ELEC-E5510 Speech Recognition

Hidden Markov Models

Tamás Grósz

Department of Signal Processing and Acoustics

HMM

ullet λ : the HMM model

- λ : the HMM model
- $O = \{o_1, o_2, \dots, o_T\}$: a sequence of observations

- λ : the HMM model
- $O = \{o_1, o_2, \dots, o_T\}$: a sequence of observations
- $Q = \{q_1, q_2, \dots, q_N\}$: a set of N (hidden) states, or a sequence of hidden states

- λ : the HMM model
- $O = \{o_1, o_2, \dots, o_T\}$: a sequence of observations
- $Q = \{q_1, q_2, \dots, q_N\}$: a set of N (hidden) states, or a sequence of hidden states
- $A = \{a_{11}, \dots, a_{ij}, \dots, a_{NN}\}$: transition probability matrix

- λ : the HMM model
- $O = \{o_1, o_2, \dots, o_T\}$: a sequence of observations
- $Q = \{q_1, q_2, \dots, q_N\}$: a set of N (hidden) states, or a sequence of hidden states
- $A = \{a_{11}, \dots, a_{ij}, \dots, a_{NN}\}$: transition probability matrix
- $B = \{b_i(o_t)\}$: a sequence of observation likelihoods, also called emission probabilities (probability of an observation o_t being generated from a state i)

- λ : the HMM model
- $O = \{o_1, o_2, \dots, o_T\}$: a sequence of observations
- $Q = \{q_1, q_2, \dots, q_N\}$: a set of N (hidden) states, or a sequence of hidden states
- $A = \{a_{11}, \dots, a_{ij}, \dots, a_{NN}\}$: transition probability matrix
- $B = \{b_i(o_t)\}$: a sequence of observation likelihoods, also called emission probabilities (probability of an observation o_t being generated from a state i)
- $\pi = \{\pi_1, \dots, \pi_N\}$: initial probability distribution

GMM-HMM parameters

How can we model $b_i(o_t)$?

GMM-HMM parameters

How can we model $b_i(o_t)$? With **GMM**!

GMM-HMM parameters

How can we model $b_i(o_t)$? With **GMM**!

GMM

$$p(x) = \sum_{m=1}^{M} w_m N_m(x | \mu_m, \Sigma_m)$$

$$= \sum_{m=1}^{M} \frac{w_m}{\sqrt{(2\pi)^M |\Sigma_m|}} exp\left(-\frac{1}{2}(x - \mu_m)^T \Sigma_m^{-1}(x - \mu_m)\right)$$

$$\sum_{m=1}^{M} w_m = 1$$

Markov assumption

Markov assumption

$$P(q_i|q_1,\ldots,q_{i-1})=P(q_i|q_{i-1})$$

Markov assumption

$$P(q_i|q_1,\ldots,q_{i-1}) = P(q_i|q_{i-1})$$

The probability of a particular state depends only on the previous state.

Markov assumption

$$P(q_i|q_1,\ldots,q_{i-1}) = P(q_i|q_{i-1})$$

The probability of a particular state depends only on the previous state.

Output independence

Markov assumption

$$P(q_i|q_1,\ldots,q_{i-1}) = P(q_i|q_{i-1})$$

The probability of a particular state depends only on the previous state.

Output independence

$$P(o_t|Q,O) = P(o_t|q_t)$$

Markov assumption

$$P(q_i|q_1,\ldots,q_{i-1}) = P(q_i|q_{i-1})$$

The probability of a particular state depends only on the previous state.

Output independence

$$P(o_t|Q,O) = P(o_t|q_t)$$

The probability of an output observation o_t depends only on the state that produced the observation (q_t) and not on any other states or any other observations

Scoring

How to compute the probability of the observation sequence for a model?

Scoring

How to compute the probability of the observation sequence for a model?

Decoding

How to compute the best state sequence for the observations?

Scoring

How to compute the probability of the observation sequence for a model?

Decoding

How to compute the best state sequence for the observations?

