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HMM notations

• λ: the HMM model

• O = {o1, o2, . . . , oT}: a sequence of observations

• Q = {q1, q2, . . . , qN}: a set of N (hidden) states, or a sequence of

hidden states

• A = {a11, . . . , aij , . . . , aNN}: transition probability matrix

• B = {bi (ot)}: a sequence of observation likelihoods, also called

emission probabilities (probability of an observation ot being

generated from a state i)

• π = {π1, . . . , πN}: initial probability distribution
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GMM-HMM parameters

How can we model bi (ot)?

With GMM!

GMM

p(x) =
M∑

m=1

wmNm(x |µm,Σm)

=
M∑

m=1

wm√
(2π)M |Σm|

exp

(
−1

2
(x − µm)

TΣ−1
m (x − µm)

)
M∑

m=1

wm = 1
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HMM assumptions

Markov assumption

P(qi |q1, . . . , qi−1) = P(qi |qi−1)

The probability of a particular state depends only on the previous state.

Output independence

P(ot |Q,O) = P(ot |qt)
The probability of an output observation ot depends only on the state

that produced the observation (qt) and not on any other states or any

other observations
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HMM operations

Scoring

How to compute the probability of the observation sequence for a

model?

Decoding

How to compute the best state sequence for the observations?

Training

How to set the model parameters to maximize the probability of the

training samples?
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Scoring

• Given an observation sequence O = {o1, o2, . . . , oT}

• What is the probability of generating it? P(O|λ) =?

• Assume that we know Q = {q1, q2, . . . , qT}
• Then P(O|Q, λ) =

∏T
t=1 P(ot |qt , λ)

• And P(ot |qt , λ) = bqt (ot)

• We still need P(Q|λ) = πq1 ∗ aq1q2 ∗ aq2q3 ∗ · · · ∗ aqT−1qT

• Now we can rewrite P(O|λ) = P(O|Q, λ)P(Q|λ) (chain rule)

Scoring equation

P(O|λ) =
∑
Q

P(O|qt , λ)P(Q|λ)

=
∑
Q

πq1 ∗ bq1(o1) ∗ aq1q2bq2(o2) ∗ · · · ∗ aqT−1qT bqT (oT )
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Scoring

• Now we have the scoring method, but is it practical?

• NO, the problem is with the
∑

Q

• It is not feasible to consider all possible state sequences separately

(for N states and T observation we have O(2T ∗ NT ) sequences)

• We need a better way of handling the state sequences.
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Scoring using a search network

• Let’s create a

search graph!

• Map words into

phonemes and

states.

• Using these

mappings we can

construct a

search graph.

(Picture by S.Renals)
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Forward algorithm

The goal of the Forward algorithm is to calculate the probability of

observing o1, o2, . . . , ot given an HMM (λ)

To achieve this we need to define the forward variable:

αt(i) = P(o1, o2, . . . , ot , qt = i |λ)

How can we calculate αt(i)?

• Initialization: α0(i) = πi

• Induction: αt+1(i) =

∑N
j=1 αt(j) ∗ aji︸︷︷︸

Transition prob.

 ∗ bi (ot+1)︸ ︷︷ ︸
observation prob.

• Termination: P(O|λ) =
∑N

i=1 αT (i)

8
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Forward algorithm

Picture by B. Pellom

9



Forward algorithm, exercise 1

Given an HMM, and the initial probabilities:

π = [ 1.0︸︷︷︸
A

, 0.0︸︷︷︸
T

]

What is the probability of observing

O =

P(O|λ) = ?

10



Forward algorithm, exercise 1 solution

Answer

P(O|λ) =

11



Forward algorithm, exercise 1 solution

Answer

P(O|λ) =

11



Forward algorithm, exercise 1 solution

Answer

P(O|λ) =

11



Forward algorithm, exercise 1 solution

Answer

P(O|λ) =

11



Forward algorithm, exercise 1 solution

Answer

P(O|λ) =

11



Forward algorithm, exercise 1 solution

Answer

P(O|λ) =

11



Forward algorithm, exercise 1 solution

Answer

P(O|λ) =

11



Forward algorithm, exercise 1 solution

Answer

P(O|λ) =

11



Forward algorithm, exercise 1 solution

Answer

P(O|λ) =

11



Forward algorithm, exercise 1 solution

Answer

P(O|λ) =

11



Forward algorithm, exercise 1 solution

Answer

P(O|λ) =∑N
i=1 αT (i) = 0.016 + 0.1295 = 0.1455

11



Decoding



Decoding

• Given a sequence of observations

O = o1, o2, . . . , oT

• What is the sequence of hidden states

Q = q1, q2, . . . , qT =?

• That maximizes P(O,Q|λ)
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Viterbi algorithm

Initialization

δ1(i) = πibi (o1)

and ψ1(i) = 0

Recursion

δt(i) = max
1≤j≤N

[δt−i (j)aji ]bi (ot)

ψt(i) = argmax
1≤j≤N

[δt−i (j)aji ]

Termination

P∗ = max
1≤i≤N

δT (i)

q∗T = argmax
1≤i≤N

δT (i)

Backtrace

q∗t = ψt+1(q
∗
t+1)

13
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Viterbi algorithm, exercise 2

Given an HMM, the initial probabilities:

π = [ 1.0︸︷︷︸
A

, 0.0︸︷︷︸
T

]

And the observation sequence

O =

What is the most probable state-sequence

(Q)?

argmaxQP(O,Q|λ) =?

