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Optimization modelling 

• The problem is defined in implicitly terms of 

– an Objective function to minimize of maximize 

– by choosing optimal values for decision variables 

– subject to constraints 

• Optimization software solves the problem automatically 

– This approach is a dramatically different from explicit (simulation) 

models where the result is obtained by applying some formulas in 

given order 

• Most common optimization model types: 

– Linear Programming (LP) problem 

– Mixed  Integer Linear Programming (MILP) problem 
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Optimization problem example 

• Sample problem with two variables 
 

min x1
2 + x2

2 

s.t. 

x1 + x2  3 

x2  0 

x1, x2R 

• In a two-dimensional case the problem can be 
illustrated and solved graphically 
– Constraints define the feasible region in the plane 

– Level curves of the objective function show the height 
of the terrain 



R. Lahdelma 

Optimization problem example 

– Constraints define the feasible region in the plane 

– Level curves of the objective function show the 
height of the terrain 
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General mathematical optimization 

problem 
Find values for decision variables x that 
minimize or maximize the objective function f(x) 
subject to constraints: 

 

min f(x) (objective function) 

subject to 

h(x) = 0 (vector of equality constraints) 

g(x) ≤ 0 (vector of inequality constraints) 

xRn (or xNn) (vector of decision variables) 

If domain of x is Rn, it is a continuous optimization problem 

If all xi are integers, it is an integer optimization problem 

A mixed integer problem contains both integer and real xi 
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Properties of optimization problems 

• Consider general problem min (max) f(x) s.t. xX 

• A particular solution x = x* is 

– feasible if it satisfies all constraints (i.e. x*X) 

– infeasible if it does not satisfy all constraints 

– optimal if it is feasible and minimizes (maximizes) f(x) 

• The problem is 

– feasible if at least one feasible solution exists 

– infeasible if no feasible solution exists 

– unbounded if infinitely good feasible solutions exist 

• The problem can have 

– no optimal solutions: when the problem is infeasible or 
unbounded 

– one unique optimal solution 

– multiple (equally good) optimal solutions 
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Optimization model transformations 

• Transformations 

– min f(x) = -max -f(x); 

– max f(x) = -min -f(x) 

– g(x)  0   -g(x)  0 

– g(x) = 0   g(x)  0  g(x)  0 

– g(x)  0   g(x) + s2 = 0 where s is an unconstrained 
real variable 

• Constrained problem can be transformed into 
unconstrained by augmenting objective with a 
penalty term, i.e. a barrier function 

– min f(x) s.t. g(x)  0   min f(x)+Mmax{g(x),0} 
• M is a big positive number 
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Optimization model types 

• Depending on the structure of the objective 
function and constraints, optimization models 
can be classified in different ways  
– Single variable and multiple variables 

– Continuous, discrete or mixed integer problems 
• Decision variables are continuous, binary (0/1), general 

integers, or mixed 

• Integer programming, mixed integer programming 

– Unconstrained and constrained problems 

– Convex and non-convex problems 
• Linear, quadratic and nonlinear problems 

– Single objective and multi-objective problems 
• f(x) is a vector of objective functions 
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Optimization model types – Exampes 

• Sizing of ground source heat pump 

– Single objective (minimize life-cycle costs) 

– Single continuous variable (size of pump) 

– Constrained non-linear convex problem 

• Unit commitment of power plants 

– Single objective (maximize profit) 

– Multiple variables of mixed types 

– Constrained non-convex problem 

• Investment in new production technology 

– Multiple objectives (economic, environmental, policy, …) 

– Multiple discrete (binary) variables 

– Constrained or unconstrained problem 
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Solving optimization problems 

• To solve problems it is necessary to understand 
the different problem types and their properties 
– There is no universal way to find the optimum or even 

a feasible solution to an arbitrary problem 

– Different solution algorithms are required for different 
problem types 

• Most important is to determine if the 
optimization problem is convex or not! 

– Convex problem = minimize convex objective function in 
a convex region 

– Convex problem: relatively easy 

– Non-convex problem: potentially very hard 
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Impossible to solve non-convex model 

• Consider max/min f(x)=sin(x)*sin(ax) 
– Each factor has max/min at +1/-1 

– If the peaks and valleys coincide then f(x)=+1 or -1 

– If a is chosen properly, peaks and valleys never meet 

– No optimum, values approaching +1/-1 
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Real-life optimization problems 

• A real-life model differs from theoretical models 
in several aspects 
– Normally the problem is never unbounded 

– The existence of a feasible solution can often be 
verified intuitively 

– Often many model parameters are uncertain or 
imprecise 

– It is not necessary to find the true optimum – a near-
optimal solution and sometimes even a reasonably 
good solution may suffice 
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LP and  MILP modelling 

