Linear Programming Modelling

Risto Lahdelma Aalto University Energy Technology Otakaari 4, 02150 Espoo, Finland risto.lahdelma@aalto.fi

Contents

- Optimization modelling
- Mathematical programming models
- Linear programming
 - LP model
 - Formulation
 - Sample energy models
 - Graphical representation
 - Solving LP models
 - Basic solutions
 - Simplex algorithm
 - Combined heat and power modelling

Optimization modelling

- The problem is defined in *implicitly* terms of
 - an **Objective function** to minimize of maximize
 - by choosing optimal values for decision variables
 - subject to constraints
- Optimization software solves the problem automatically
 - This approach is a dramatically different from *explicit* (simulation) models where the result is obtained by applying some formulas in given order
- Most common optimization model types:
 - Linear Programming (LP) problem
 - Mixed Integer Linear Programming (MILP) problem

Optimization problem example

• Sample problem with two variables

```
\min x_1^2 + x_2^2
s.t.
x_1 + x_2 \ge 3
x_2 \ge 0
```

$$x_1^2, x_2 \in \mathbb{R}$$

- In a two-dimensional case the problem can be illustrated and solved graphically
 - Constraints define the feasible region in the plane
 - Level curves of the objective function show the *height* of the terrain

Optimization problem example

- **Constraints** define the feasible region in the plane
- Level curves of the objective function show the height of the terrain

General mathematical optimization problem

Find values for *decision variables* \mathbf{x} that minimize or maximize the *objective function* $f(\mathbf{x})$ subject to *constraints*:

 $\begin{array}{ll} \min f({\bf x}) & (\text{objective function}) \\ \text{subject to} \\ {\bf h}({\bf x}) = {\bf 0} & (\text{vector of equality constraints}) \\ {\bf g}({\bf x}) \leq {\bf 0} & (\text{vector of inequality constraints}) \\ {\bf x} \in {\bf R}^n \ (\text{or } {\bf x} \in {\bf N}^n) & (\text{vector of decision variables}) \\ \end{array}$ If domain of {\bf x} is {\bf R}^n, it is a *continuous optimization problem*If all x_i are integers, it is an *integer optimization problem*A *mixed integer problem* contains both integer and real x_i

Properties of optimization problems

- Consider general problem min (max) f(x) s.t. $x \in X$
- A particular solution $\mathbf{x} = \mathbf{x}^*$ is
 - *feasible* if it satisfies all constraints (i.e. $x^* \in X$)
 - *infeasible* if it does not satisfy all constraints
 - *optimal* if it is feasible and minimizes (maximizes) f(x)
- The *problem* is
 - *feasible* if at least one feasible solution exists
 - *infeasible* if no feasible solution exists
 - *unbounded* if infinitely good feasible solutions exist
- The problem can have
 - no optimal solutions: when the problem is infeasible or unbounded
 - one unique optimal solution
 - multiple (equally good) optimal solutions
- R. Lahdelma

Optimization model transformations

- Transformations
 - $\min f(\mathbf{x}) = -\max -f(\mathbf{x});$
 - $\max f(\mathbf{x}) = -\min -f(\mathbf{x})$
 - $g(\mathbf{x}) \le 0 \iff -g(\mathbf{x}) \ge 0$
 - $g(\mathbf{x}) = 0 \iff g(\mathbf{x}) \le 0 \land g(\mathbf{x}) \ge 0$
 - $g(\mathbf{x}) \le 0$ ⇔ $g(\mathbf{x}) + s^2 = 0$ where s is an unconstrained real variable
- Constrained problem can be transformed into unconstrained by augmenting objective with a penalty term, i.e. a *barrier function*

- min f(x) s.t. $g(x) \le 0 \iff \min f(x) + M \cdot \max\{g(x), 0\}$

• M is a big positive number

Optimization model types

- Depending on the structure of the objective function and constraints, optimization models can be classified in different ways
 - Single variable and multiple variables
 - Continuous, discrete or mixed integer problems
 - Decision variables are continuous, binary (0/1), general integers, or mixed
 - Integer programming, mixed integer programming
 - Unconstrained and constrained problems
 - Convex and non-convex problems
 - Linear, quadratic and nonlinear problems
 - Single objective and multi-objective problems
 - f(x) is a vector of objective functions