Training

How to set the model parameters to maximize the probability of the training samples?

ullet Given an observation sequence $O = \{o_1, o_2, \dots, o_T\}$

- ullet Given an observation sequence $O = \{o_1, o_2, \dots, o_T\}$
- What is the probability of generating it? $P(O|\lambda) = ?$

- \bullet Given an observation sequence $\textit{O} = \{\textit{o}_1, \textit{o}_2, \dots, \textit{o}_T\}$
- What is the probability of generating it? $P(O|\lambda) = ?$
- ullet Assume that we know $Q=\{q_1,q_2,\ldots,q_T\}$

- \bullet Given an observation sequence $\textit{O} = \{\textit{o}_1, \textit{o}_2, \dots, \textit{o}_T\}$
- What is the probability of generating it? $P(O|\lambda) = ?$
- ullet Assume that we know $Q=\{q_1,q_2,\ldots,q_T\}$
- Then $P(O|Q,\lambda) = \prod_{t=1}^{T} P(o_t|q_t,\lambda)$

- Given an observation sequence $O = \{o_1, o_2, \dots, o_T\}$
- What is the probability of generating it? $P(O|\lambda) = ?$
- ullet Assume that we know $Q=\{q_1,q_2,\ldots,q_T\}$
- Then $P(O|Q,\lambda) = \prod_{t=1}^{T} P(o_t|q_t,\lambda)$
- ullet And $P(o_t|q_t,\lambda)=b_{q_t}(o_t)$

- Given an observation sequence $O = \{o_1, o_2, \dots, o_T\}$
- What is the probability of generating it? $P(O|\lambda) = ?$
- ullet Assume that we know $Q=\{q_1,q_2,\ldots,q_T\}$
- Then $P(O|Q,\lambda) = \prod_{t=1}^{T} P(o_t|q_t,\lambda)$
- And $P(o_t|q_t,\lambda) = b_{q_t}(o_t)$
- We still need $P(Q|\lambda)$

- \bullet Given an observation sequence $\textit{O} = \{\textit{o}_1, \textit{o}_2, \dots, \textit{o}_T\}$
- What is the probability of generating it? $P(O|\lambda) = ?$
- ullet Assume that we know $Q=\{q_1,q_2,\ldots,q_T\}$
- Then $P(O|Q,\lambda) = \prod_{t=1}^{T} P(o_t|q_t,\lambda)$
- And $P(o_t|q_t,\lambda) = b_{q_t}(o_t)$
- ullet We still need $P(Q|\lambda)=\pi_{q_1}*a_{q_1q_2}*a_{q_2q_3}*\cdots*a_{q_{T-1}q_T}$

- \bullet Given an observation sequence $\textit{O} = \{\textit{o}_1, \textit{o}_2, \dots, \textit{o}_{\textit{T}}\}$
- What is the probability of generating it? $P(O|\lambda) = ?$
- ullet Assume that we know $Q=\{q_1,q_2,\ldots,q_T\}$
- Then $P(O|Q,\lambda) = \prod_{t=1}^T P(o_t|q_t,\lambda)$
- And $P(o_t|q_t,\lambda) = b_{q_t}(o_t)$
- We still need $P(Q|\lambda) = \pi_{q_1} * a_{q_1q_2} * a_{q_2q_3} * \cdots * a_{q_{T-1}q_T}$
- Now we can rewrite $P(O|\lambda)$

- Given an observation sequence $O = \{o_1, o_2, \dots, o_T\}$
- What is the probability of generating it? $P(O|\lambda) = ?$
- ullet Assume that we know $Q=\{q_1,q_2,\ldots,q_T\}$
- Then $P(O|Q,\lambda) = \prod_{t=1}^T P(o_t|q_t,\lambda)$
- And $P(o_t|q_t,\lambda) = b_{q_t}(o_t)$
- We still need $P(Q|\lambda) = \pi_{q_1} * a_{q_1q_2} * a_{q_2q_3} * \cdots * a_{q_{T-1}q_T}$
- Now we can rewrite $P(O|\lambda) = P(O|Q,\lambda)P(Q|\lambda)$ (chain rule)

- Given an observation sequence $O = \{o_1, o_2, \dots, o_T\}$
- What is the probability of generating it? $P(O|\lambda) = ?$
- ullet Assume that we know $Q=\{q_1,q_2,\ldots,q_T\}$
- Then $P(O|Q,\lambda) = \prod_{t=1}^T P(o_t|q_t,\lambda)$
- And $P(o_t|q_t,\lambda) = b_{q_t}(o_t)$
- ullet We still need $P(Q|\lambda)=\pi_{q_1}*a_{q_1q_2}*a_{q_2q_3}*\cdots*a_{q_{T-1}q_T}$
- Now we can rewrite $P(O|\lambda) = P(O|Q, \lambda)P(Q|\lambda)$ (chain rule)

Scoring equation

$$P(O|\lambda) = \sum_{Q} P(O|q_t, \lambda) P(Q|\lambda)$$

$$= \sum_{Q} \pi_{q_1} * b_{q_1}(o_1) * a_{q_1q_2} b_{q_2}(o_2) * \cdots * a_{q_{T-1}q_T} b_{q_T}(o_T)$$

• Now we have the scoring method, but is it practical?