14



Viterbi algorithm, exercise 2 solution

Answer

Q =

15
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Viterbi algorithm, exercise 2 solution

Answer

Q =

15



Viterbi algorithm, exercise 2 solution

Answer

Q = {A,A,T}

15



Practical tricks

The probabilities could get really small quickly, which leads to numerical

stability issues

→Use log values!

There are many other regularization techniques

Leaky HMM

Allows transition from any state to any other state with a small

probability (ϵ).

It’s equivalent to stopping and restarting the HM on each frame.

16
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Training



Baum-Welsh training

Forward-Backward algorithm

1. Initialize the model parameters (A,B)

2. Use the model and Forward (and Backward) algorithm to compute

the probability matrix P(qt = i |A,B,O) for each sample

3. Update the model parameters using P(qt = i |A,B,O)

4. Iterate from 2.
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Viterbi training

• Similar to the Forward-Backward algorithm, substitutes
∑

operation

with max

• Instead of summing probabilities over all HMM paths, only use the

best path for each sample

• Technically uses “Hard alignment” vs the “soft alignment” in

Forward-Backward

• Simpler, but converges likewise to the (local) optimum

18
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Context-dependent HMM

Monophone HMMs ignore the context of the phoneme:

three = th + r + iy

Coarticulation complicate things! Solution: context-dependent HMM

Example triphone HMM: three = sil-th-r + th-r-iy+ r-iy-sil

CD also complicates things!

How many possible triphones are in a system that has 40 monophones?

O(39*40*39)

• How many models, states and Gaussians?

• Share models between some triphones?

• Share states or Gaussians between models?

19



Context-dependent HMM

Monophone HMMs ignore the context of the phoneme:

three = th + r + iy

Coarticulation complicate things!

Solution: context-dependent HMM

Example triphone HMM: three = sil-th-r + th-r-iy+ r-iy-sil

CD also complicates things!

How many possible triphones are in a system that has 40 monophones?

O(39*40*39)

• How many models, states and Gaussians?

• Share models between some triphones?

• Share states or Gaussians between models?

19



Context-dependent HMM

Monophone HMMs ignore the context of the phoneme:

three = th + r + iy

Coarticulation complicate things! Solution: context-dependent HMM

Example triphone HMM:

three = sil-th-r + th-r-iy+ r-iy-sil

CD also complicates things!

How many possible triphones are in a system that has 40 monophones?

O(39*40*39)

• How many models, states and Gaussians?

• Share models between some triphones?

• Share states or Gaussians between models?

19



Context-dependent HMM

Monophone HMMs ignore the context of the phoneme:

three = th + r + iy

Coarticulation complicate things! Solution: context-dependent HMM

Example triphone HMM: three = sil-th-r + th-r-iy+ r-iy-sil

CD also complicates things!

How many possible triphones are in a system that has 40 monophones?

O(39*40*39)

• How many models, states and Gaussians?

• Share models between some triphones?

• Share states or Gaussians between models?

19



Context-dependent HMM

Monophone HMMs ignore the context of the phoneme:

three = th + r + iy

Coarticulation complicate things! Solution: context-dependent HMM

Example triphone HMM: three = sil-th-r + th-r-iy+ r-iy-sil

CD also complicates things!

How many possible triphones are in a system that has 40 monophones?

O(39*40*39)

• How many models, states and Gaussians?

• Share models between some triphones?

• Share states or Gaussians between models?

19



Context-dependent HMM

Monophone HMMs ignore the context of the phoneme:

three = th + r + iy

Coarticulation complicate things! Solution: context-dependent HMM

Example triphone HMM: three = sil-th-r + th-r-iy+ r-iy-sil

CD also complicates things!

How many possible triphones are in a system that has 40 monophones?

O(39*40*39)

• How many models, states and Gaussians?

• Share models between some triphones?

• Share states or Gaussians between models?

19



Context-dependent HMM

Monophone HMMs ignore the context of the phoneme:

three = th + r + iy

Coarticulation complicate things! Solution: context-dependent HMM

Example triphone HMM: three = sil-th-r + th-r-iy+ r-iy-sil

CD also complicates things!

How many possible triphones are in a system that has 40 monophones?

O(39*40*39)

• How many models, states and Gaussians?

• Share models between some triphones?

• Share states or Gaussians between models?

19



Context-dependent HMM

Monophone HMMs ignore the context of the phoneme:

three = th + r + iy

Coarticulation complicate things! Solution: context-dependent HMM

Example triphone HMM: three = sil-th-r + th-r-iy+ r-iy-sil

CD also complicates things!

How many possible triphones are in a system that has 40 monophones?

O(39*40*39)

• How many models, states and Gaussians?

• Share models between some triphones?

• Share states or Gaussians between models?

19



Context-dependent HMM

Monophone HMMs ignore the context of the phoneme:

three = th + r + iy

Coarticulation complicate things! Solution: context-dependent HMM

Example triphone HMM: three = sil-th-r + th-r-iy+ r-iy-sil

CD also complicates things!

How many possible triphones are in a system that has 40 monophones?

O(39*40*39)

• How many models, states and Gaussians?

• Share models between some triphones?

• Share states or Gaussians between models?

19



Context-dependent HMM

Monophone HMMs ignore the context of the phoneme:

three = th + r + iy

Coarticulation complicate things! Solution: context-dependent HMM

Example triphone HMM: three = sil-th-r + th-r-iy+ r-iy-sil

CD also complicates things!

How many possible triphones are in a system that has 40 monophones?

O(39*40*39)

• How many models, states and Gaussians?

• Share models between some triphones?

• Share states or Gaussians between models?

19


	HMM introduction
	Scoring with HMM
	Decoding with HMM
	Training a HMM