Optimization model types – Exampes

- Sizing of ground source heat pump
 - Single objective (minimize life-cycle costs)
 - Single continuous variable (size of pump)
 - Constrained non-linear convex problem
- Unit commitment of power plants
 - Single objective (maximize profit)
 - Multiple variables of mixed types
 - Constrained non-convex problem
- Investment in new production technology
 - Multiple objectives (economic, environmental, policy, ...)
 - Multiple discrete (binary) variables
 - Constrained or unconstrained problem

Solving optimization problems

- To solve problems it is necessary to understand the different problem types and their properties
 - There is no universal way to find the optimum or even a feasible solution to an arbitrary problem
 - Different solution algorithms are required for different problem types
- Most important is to determine if the optimization problem is convex or not!
 - Convex problem = minimize convex objective function in a convex region
 - Convex problem: relatively easy
 - Non-convex problem: potentially very hard

Impossible to solve non-convex model

- Consider max/min f(x)=sin(x)*sin(ax)
 - Each factor has max/min at +1/-1
 - If the peaks and valleys coincide then f(x)=+1 or -1
 - If a is chosen properly, peaks and valleys never meet
 - No optimum, values approaching +1/-1

Real-life optimization problems

- A real-life model differs from theoretical models in several aspects
 - Normally the problem is never unbounded
 - The existence of a feasible solution can often be verified intuitively
 - Often many model parameters are uncertain or imprecise
 - It is not necessary to find the true optimum a nearoptimal solution and sometimes even a reasonably good solution may suffice

LP and MILP modelling

• *Linear Programming* and *Mixed Integer Linear Programming* are most commonly used approaches for practical problems because

- the modelling techniques are very versatile and flexible

- efficient and reliable solvers exist for these problems

- Arbitrary convex optimization problems can be approximated by LP models
- Many non-convex optimization problems can be approximated by MILP models

LP modelling

- By far, the most commonly used optimization modelling technique
 - Applicable for a wide class of different problems
 - Easy to formulate
 - Easy to understand
 - Very large models can be solved efficiently
 - Interpretation of results and various sensitivity analyses are (relatively) easy
- Many energy optimization problems can be represented as LP models

- Why can LP modelling not always be used?

Applicability of LP models

- LP models work only in convex problems – The **minimization problem is convex** when:
 - The minimized objective function is **convex**
 - The feasible region is **convex**

– The maximization problem is convex when:

- The maximized objective function is **concave**
- The feasible region is **convex**
- An LP model is a piecewise linear convex model
- How can non-convex problems be modelled?

Convex optimization problem

- A convex optimization problem is of form min f(x); s.t. x ∈X
 - where f() is a convex function and
 - X is a convex set
- Similarly max f(**x**) s.t. **x**∈X where f() is a concave function is a convex optimization problem
- The feasible region X is a convex set when
 - functions in inequality constraints g(x)≤0 are convex and
 - functions in equality constraints $h(\mathbf{x})=0$ are linear.

Convex and concave functions

 A function f(x) is convex if linear interpolation between any two points x and y does not yield a lower value than the function

• Mathematically $f(\alpha x+(1-\alpha)y) \le \alpha f(x)+(1-\alpha)f(y)$ for all x, y and $\alpha \in [0,1]$ • A function f(x) is **concave** if linear interpolation between any two points x and y does not yield a higher value than the function

• Mathematically $f(\alpha x+(1-\alpha)y) \ge \alpha f(x)+(1-\alpha)f(y)$ for all x, y and $\alpha \in [0,1]$

Convex and concave functions

• Which functions are convex and which are concave?

- Some functions are neither convex nor concave
- If f(x) is convex, then -f(x) is concave and vice versa
- Only linear functions are both convex and concave

Convex set

• A set X is **convex** if the line segment connecting any two points x and y of the set is in the set

Mathematically

- If $\mathbf{x}, \mathbf{y} \in \mathbf{X}$, then $\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathbf{X}$ for all $\alpha \in [0, 1]$

- A constraint $g(\mathbf{x}) \le 0$ defines a convex set if $g(\mathbf{x})$ is a convex function.
- The intersection of convex sets is a convex set
 - Thus multiple constraints $g_i(\mathbf{x}) \le 0$ with convex functions $g_i(\mathbf{x})$ define a convex set

Convex optimization problems

- Convex optimization problems are relatively easy to solve because
 - A local optimum is also a global optimum
 - They can be solved using hill-climbing strategy: starting from any feasible point move in a direction where f(x) improves while maintaining feasibility
 - If the functions f(), g(), h() are smooth (first derivatives are continuous), various gradient-based methods can be used to identify improving directions
- Non-convex problems are difficult, because a local optimum is not in the general case a global optimum