• Linear Programming and Mixed Integer Linear 

Programming are most commonly used 

approaches for practical problems because 

– the modelling techniques are very versatile and flexible 

– efficient and reliable solvers exist for these problems 

• Arbitrary convex optimization problems can be 

approximated by LP models 

• Many non-convex optimization problems can be 

approximated by MILP models 
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LP modelling 

• By far, the most commonly used optimization 
modelling technique 

– Applicable for a wide class of different problems 

– Easy to formulate 

– Easy to understand 

– Very large models can be solved efficiently 

– Interpretation of results and various sensitivity analyses 
are (relatively) easy 

• Many energy optimization problems can be 
represented as LP models 

– Why can LP modelling not always be used? 
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Applicability of LP models 

• LP models work only in convex problems 

– The minimization problem is convex when: 

• The minimized objective function is convex 

• The feasible region is convex 

– The maximization problem is convex when: 

• The maximized objective function is concave 

• The feasible region is convex 

– An LP model is a piecewise linear convex 
model 

• How can non-convex problems be 
modelled? 
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Convex optimization problem 

• A convex optimization problem is of form 

min f(x); s.t. x X 

– where f() is a convex function and 

– X is a convex set 

• Similarly max f(x) s.t. xX where f() is a concave 

function is a convex optimization problem 

• The feasible region X is a convex set when 

– functions in inequality constraints g(x)0 are convex 

and 

– functions in equality constraints h(x)=0 are linear. 
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Convex and concave functions 

• A function f(x) is convex if 

linear interpolation between any 

two points x and y does not 

yield a lower value than the 

function 

 

 

 

 

 

 

• Mathematically 

f(x+(1-)y) ≤ f(x)+(1-)f(y) 

for all x, y and [0,1] 

• A function f(x) is concave if 

linear interpolation between any 

two points x and y does not 

yield a higher value than the 

function 

 

 

 

 

 

 

• Mathematically 

f(x+(1-)y) ≥ f(x)+(1-)f(y) 

for all x, y and [0,1] 
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Convex and concave functions 

• Which functions are convex and which are concave? 

 

 

 

 

 

 
 

 

 

 

– Some functions are neither convex nor concave 

– If f(x) is convex, then –f(x) is concave and vice versa 

– Only linear functions are both convex and concave 
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Convex set 

• A set X is convex if the line segment connecting any two 
points x and y of the set is in the set 

 

 

 

 

 

• Mathematically 
– If x,yX, then x+(1- )yX for all [0,1] 

• A constraint g(x) ≤ 0 defines a convex set if g(x) is a 
convex function. 

• The intersection of convex sets is a convex set 
– Thus multiple constraints gi(x) ≤ 0 with convex functions gi(x) 

define a convex set 

x 

y 

X is convex 

x 
y 

X is non-convex 
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Convex optimization problems 

• Convex optimization problems are relatively easy 
to solve because 

– A local optimum is also a global optimum 

– They can be solved using hill-climbing strategy: 
starting from any feasible point move in a direction 
where f(x) improves while maintaining feasibility 

– If the functions f(), g(), h() are smooth (first derivatives 
are continuous), various gradient-based methods can be 
used to identify improving directions 

• Non-convex problems are difficult, because a 
local optimum is not in the general case a global 
optimum 
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Linear programming (LP) models 

• An LP model has a linear objective function f(x) and 
linear constraints gi(x): 

min (max) c1x1 + c2 x2 + ... cnxn 

s.t. 

a11x1 + a12x2 + ... a1nxn  b1 

a21x1 + a22x2 + ... a2nxn  b2 

... 
am1x1 + am2x2 + ... amnxn  bm 

• Typical matrix representation: 

min (max) cx 

s.t. 

Ax  b 

x  0  // traditionally variables are non-negative 
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Linear programming (LP) models 

• Special case of convex problems 

– f(x), g(x) and h(x) are linear functions of x 

– The constraints are (hyper-) planes in n dimensions 

– The feasible area is an n-dimensional polyhedron 

– The optimum is at a corner point at the intersection between some 

constraint planes 

• Very efficient solution algorithms for LP models exist 

– The Simplex algorithm can solve LP models with millions of 

variables and constraints 

• Non-linear convex problems can be approximated by LP 

models with arbitrarily good accuracy 

• Non-convex problems cannot be represented as LP models 



R. Lahdelma 

How to define an LP model? 

