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LP and  MILP modelling

• Linear Programming and Mixed Integer Linear 

Programming are most commonly used 

approaches for practical problems because

– the modelling techniques are very versatile and flexible

– efficient and reliable solvers exist for these problems

• Arbitrary convex optimization problems can be 

approximated with LP models

• Non-convex optimization problems can be 

approximated with MILP models
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Non-convex optimization problems

• When the (minimized) objective function or some

of the constraints are not convex, then the problem

is non-convex

• A non-convex problem may have several local

optima

– In the general case it is not possible to know at 

beforehand which local optimum is the global optimum

→ necessary to explore them all

– It can be difficult (and even impossible) to ensure that

all local optima have been explored

– In MILP problems it can be ensured!
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Mixed integer linear programming (MILP) 

model

• A mixed integer linear programming problem is 

similar to an  LP model, but some of the variables

have integer domain:

min (max) cx+dy

s.t.

Ax+By  b

x  0

yi {0,1} (or some other finite range of integers)

• If all variables are integers, the problem is a (pure) 

integer linear programming (ILP) problem
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Properties of MILP models

• Special case of non-convex problems

– Optimum is always at a corner point of an LP model

that is obtained by fixing the integer variables to some

feasible values

• Let y* = vector of 0/1 values

– Then dy* = constant and By = constant vector

– An LP model results

min (max) cx + constant

s.t.

Ax  b – By = constant vector

x  0
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Properties of MILP models

• Reliable (but not so efficient) solution algorithms exist

– The Branch&Bound algorithm will enumerate explicitly or

implicitly the different value combinations of integer variables

– This reduces the MILP problem into multiple LP problems

• Finite non-convex problems can be approximated by MILP 

models with arbitrarily good accuracy

– In principle a MILP model can always be solved

– However, the resulting model may become large and very slow to 

solve

• number of LP models to solve can be astronomical
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How to define a MILP model?

1. Write down a verbal explanation of what is the goal or

purpose of the model

– E.g. to minimize costs or maximize profit from some specific

operation or activity

2. Define the decision variables (and parameters)

– Specify if they are real numbers or binary or general integers

– Use as descriptive or generic names as you like: x1, x2, fuel, …

– Give short description for them

– Also specify the unit (MWh, GJ, €/kg, m3/s, …)

3. Define the objective function to minimize or maximize

as a linear function of the variables

4. Define the constraints as linear inequality or equality

constraints of the variables
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Example of energy MILP modelling

• Biofuel power plant that can be shut down
– Plant operation follows a linear characteristic in a range

xel = xbio/R - Ploss

xel
min ≤ xel ≤ xel

max

xbio = biofuel consumption

R = consumption ratio for biofuel

Ploss = constant loss

xel
min, xel

max = minimum/maximum power production

– But when the plant is shut down, xel = xbio = 0
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Biofuel power plant characteristic

Fuel input

P
o
w

er
 o

u
tp

u
t



R. Lahdelma

Biofuel power plant MILP model

• A binary variable y is defined as a switch to 

determine if the plant is on (y=1) or off (y=0)

• Encoded model

Max celxel - cbioxbio

xel = xbio/R - y*Ploss

y*xel
min ≤ xel ≤ y*xel

max

y  {0,1}

cel = price for sold power

cbio = fuel price

– The y-variable affects both the plant

characteristic and bounds for power output
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Wrong way to use binary variables

• Sometimes people try to write

Max y*(celxel – cbioxbio) // not linear

xel = y*(xbio/R - Ploss) // not linear

xel
min ≤ xel ≤ xel

max // infeasible when plant is off

y  {0,1}

Objective is not linear, product of variables

Constraint is not linear, product of variables

Lower bound of xel is infeasible when plant off

• Objective function and constraints in MILP 

model must be linear as in an LP model!
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• All logical operators (,,,…) can be
encoded using binary variables and linear
constraints

X = Y  Z → xy; x  z; xy+z-1

X = Y  Z → x y+z; x  y; x  z

X = Y → x = 1-y

• Arbitrarily complex logical expressions can be
encoded in sequence

Y = (Y1  Y2)  Y3    Y = Z  Y3; Z = Y1  Y2

→ y  z+y3; y  z; y  y3;
z  y1; z  1-y2; z  y1+(1-y2)-1

Encoding logical relations
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MILP-encoding of general non-convex

problems

• A non-convex optimization problem is of form

Min f(x); s.t. x X

– where f() is a non-convex function,

– or X is a non-convex set,

– or both
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MILP-encoding of non-convex constraints