- Now we have the scoring method, but is it practical?
- NO

- Now we have the scoring method, but is it practical?
- NO, the problem is with the \sum_{Q}

- Now we have the scoring method, but is it practical?
- NO, the problem is with the \sum_{Q}
- It is not feasible to consider all possible state sequences separately (for N states and T observation we have $O(2T * N^T)$ sequences)

Scoring

- Now we have the scoring method, but is it practical?
- NO, the problem is with the \sum_{Q}
- It is not feasible to consider all possible state sequences separately (for N states and T observation we have $O(2T * N^T)$ sequences)
- We need a better way of handling the state sequences.

Let's create a search graph!

- Let's create a search graph!
- Map words into phonemes and states.

- Let's create a search graph!
- Map words into phonemes and states.
- Using these mappings we can construct a search graph.

- Let's create a search graph!
- Map words into phonemes and states.
- Using these mappings we can construct a search graph.

(Picture by S.Renals)

The goal of the Forward algorithm is to calculate the probability of observing o_1, o_2, \ldots, o_t given an HMM (λ)

The goal of the Forward algorithm is to calculate the probability of observing o_1, o_2, \ldots, o_t given an HMM (λ)

To achieve this we need to define the forward variable:

$$\alpha_t(i) = P(o_1, o_2, \dots, o_t, q_t = i|\lambda)$$

The goal of the Forward algorithm is to calculate the probability of observing o_1, o_2, \ldots, o_t given an HMM (λ)

To achieve this we need to define the forward variable:

$$\alpha_t(i) = P(o_1, o_2, \dots, o_t, q_t = i|\lambda)$$

How can we calculate $\alpha_t(i)$?

The goal of the Forward algorithm is to calculate the probability of observing o_1, o_2, \ldots, o_t given an HMM (λ)

To achieve this we need to define the forward variable:

$$\alpha_t(i) = P(o_1, o_2, \dots, o_t, q_t = i|\lambda)$$

How can we calculate $\alpha_t(i)$?

• Initialization: $\alpha_0(i) = \pi_i$

The goal of the Forward algorithm is to calculate the probability of observing o_1, o_2, \ldots, o_t given an HMM (λ)

To achieve this we need to define the forward variable:

$$\alpha_t(i) = P(o_1, o_2, \dots, o_t, q_t = i|\lambda)$$

How can we calculate $\alpha_t(i)$?

- Initialization: $\alpha_0(i) = \pi_i$
- Induction: $\alpha_{t+1}(i) = \sum_{j=1}^{N} \alpha_t(j) *$

The goal of the Forward algorithm is to calculate the probability of observing o_1, o_2, \ldots, o_t given an HMM (λ)

To achieve this we need to define the forward variable:

$$\alpha_t(i) = P(o_1, o_2, \dots, o_t, q_t = i|\lambda)$$

How can we calculate $\alpha_t(i)$?

• Initialization: $\alpha_0(i) = \pi_i$

• Induction:
$$\alpha_{t+1}(i) = \left[\sum_{j=1}^{N} \alpha_t(j) * \underbrace{a_{jj}}_{\text{Transition prob.}} \right]$$

8

The goal of the Forward algorithm is to calculate the probability of observing o_1, o_2, \ldots, o_t given an HMM (λ)

To achieve this we need to define the forward variable:

$$\alpha_t(i) = P(o_1, o_2, \dots, o_t, q_t = i|\lambda)$$

How can we calculate $\alpha_t(i)$?

• Initialization: $\alpha_0(i) = \pi_i$

• Induction:
$$\alpha_{t+1}(i) = \left[\sum_{j=1}^N \alpha_t(j) * \underbrace{a_{jj}}_{\text{Transition prob.}}\right] * \underbrace{b_i(o_{t+1})}_{\text{observation prob}}$$

8

The goal of the Forward algorithm is to calculate the probability of observing o_1, o_2, \ldots, o_t given an HMM (λ)

To achieve this we need to define the forward variable:

$$\alpha_t(i) = P(o_1, o_2, \dots, o_t, q_t = i|\lambda)$$

How can we calculate $\alpha_t(i)$?