Linear programming (LP) models

• An LP model has a linear objective function f(**x**) and linear constraints g_i(**x**):

min (max) $c_1 x_1 + c_2 x_2 + \dots c_n x_n$ s.t.

```
a_{11}x_1 + a_{12}x_2 + \dots a_{1n}x_n \le b_1
a_{21}x_1 + a_{22}x_2 + \dots a_{2n}x_n \le b_2
```

```
•••
```

 $a_{m1}x_1 + a_{m2}x_2 + \dots a_{mn}x_n \le b_m$

- Typical matrix representation: min (max) cx
 s.t.
 Ax ≤ b
 - $\mathbf{x} \ge \mathbf{0}$ // traditionally variables are non-negative

Linear programming (LP) models

- Special case of convex problems
 - f(x), g(x) and h(x) are linear functions of x
 - The constraints are (hyper-) planes in *n* dimensions
 - The feasible area is an *n*-dimensional polyhedron
 - The optimum is at a corner point at the intersection between some constraint planes
- Very efficient solution algorithms for LP models exist
 - The Simplex algorithm can solve LP models with millions of variables and constraints
- Non-linear convex problems can be approximated by LP models with arbitrarily good accuracy
- Non-convex problems cannot be represented as LP models

How to define an LP model?

- 1. Write down a verbal explanation of what is the goal or purpose of the model
 - E.g. to minimize costs or maximize profit from some specific operation or activity
- 2. Define the **decision variables** (and parameters)
 - Use as descriptive or generic names as you like: x1, x2, fuel, ...
 - Give short description for them
 - Also specify the unit (MWh, GJ, \in/kg , m3/s, ...)
- 3. Define the **objective function** to minimize or maximize as a *linear function* of the variables
- 4. Define the **constraints** as *linear* inequality or equality constraints for the variables

LP example: Dual fuel condensing power plant

- Boiler can use two different fuels simultaneously in any proportion
- Boiler produces high pressure steam for a turbine driving a generator to produce electricity
- After turbine, steam is condensed back into water
- Fuels have different prices and consumption ratios
- Produced power is sold to market
- Typical objective is to **maximize profit** = revenue from selling power minus fuel costs

Dual fuel condensing power plant

LP example: Dual fuel condensing power plant

- Maximize profit during each hour of operation
- Decision variables
 - x1, x2 fuel consumption (MWh)
 - p power output (MWh)
- Parameters
 - r1, r2 consumption ratios for fuels (1)
 - c1, c2, c price for fuels and power (€/MWh)
 - $-x1^{\max}, x2^{\max}$
- upper bounds for fuel consumption (MWh) hourly maximal production capacity (MWh)

b

LP example: Dual fuel condensing power plant

- Objective function max c*p - c1*x1 - c2*x2 // power sales minus fuel cost
- Constraints

 $\begin{array}{ll} p = x1/r1 + x2/r2 & // \mbox{ power depends production} \\ p \leq b & // \mbox{ capacity limit} \\ x1 \leq x1^{max,}, \ x2 \leq x2^{max}, \ x1, \ x2 \geq 0 \end{array}$

• Substitute expression for p to eliminate third variable $\max (c/r1-c1)*x1 + (c/r2 - c2)*x2$ $x1/r1 + x2/r2 \le b \qquad // \text{ capacity limit}$ $x1 \le x1^{\max}, x2 \le x2^{\max}, x1, x2 \ge 0$

LP example:

Dual fuel condensing power plant, numerical

- Parameters
 - Fuel consumption ratios (r1, r2) = (3.33, 2.5)
 - Fuel & power prices $(c1, c2, c) = (20, 25, 80) \in /MWh$
 - Upper bounds for fuels $(x1^{max}, x2^{max}) = (150,100)$ MWh
 - Production capacity b = 60 MWh

```
\max (80/3.33-20)*x1 + (80/2.5-25)*x2 = 4*x1 + 7*x2

0.3*x1 + 0.4*x2 \le 60

x1 \le 150

x2 \le 100

x1, x2 \ge 0
```

Graphical representation of LP models

- Models with two variables can be represented and solved graphically
 - Linear constraints are drawn as lines
 - The feasible region appears as a polygon
 - The feasible region may be unbounded in some direction
 - If the constraints are contradictory, the feasible region is empty and the model is infeasible
 - Level curves of objective function f(x) = K = constantare draw as dotted lines
 - Optimum is where a level curve touches the feasible region with with maximal or minimal K
 - This happens at some corner
 - If two corners yield optimal value, all points on the connecting edge are optimal (infinite number of optima)