1. Write down a verbal explanation of what is the goal or 

purpose of the model 

– E.g. to minimize costs or maximize profit from some specific 

operation or activity 

2. Define the decision variables (and parameters) 

– Use as descriptive or generic names as you like: x1, x2, fuel, … 

– Give short description for them 

– Also specify the unit (MWh, GJ, €/kg, m3/s, …) 

3. Define the objective function to minimize or maximize 

as a linear function of the variables 

4. Define the constraints as linear inequality or equality 

constraints for the variables 
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LP example: Dual fuel condensing power plant 

 

 

• Boiler can use two different fuels simultaneously in 
any proportion 

• Boiler produces high pressure steam for a turbine 
driving a generator to produce electricity 

• After turbine, steam is condensed back into water 

• Fuels have different prices and consumption ratios 

• Produced power is sold to market 

• Typical objective is to maximize profit = revenue 
from selling power minus fuel costs 

Power plant 

- uses fuels 

- produces power 

Fuel 1 

Fuel 2 

Power 



Dual fuel condensing power plant 

26 

h0 
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x1 
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x2 

High pressure steam header 

Boiler 

Feed water 

Steam 
turbine G 

Condenser 
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LP example: Dual fuel condensing power plant 

• Maximize profit during each hour of operation 

• Decision variables 

– x1, x2 fuel consumption (MWh) 

– p power output (MWh) 

• Parameters 

– r1, r2  consumption ratios for fuels (1) 

– c1, c2, c price for fuels and power (€/MWh) 

– x1max, x2max upper bounds for fuel consumption (MWh)  

– b   hourly maximal production capacity (MWh) 
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LP example: Dual fuel condensing power plant 

• Objective function 

max c*p - c1*x1 - c2*x2 // power sales minus fuel cost 

• Constraints 

p = x1/r1 + x2/r2  // power depends production 

p  b   // capacity limit 

x1  x1max,, x2  x2max, x1, x2  0 

 

• Substitute expression for p to eliminate third variable 

max (c/r1-c1)*x1 + (c/r2 - c2)*x2 

x1/r1 + x2/r2  b  // capacity limit 

x1  x1max,, x2  x2max, x1, x2  0 
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LP example: 

Dual fuel condensing power plant, numerical 

• Parameters 

– Fuel consumption ratios (r1, r2) = (3.33, 2.5) 

– Fuel & power prices (c1, c2, c) = (20, 25, 80) €/MWh 

– Upper bounds for fuels (x1max, x2max) = (150,100) MWh 

– Production capacity b = 60 MWh 

 

max (80/3.33-20)*x1 + (80/2.5-25)*x2 = 4*x1 + 7*x2  

0.3*x1 + 0.4*x2  60 

x1  150 

x2  100 

x1, x2  0 
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Graphical representation of LP models 

• Models with two variables can be represented 
and solved graphically 

– Linear constraints are drawn as lines 

• The feasible region appears as a polygon 

• The feasible region may be unbounded in some direction 

• If the constraints are contradictory, the feasible region is 
empty and the model is infeasible 

– Level curves of objective function f(x) = K = constant 
are draw as dotted lines 

• Optimum is where a level curve touches the feasible region 
with with maximal or minimal K 

• This happens at some corner 

• If two corners yield optimal value, all points on the 
connecting edge are optimal (infinite number of optima) 
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LP example: 

Power plant model, graphical representation 

max 4*x1 + 7*x2  

0.3*x1 + 0.4*x2  60 

x1  150 

x2  100 

x1, x2  0 

 

Optimum at 

x2=100 

x1=66.7 
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Properties of LP models 

• Similar to a general optimization problem, an LP 
problem can be 

– Feasible, if one or more feasible solutions exist 

– Infeasible, if no feasible solutions exist, i.e. 
constraints are conflicting 

• Example: min 0 s.t. x1, x0 

– Unbounded, if infinitely good solutions exist 

• Example: max x s.t. x0 

• An LP problem has infinite number of optima if 
two or more corner solutions yield optimal value 

– Then all convex combinations of optimal corner 
solutions are optimal 
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LP example: 

DH boiler 

• A dual fuel boiler to produce district heat 

– Goal to meet demand (MWh) as cheaply as possible 

– Decision variables 

• x1, x2 fuel consumption (MWh) 

– Parameters 

• r1, r2 consumption ratios for fuels (1) 

• c1, c2 prices for fuels (€/MWh) 

• x1max, x2max upper bounds for fuel consumption (MWh)  

• b demand of heat 

min c1*x1 + c2*x2 

x1/r1 + x2/r2  b // allowed to produce excess 

x1  x1max, x2  x2max, x1, x2  0 

DH boiler 

- uses fuels 

- produces heat 

Fuel 1 

Fuel 2 

Heat 
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LP example: 