- Initialization: $\alpha_0(i) = \pi_i$
- Induction: $\alpha_{t+1}(i) = \left[\sum_{j=1}^{N} \alpha_t(j) * \underbrace{a_{ji}}_{\text{Transition prob.}} \right] * \underbrace{b_i(o_{t+1})}_{\text{observation prol}}$
- Termination: $P(O|\lambda) = \sum_{i=1}^{N} \alpha_T(i)$

Picture by B. Pellom

Forward algorithm, exercise 1

Given an HMM, and the initial probabilities:

$$\pi = [\underbrace{1.0}_{}, \underbrace{0.0}_{}]$$

What is the probability of observing

$$P(O|\lambda) = ?$$

$$P(O|\lambda) =$$

$$P(O|\lambda) =$$

$$P(O|\lambda) =$$

$$P(O|\lambda) =$$

$$P(O|\lambda) =$$

$$P(O|\lambda) =$$

$$P(O|\lambda) =$$

$$P(O|\lambda) =$$

• Given a sequence of observations

$$O = o_1, o_2, \ldots, o_T$$

• Given a sequence of observations

$$O = o_1, o_2, \ldots, o_T$$

• What is the sequence of hidden states

$$Q = q_1, q_2, \ldots, q_T = ?$$

• Given a sequence of observations

$$O = o_1, o_2, \ldots, o_T$$

• What is the sequence of hidden states

$$Q = q_1, q_2, \ldots, q_T = ?$$

ullet That maximizes $P(O,Q|\lambda)$

Initialization

$$\delta_1(i) = \pi_i b_i(o_1)$$

Initialization

$$\delta_1(i)=\pi_i b_i(o_1)$$
 and $\psi_1(i)=0$

Initialization

$$\delta_1(i) = \pi_i b_i(o_1)$$
 and $\psi_1(i) = 0$

Recursion

$$\delta_t(i) = \max_{1 \le j \le N} [\delta_{t-i}(j)a_{ji}]b_i(o_t)$$

$$\psi_t(i) = \underset{1 \leq j \leq N}{\operatorname{argmax}} [\delta_{t-i}(j) a_{ji}]$$

Initialization

$$\delta_1(i) = \pi_i b_i(o_1)$$
 and $\psi_1(i) = 0$

Recursion

$$\delta_t(i) = \max_{1 \le j \le N} [\delta_{t-i}(j)a_{ji}]b_i(o_t)$$
$$\psi_t(i) = \operatorname*{argmax}_{1 \le j \le N} [\delta_{t-i}(j)a_{ji}]$$

Termination

$$P^* = \max_{1 \le i \le N} \delta_T(i)$$

$$q_T^* = \operatorname*{argmax}_{1 \le i \le N} \delta_T(i)$$

Initialization

$$\delta_1(i) = \pi_i b_i(o_1)$$
 and $\psi_1(i) = 0$

Recursion

$$\delta_t(i) = \max_{1 \le j \le N} [\delta_{t-i}(j)a_{ji}]b_i(o_t)$$

$$\psi_t(i) = \operatorname*{argmax}_{1 \le j \le N} [\delta_{t-i}(j)a_{ji}]$$

Termination

$$P^* = \max_{1 \le i \le N} \delta_T(i)$$

$$q_T^* = \operatorname*{argmax}_{1 \le i \le N} \delta_T(i)$$

Backtrace

$$q_t^* = \psi_{t+1}(q_{t+1}^*)$$

Viterbi algorithm, exercise 2

Given an HMM, the initial probabilities:

$$\pi = [\underbrace{1.0}_{\Lambda}, \underbrace{0.0}_{T}]$$

And the observation sequence

What is the most probable state-sequence (Q)? $argmax_{Q}P(Q,Q|\lambda)=?$

The probabilities could get really small quickly, which leads to numerical stability issues

The probabilities could get really small quickly, which leads to numerical stability issues \rightarrow Use \log values!

The probabilities could get really small quickly, which leads to numerical stability issues \rightarrow Use \log values!

There are many other regularization techniques

The probabilities could get really small quickly, which leads to numerical stability issues—Use log values!

There are many other regularization techniques

Leaky HMM

Allows transition from any state to any other state with a small probability (ϵ) .