Properties of LP models

- Similar to a general optimization problem, an LP problem can be
 - **Feasible**, if one or more feasible solutions exist
 - **Infeasible**, if no feasible solutions exist, i.e. constraints are conflicting
 - Example: min 0 s.t. $x \ge 1$, $x \le 0$
 - Unbounded, if infinitely good solutions exist
 - Example: max x s.t. $x \ge 0$
- An LP problem has infinite number of optima if two or more corner solutions yield optimal value
 - Then all convex combinations of optimal corner solutions are optimal

LP example: DH boiler

- A dual fuel boiler to produce district heat
 - Goal to meet demand (MWh) as cheaply as possible
 - Decision variables
 - x1, x2 fuel consumption (MWh)
 - Parameters
 - r1, r2 consumption ratios for fuels (1)
 - c1, c2 prices for fuels (€/MWh)
 - $x1^{max}$, $x2^{max}$ upper bounds for fuel consumption (MWh)
 - b demand of heat

min c1*x1 + c2*x2 x1/r1 + x2/r2 \ge b // allowed to produce excess x1 \le x1^{max}, x2 \le x2^{max}, x1, x2 \ge 0

LP example: DH boiler, numerical example

– Parameters

- Fuel consumption ratios (r1, r2) = (1.25, 1.11)
- Fuel prices $(c1, c2) = (20, 25) \in /MWh$
- Upper bounds for fuels $(x1^{max}, x2^{max}) = (150,100)$ MWh

```
• Heat demand b = 120
min 20*x1 + 25*x2;
0.8*x1 + 0.9*x2 \ge 120;
x1 \le 150;
x2 \le 100;
x1, x2 \ge 0;
```

Solving LP problems – canonical form

- The simplex algorithm for LP problems is based on solving linear equation systems
 - First the problem is reformulated into *canonical form*, where all constraints are of equality type
 - min (max) **cx** min (max) **cx**
 - s.t. \rightarrow s.t. $A\mathbf{x} \le \mathbf{b}$ $A\mathbf{x} + \mathbf{s} = \mathbf{b}$ $\mathbf{x} \ge 0$ $\mathbf{x}, \mathbf{s} \ge 0$
 - $\mathbf{s} = [s_1, s_2, ..., s_m]^T$ is a vector of *slack* variables
 - Greater than –type equations get *surplus* variables

 $Ax \ge b \longrightarrow Ax - s = b \longrightarrow -Ax + s = -b$

Solving LP problems – canonical form

- In canonical form, the LP problem can be rewritten as min (max) cx
- s.t.
- $A\mathbf{x} = \mathbf{b}$
- $\mathbf{x} \ge \mathbf{0}$
- The new A-matrix contains the original A and an identity matrix A = [A|I]
- The new **x**-vector contains the original decision variables and the slacks $\mathbf{x}^{T} = [\mathbf{x}^{T}|\mathbf{s}^{T}]$
- The new c-vector contains the original c and zeros as cost coefficients for the slacks

Solving LP problems – canonical form

- The original problem contained *m* constraints and *n* variables
 - In canonical form the problem contains m constraints and m+n variables
 - *n* original decision variables and *m* slacks
 - The A-matrix is more wide than tall
 - Thus, there are more variables than equations
- Such an *underdetermined system* has in general an infinite number of solutions
 - The idea is to fix *n* of the variables to zero (their lower bounds) and solve the remaining *m* variables from the *m* equations

Solving LP problems – basic solutions

- The Simplex algorithm explores *basic solutions* of the equation system
 - A basis is a set of *m* linearly independent columns of the A-matrix
 - We partition A = [B|N] where B is the basis and N is the non-basic part
 - **x** is partitioned similarly into basic variables \mathbf{x}^{B} and non-basic \mathbf{x}^{N}
 - **c** is partitioned similarly into \mathbf{c}^{B} and \mathbf{c}^{N}
- The problem is rewritten as min (max) $\mathbf{c}^{\mathbf{B}}\mathbf{x}^{\mathbf{B}} + \mathbf{c}^{\mathbf{N}}\mathbf{x}^{\mathbf{N}}$

```
s.t.
```

$$\mathbf{B}\mathbf{x}^{\mathrm{B}} + \mathbf{N}\mathbf{x}^{\mathrm{N}} = \mathbf{b}$$

$$\mathbf{x}^{\mathrm{B}}, \mathbf{x}^{\mathrm{N}} \ge 0$$

Solving LP problems – basic solutions

```
min (max) \mathbf{c}^{\mathbf{B}}\mathbf{x}^{\mathbf{B}} + \mathbf{c}^{\mathbf{N}}\mathbf{x}^{\mathbf{N}}
```

s.t.

