLAND
(MILLIONS OF EUROS)


https://www.statista.com/statistics/936010/quantum-computing-future-market-outlook-forecast/

many scientific questions to be answered


finally job opportunities in quantum

what an amazing time to study quantum technology!

Quantum technology - timetable

Year 2 Autumn
MS-C1350 Part diff eqs
CS-A1140 Data struct & algorith
PHYS-C0252 Quantum mechanics
Minor/elective
Minor/elective
Minor/elective
Spring
Spring
ENG-A1003 Numerical Methods
ENG-A1003 Numerical Methods
ENG-A1003 Numerical Methods PHYS-C0256 Thermo & stat mech
ENG-A1003 Numerical Methods PHYS-C0256 Thermo & stat mech ELEC-C9440 Quantum info

Aalto University 7

Intended Learning Outcomes (ILOs)

- 1. Is familiar with the **structure** and postulates **of quantum mechanics**
- 2. Can differentiate between the terms quantum-mechanical state and wavefunction
- 3. Can **solve** the eigenstates and eigenvalues of the **Schrödinger equation** in simple situations and knows how to generalize the computation to situations where analytical solution is challenging.
- 4. Can **integrate the quantum evolution** and the expectation values of physical quantities for simple systems.
- 5. Can apply **creation and annihilation operators** to analyze one-dimensional harmonic oscillator.
- 6. Can solve the eigenstates of the one-dimensional harmonic oscillator.
- 7. Can predict **measurement probabilities** from a given quantum state.
- 8. Can apply **perturbation theory** to compute eigensolutions in a situation where analytical solutions is challenging.

PEAK AT SYLLABUS

https://mycourses.aalto.fi/course/view.php?id=33562

Course content, rough

Hilbert space and Dirac notation

Operators, eigenvalues and eigenfunctions

Properties of (Hermitian) operators

Postulates of quantum mechanics (inc. superposition & meas)

Expectation values and variance

Continuous-variable bases: coordinate representation, momentum basis

Quantization of a physical system

Schrödinger equation and temporal evolution

Qubit (tw o-level system)

Tw o-system and entanglement

Commutator and conserved quantities

Solving 1D harmonic oscillator using creation and annihilation operators

Free particles and plane waves

Particle in a box

Particles in different potential wells: infinite and finite wells in 1D

Scattering and tunneling through barriers

Bloch's theorem

Bosons and fermions

Perturbation theory (non-degenerate)

Time-dependent perturbation theory

Time dependence of operators: different pictures

Particalities

- In-person v.s. online
 - Future lectures and exercises organized in person (U9/U3)
 - We aim to have Zoom streaming (and recorded videos) for those who cannot attend
 - Exams are organized in person (bad experience from online exam)
- Excercises
 - Deadline for returning solutions every Wednesday night (problems based on the lectures of the previous week)
 - Problem sets for excercises published by previous Monday
 - Trying out Zoom also on excercise sessions
 - Bonus 5 or 6 points (one full problem) to the next exam

Practicalities continue

- Zulip chat to ask for help. TAs will try to answer in a reasonable time frame.
- Additions?
- Questions?
 - Grading scale