DH boiler, numerical example 

– Parameters 

• Fuel consumption ratios (r1, r2) = (1.25, 1.11) 

• Fuel prices (c1, c2) = (20, 25) €/MWh 

• Upper bounds for fuels (x1max, x2max) = (150,100) 
MWh 

• Heat demand b = 120 

min 20*x1 + 25*x2; 

0.8*x1 + 0.9*x2  120; 

x1  150; 

x2  100; 

x1, x2  0; 
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Solving LP problems – canonical form 

• The simplex algorithm for LP problems is based 

on solving linear equation systems 

– First the problem is reformulated into canonical form, 

where all constraints are of equality type 

min (max) cx   min (max) cx 

s.t.     s.t. 

Ax  b    Ax + s = b 

x  0    x,s  0 

– s = [s1, s2, ..., sm]T is a vector of slack variables 

– Greater than –type equations get surplus variables 

Ax  b    Ax - s = b    -Ax + s = -b 
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Solving LP problems – canonical form 

– In canonical form, the LP problem can be rewritten as 

min (max) cx 

s.t.  

Ax = b 

x  0 

– The new A-matrix contains the original A and an 

identity matrix A = [A|I] 

– The new x-vector contains the original decision 

variables and the slacks xT = [xT|sT] 

– The new c-vector contains the original c and zeros as 

cost coefficients for the slacks 
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Solving LP problems – canonical form 

• The original problem contained m constraints and 
n variables 

– In canonical form the problem contains m constraints 
and m+n variables 

• n original decision variables and m slacks 

• The A-matrix is more wide than tall 

– Thus, there are more variables than equations 

• Such an underdetermined system has in general an 
infinite number of solutions 

– The idea is to fix n of the variables to zero (their 
lower bounds) and solve the remaining m variables 
from the m equations 
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Solving LP problems – basic solutions 

• The Simplex algorithm explores basic solutions of 
the equation system 
– A basis is a set of m linearly independent columns of 

the A-matrix 

– We partition A = [B|N] where B is the basis and N is 
the non-basic part 

– x is partitioned similarly into basic variables xB and 
non-basic xN 

– c is partitioned similarly into cB and cN 

• The problem is rewritten as 
min (max) cBxB + cNxN 

s.t.  

BxB + NxN = b 

xB, xN  0 
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Solving LP problems – basic solutions 

min (max) cBxB + cNxN 

s.t.  

BxB + NxN = b 

xB, xN  0 

– A basic solution is obtained by setting xN = 0 and 
solving 

xB = B-1(b- NxN) = B-1b 

• Basic solutions correspond to corner points, i.e. 
intersections between constraint equations 
– When a slack is non-basic (zero) the constraint is 

active (equality holds) 

– When a slack is non-zero, the constraint is inactive 
(strict inequality) 

– A basic solution is feasible if (and only if) xB  0 
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Solving LP problems – basic solution example 

• The power plant problem in canonical form 

 

 

 

 

        
 

 

A = [0.3  0.4   1   0   0; 

           1     0   0   1   0; 

           0     1   0   0   1] 

– Select x1,x2, s2 as basic and s1=s3=0 non-basic 

0.3*x1 + 0.4*x2 = 60 

       x1         + s2 = 150 

       x2        = 100 

 x2 = 100; x1 = (60-40)/0.3 = 67; s2 = 150-67 = 83 

Objective = 4*67 + 7*100 = 967 (this happens to be optimum, see graph) 

max  4*x1 + 7*x2; 

0.3*x1 + 0.4*x2  60 

x1  150 

x2  100 

x1, x2  0 

max 4*x1 +    7*x2; 

     0.3*x1 + 0.4*x2 + s1 = 60 

            x1    + s2 = 150 

            x2                   +s3 = 100 

            x1, x2, s1, s2, s3  0 
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Solving LP problems – basic solutions 

• In  principle LP problems could be solved by 

– computing all basic solutions and 

– selecting among the feasible ones the one with optimal 

objective function value 

– But the number of basic solutions is potentially 

 

 

 

• m = number of constrains, n = number of decision variables 

– Already with m=n=20 there are 137 846 528 820 

combinations 
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Solving LP problems – Simplex algorithm 

• The Simplex algorithm searches the optimum 
among the basic solutions 

– It starts with some basic solutions such as slack-basis 

– It moves to an adjacent basic solution so that the 
solution improves 

• In an adjacent basic solution exactly one variable is replaced 
in the basis 

• graphically it means moving between corners along an edge 

– This is repeated until optimum is found 

• Theoretically the Simplex algorithm may explore 
an exponential number of basic solutions 