- $\mathbf{B}\mathbf{x}^{\mathrm{B}} + \mathbf{N}\mathbf{x}^{\mathrm{N}} = \mathbf{b}$
- $\mathbf{x}^{\mathrm{B}}, \, \mathbf{x}^{\mathrm{N}} \ge 0$
 - A basic solution is obtained by setting $\mathbf{x}^{N} = 0$ and solving

 $\mathbf{x}^{B} = B^{\text{-1}}(\mathbf{b}\text{-} N\mathbf{x}^{N}) = B^{\text{-1}}\mathbf{b}$

- Basic solutions correspond to *corner points*, i.e. intersections between constraint equations
 - When a slack is non-basic (zero) the constraint is active (equality holds)
 - When a slack is non-zero, the constraint is inactive (strict inequality)
 - A basic solution is *feasible* if (and only if) $\mathbf{x}^{B} \ge 0$

Solving LP problems – basic solution example

• The power plant problem in canonical form

max $4*x1 + 7*x2;$		$\max 4^*x1 + 7^*x2;$	
$0.3*x1 + 0.4*x2 \le 60$		0.3*x1 + 0.4*x2 + s1	= 60
x1 ≤ 150		x1 +	s2 = 150
$x2 \le 100$	\Rightarrow	x2	+s3 = 100
$x1, x2 \ge 0$		$x1, x2, s1, s2, s3 \ge 0$	

 $A = \begin{bmatrix} 0.3 & 0.4 & 1 & 0 & 0; \\ 1 & 0 & 0 & 1 & 0; \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$ - Select x1,x2, s2 as basic and s1=s3=0 non-basic 0.3*x1 + 0.4*x2 = 60x1 + s2 = 150 x2 = 100 $\Rightarrow x2 = 100; x1 = (60-40)/0.3 = 67; s2 = 150-67 = 83$ Objective = 4*67 + 7*100 = 967 (this happens to be optimum, see graph)

Solving LP problems – basic solutions

- In principle LP problems could be solved by
 - computing all basic solutions and
 - selecting among the feasible ones the one with optimal objective function value
 - But the number of basic solutions is potentially

$$\binom{m+n}{m} = \frac{(m+n)!}{m!n!}$$

- m = number of constrains, n = number of decision variables
- Already with m=n=20 there are 137 846 528 820 combinations

Solving LP problems – Simplex algorithm

- The Simplex algorithm searches the optimum among the basic solutions
 - It starts with some basic solutions such as slack-basis
 - It moves to an adjacent basic solution so that the solution improves
 - In an adjacent basic solution exactly one variable is replaced in the basis
 - graphically it means moving between corners along an edge
 - This is repeated until optimum is found
- Theoretically the Simplex algorithm may explore an exponential number of basic solutions
 - In practice the algorithm is fast and polynomial in complexity

CHP – Combined Heat and Power

- Cogeneration means production of two or more energy products together in an integrated process
 - CHP = combined heat and power generation
 - Trigeneration:
 - district heating + cooling + power
 - high pressure process heat + low pressure heat + power
 - Technologies: backpressure turbines, combined steam&gas turbines, combustion engine with excess heat utilization ...
 - Much more efficient than producing the products separately over 90% efficiency possible
 - Cost-efficient way to reduce CO₂ emissions

CHP planning

- Objective is to maximize profit s.t. production constraints
- Hourly production of the different products must be planned together
 - Production of heat & cooling must meet the demand (natural monopoly)
 - Power production is planned to maximize the profit from sales to the spot market (free market)
- A long-term model consists of many hourly models in sequence
 - E.g. an annual model consists of 8760 hourly models
 - Hourly forecasts for demand and power price
- Various advanced analyses, e.g. risk analysis require solving many long-term models
 - Solution must be fast!