The probabilities could get really small quickly, which leads to numerical stability issues \rightarrow Use \log values!

There are many other regularization techniques

Leaky HMM

Allows transition from any state to any other state with a small probability (ϵ).

It's equivalent to stopping and restarting the HM on each frame.

Training

Baum-Welsh training

 $Forward\hbox{-}Backward\hbox{-}algorithm$

1. Initialize the model parameters (A, B)

Baum-Welsh training

Forward-Backward algorithm

- 1. Initialize the model parameters (A, B)
- 2. Use the model and Forward (and Backward) algorithm to compute the probability matrix $P(q_t = i|A, B, O)$ for each sample

Baum-Welsh training

Forward-Backward algorithm

- 1. Initialize the model parameters (A, B)
- 2. Use the model and Forward (and Backward) algorithm to compute the probability matrix $P(q_t = i | A, B, O)$ for each sample
- 3. Update the model parameters using $P(q_t = i|A, B, O)$
- 4. Iterate from 2.

ullet Similar to the Forward-Backward algorithm, substitutes \sum operation with max

- ullet Similar to the Forward-Backward algorithm, substitutes \sum operation with max
- Instead of summing probabilities over all HMM paths, only use the best path for each sample

- Similar to the Forward-Backward algorithm, substitutes \sum operation with max
- Instead of summing probabilities over all HMM paths, only use the best path for each sample
- Technically uses "Hard alignment" vs the "soft alignment" in Forward-Backward

- Similar to the Forward-Backward algorithm, substitutes \sum operation with max
- Instead of summing probabilities over all HMM paths, only use the best path for each sample
- Technically uses "Hard alignment" vs the "soft alignment" in Forward-Backward
- Simpler, but converges likewise to the (local) optimum

Monophone HMMs ignore the context of the phoneme:

Monophone HMMs ignore the context of the phoneme:

three =
$$th + r + iy$$

Coarticulation complicate things!

Monophone HMMs ignore the context of the phoneme:

```
three = th + r + iy
```

Coarticulation complicate things! Solution: **context-dependent** HMM Example **triphone** HMM:

Monophone HMMs ignore the context of the phoneme:

```
three = th + r + iy
```

Coarticulation complicate things! Solution: context-dependent HMM

Example **triphone** HMM: three = sil-th-r + th-r-iy+ r-iy-sil

Monophone HMMs ignore the context of the phoneme:

```
three = th + r + iy
```

Coarticulation complicate things! Solution: context-dependent HMM

Example **triphone** HMM: three = sil-th-r + th-r-iy+ r-iy-sil

CD also complicates things!

Monophone HMMs ignore the context of the phoneme:

```
three = th + r + iy
```

Coarticulation complicate things! Solution: context-dependent HMM

Example **triphone** HMM: three = sil-th-r + th-r-iy+ r-iy-sil

CD also complicates things!

How many possible triphones are in a system that has 40 monophones?

Monophone HMMs ignore the context of the phoneme:

```
three = th + r + iy
```

Coarticulation complicate things! Solution: **context-dependent** HMM Example **triphone** HMM: three = sil-th-r + th-r-iy+ r-iy-sil

CD also complicates things!

How many possible triphones are in a system that has 40 monophones? O(39*40*39)

Monophone HMMs ignore the context of the phoneme:

```
three = th + r + iy
```

Coarticulation complicate things! Solution: **context-dependent** HMM Example **triphone** HMM: three = sil-th-r + th-r-iy+ r-iy-sil

CD also complicates things!

How many possible triphones are in a system that has 40 monophones? O(39*40*39)

How many models, states and Gaussians?

Monophone HMMs ignore the context of the phoneme:

```
three = th + r + iy
```

Coarticulation complicate things! Solution: **context-dependent** HMM Example **triphone** HMM: three = sil-th-r + th-r-iy+ r-iy-sil

CD also complicates things!

How many possible triphones are in a system that has 40 monophones? O(39*40*39)

- How many models, states and Gaussians?
- Share models between some triphones?

Monophone HMMs ignore the context of the phoneme:

```
three = th + r + iy
```

Coarticulation complicate things! Solution: **context-dependent** HMM Example **triphone** HMM: three = sil-th-r + th-r-iy+ r-iy-sil

CD also complicates things!

How many possible triphones are in a system that has 40 monophones? O(39*40*39)

- How many models, states and Gaussians?
- Share models between some triphones?
- Share states or Gaussians between models?