– In practice the algorithm is fast and polynomial in 
complexity 



CHP – Combined Heat and Power 

43 

• Cogeneration means production of two or more 

energy products together in an integrated process 
– CHP = combined heat and power generation 

– Trigeneration: 
• district heating + cooling + power 

• high pressure process heat + low pressure heat + power 

– Technologies: backpressure turbines, combined 

steam&gas turbines, combustion engine with excess 

heat utilization … 

– Much more efficient than producing the products 

separately – over 90% efficiency possible 

– Cost-efficient way to reduce CO2 emissions 



CHP planning 

44 

• Objective is to maximize profit s.t. production constraints 

• Hourly production of the different products must be 

planned together 
– Production of heat & cooling must meet the demand (natural 

monopoly) 

– Power production is planned to maximize the profit from sales to 

the spot market (free market) 

• A long-term model consists of many hourly models in 

sequence 
– E.g. an annual model consists of 8760 hourly models 

– Hourly forecasts for demand and power price 

• Various advanced analyses, e.g. risk analysis require 

solving many long-term models 
– Solution must be fast! 



Sample backpressure/bleeder turbine plant 
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High pressure steam header
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Medium pressure steam 

Low pressure steam 

G

Condenser



CHP modelling 

46 

1. Modelling as generic LP problem 

– Each component (boiler, turbine, generator, reduction valves) is 

modelled through linear constraints 

– Component models are combined with balance equations for 

energy and material flows 

– Model is solved using generic LP software 

2. Modelling using special extreme point formulation 

– Extreme points of plant characteristic can be obtained 

• By analyzing LP model 

• Experimentally  by running the plant in different modes 

• By computing theoretically 

– Model can be solved by generic LP or using very efficient 

specialized algorithm Power Simplex 
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LP modelling technique using convex 

combination 

• Weighted average = linear interpolation 
between two points 

– P = xP1 + (1-x)P2 with x[0,1] is a convex 
combination of coordinates P1 and P2. 

 

 

 

 
P1 

P2 

P=0.6P1+0.4P2 
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LP modelling technique using convex 

combination 

• Equivalent formulation with two weights x1& x2 

P = x1P1 + x2P2 where x1+x2 = 1, x1,x20. 

 

 

 

• More generally for any number of points Pj 

P = j xjPj where j xj = 1, xj0. 

• Expressions are linear with respect to xj 

– Points can be scalars (1-dimensional case) or 

– Points can be vectors (multiple dimensions) 

P1 

P2 

P=0.6P1+0.4P2 



LP model for CHP plant – LP-encoding of 

convex characteristic operating region 

49 

• The power plant characteristic defines the feasible 

operating area in the 3D space (c,p,q) 

– p = power production, q = heat production, c = cost 

• Encode model as a convex combination of extreme 

(corner) points 

max cpp – C  // cp is power price 

s.t. 

j cjxj = C // variable prod. cost 

j pjxj = P // variable power prod. 

j qjxj = Q // fixed heat demand 

j xj = 1   // convex comb. 

xj  0 

Q (c3,p3,q3)

(c4,p4,q4)

(c2,p2,q2)

(c5,p5,q5)

(c6,p6,q6)

(c1,p1,q1) P



LP model for CHP plant – LP-encoding of 

convex characteristic operating region 
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Hourly trigeneration model 
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• Extreme point formlation with three commodities 

(p,q,r), multiple plants and multiple periods 

– Extreme points are in 4D space 

– Index t for hour, index u for plant in set of plants U 

– Ju = set of extreme points of plant u 
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Review questions 

• Please review lecture material and be prepared to answer review questions at next lecture 

1. Is the optimization problem max x2 + y2 s.t. x,y0 feasible, infeasible or unbounded? Why? 

2. Give a feasible solution to the above problem. 

3. How many optimal solutions does the problem max x2 s.t. -5x5 have? 

4. Transform max x s.t. x5 replacing inequality constraint by equality constraint. 

5. Transform max x s.t. x5 into an unconstrained optimization problem. 

6. Why is classification of optimization problems important? 

7. Classify the following optimization problem: min x2 + y2 s.t. x,y0, xR, yN 

8. Why is LP modelling so common? 

9. Why are convex optimization problems relatively easy to solve? 

10. Give an example of an optimization problem which is difficult or impossible to solve. 

11. Does LP apply to non-linear problems? Why, or why not? 

12. When can an LP problem have infinite number of optimal solutions? 

13. Give an example of an infeasible LP problem 

14. Give an examle of a feasible LP problem without optimal solution 

15. Give an example of an LP problem with infinite number of optima 