Sample backpressure/bleeder turbine plant

CHP modelling

- 1. Modelling as generic LP problem
 - Each component (boiler, turbine, generator, reduction valves) is modelled through linear constraints
 - Component models are combined with balance equations for energy and material flows
 - Model is solved using generic LP software
- 2. Modelling using special extreme point formulation
 - Extreme points of plant characteristic can be obtained
 - By analyzing LP model
 - Experimentally by running the plant in different modes
 - By computing theoretically
 - Model can be solved by generic LP or using very efficient specialized algorithm **Power Simplex**

LP modelling technique using convex combination

- Weighted average = linear interpolation between two points
 - $P = xP_1 + (1-x)P_2$ with $x \in [0,1]$ is a convex combination of coordinates P_1 and P_2 .

LP modelling technique using convex combination

• Equivalent formulation with two weights $x_1 \& x_2$

 $P = x_1P_1 + x_2P_2$ where $x_1 + x_2 = 1$, $x_1, x_2 \ge 0$.

• More generally for any number of points P_j $P = \sum_j x_j P_j$ where $\sum_j x_j = 1, x_j \ge 0$.

P=0.6P₁+0.4P₂

• Expressions are linear with respect to x_i

 \mathbf{P}_1

- Points can be scalars (1-dimensional case) or
- Points can be vectors (multiple dimensions)

LP model for CHP plant – LP-encoding of convex characteristic operating region

• The power plant characteristic defines the feasible operating area in the 3D space (c,p,q)

- p = power production, q = heat production, c = cost

• Encode model as a convex combination of extreme (c_3, p_3, q_3) Q (corner) points max $c^p p - C$ // c^p is power price s.t. (c_4, p_4, q_4) $\Sigma_i c_i x_i = C // variable prod. cost$ (c_2, p_2, q_2) (c_5, p_5, q_5) $\Sigma_i p_i x_i = P // variable power prod.$ $\Sigma_i q_i x_i = Q // \text{ fixed heat demand}$ (c_6, p_6, q_6) $\Sigma_i x_i = 1$ // convex comb. (c_1, p_1, q_1) $x_i \ge 0$

LP model for CHP plant – LP-encoding of convex characteristic operating region

$$\min \sum_{j \in J_u} c_j x_j$$
$$\sum_{j \in J_u} x_j = 1$$
$$\sum_{j \in J_u} p_j x_j = P$$
$$\sum_{j \in J_u} q_j x_j = Q$$
$$x_j \ge 0, j \in J$$

R.Lahdelma

3.12.20117

Hourly trigeneration model

- Extreme point formlation with three commodities (p,q,r), multiple plants and multiple periods
 - Extreme points are in 4D space $(c_j^t, p_j^t, q_j^t, r_j^t)$
 - Index t for hour, index u for plant in set of plants U
 - $-J_u$ = set of extreme points of plant *u*

$$C_{u}^{t} = \sum_{j \in J_{u}} c_{j}^{t} x_{j}^{t}$$

$$P_{u}^{t} = \sum_{j \in J_{u}} p_{j}^{t} x_{j}^{t}$$

$$Q_{u}^{t} = \sum_{j \in J_{u}} q_{j}^{t} x_{j}^{t}$$

$$R_{u}^{t} = \sum_{j \in J_{u}} r_{j}^{t} x_{j}^{t}$$

$$\sum_{j \in J_{u}} x_{j}^{t} = 1$$

$$x_{j}^{t} \ge 0 \qquad \mathcal{U} \in \mathcal{U}$$

Review questions

• Please review lecture material and be prepared to answer review questions at next lecture

- 1. Is the optimization problem max $x^2 + y^2$ s.t. $x, y \ge 0$ feasible, infeasible or unbounded? Why?
- 2. Give a feasible solution to the above problem.
- 3. How many optimal solutions does the problem max x^2 s.t. -5 $\leq x \leq 5$ have?
- 4. Transform max x s.t. $x \le 5$ replacing inequality constraint by equality constraint.
- 5. Transform max x s.t. $x \le 5$ into an unconstrained optimization problem.
- 6. Why is classification of optimization problems important?
- 7. Classify the following optimization problem: min $x^2 + y^2$ s.t. $x,y \ge 0, x \in \mathbb{R}, y \in \mathbb{N}$
- 8. Why is LP modelling so common?
- 9. Why are convex optimization problems relatively easy to solve?
- 10. Give an example of an optimization problem which is difficult or impossible to solve.
- 11. Does LP apply to non-linear problems? Why, or why not?
- 12. When can an LP problem have infinite number of optimal solutions?
- 13. Give an example of an infeasible LP problem
- 14. Give an examle of a feasible LP problem without optimal solution
- 15. Give an example of an LP problem with infinite number of optima