• X is partitioned into convex subsets X = Xi

• A binary variable yi is defined for each part

– the part is enabled when yi=1 and disabled when yi=0

• Each subset is modelled by linear constraints

Aix  bi +M(1-yi)

• Binary variables activate exactly one set of 
constraints at a time

yi=1
yi {0,1}
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MILP-encoding of non-convex objective

function
• A non-convex objective function can be approximated by a 

piecewise linear function

• Example: min f(x) = -x2 in range [-2,2]:
– Choose points (Xi,Fi) along function

– define (x,f) as convex combination of linear segments using
continuous variables xi and

– binary variables yi to enable
exactly one segment

x=jxiXi

f=xiFi

xi=1
xiyi+yi+1

yi=1
xi0, yi{0,1}
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Convex CHP model

• The power plant characteristic defines in the P-Q plane the 

feasible operating area area

– p = power production, q = heat production, c = fuel cost

• We encode the model as a convex combination of 

extreme (corner) points

max cp – j cjxj

s.t.

j pjxj = p // variable power prod.

j qjxj = q // fixed heat demand

j xj = 1   // convex comb.

xj  0

Q (c3,p3,q3)

(c4,p4,q4)

(c2,p2,q2)

(c5,p5,q5)

(c6,p6,q6)

(c1,p1,q1) P
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Non-convex CHP model

• Necessary when either (or both)

– The cost function is non-convex

– P-Q the characteristic is non-convex

• E.g. when it is necessary to optimize the shut-down of the plant

• Idea

– Partition objective function into convex parts

– Partition characteristic into convex parts

– Use 0/1 variables to choose in which area to operate



R. Lahdelma

Sample non-convex cogeneration model
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Non-convex cogeneration model

• Characteristic is

partitioned in three

convex parts

• Aj is set of areas to which xj belongs

• Define zero-one variables y1, y2, y3, and allow 

exactly one of them to have value 1.

• y-variables select which

corner points are allowed

in the convex

combination
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Solving MILP models

• In principle it is possible to solve MILP problems 

using brute force:

– Choose a value combination of integer variables

– Solve the resulting LP problem

– The best feasible solution among all combinations gives 

the optimum

• The number of problems to solve is exponential 

with respect to number of variables

– With N binary variables, there are 2N combinations

– N=10 → 1024, 20 → 106, 30 → 109, …
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Solving MILP models

• The Branch & Bound algorithm solves MILP 

models more efficiently by solving only a small 

fraction of all combinations

– Still solution time may be exponential

• Standard software

– CPLEX, GAMS, Lindo, Lingo, Excel Solver …

• Very efficient specialized algorithms exist for the 

extreme point formulation

– Power Simplex, Extended Power Simplex, Tri-

Commodity Simplex, …
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One specialized algorithm for CHP
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Dynamic systems

• A dynamic system is one which develops in time

– Opposite: static system

• Normally, a dynamic system is modelled by 

discretizing it into a sequence static models that 

are connected by dynamic constraints
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Dynamic energy models

• Examples:

– Yearly CHP planning model is represented by a 

sequence of 8760 hourly models

• Dynamic constraints result from

– energy storages

– startup and shutdown costs and restrictions

– Daily hydro power scheduling is represented by a 

sequence of 96 15min models

• Dynamic constraints result from water level/amount in 

reservoirs and waterflows between reservoirs
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Dynamic optimization

• Different ways to model and solve dynamic

systems exist

– Multiperiod LP/MILP models

– General mathematical optimization models

– Dynamic programming algorithm

– Other network algorithms
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Multiperiod LP/MILP modelling

• A multiperiod LP/MILP model is an LP/MILP 

model with a special structure

– Time horizon is divided into a sequence of time 

periods, t= 1, …, T.

– The behaviour during each period t is modelled by a 

static LP/MILP model

– The periods are connected by dynamic constraints 

linking together

• subsequent period models pairwise, or

• all period models for the entire horizon
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Multiperiod LP modelling:

Subsequent constraints for heat storage

• Let s[t] denote storage level at end of period t 
(= storage level at beginning of period t+1)

• During each period, s[t] depends on previous
level plus charge minus discharge
s[t] = EtaS*s[t-1] + EtaIn*sin[t] – sout[t]; (t= 1, …T)

q[t] – sin[t] + EtaOut*sout[t] = qdemand[t];// heat balance

– s[0] is the initial storage level (fixed, e.g. 0)

– q[t] is production of heat in period t

– qdemand[t] is the demand for heat in period t

– EtaS = storage efficiency in time, 1 if no loss

– EtaIn = efficiency of charging storage

– EtaOut = efficiency of discharging storage
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Multiperiod LP modelling:

Subsequent ramp constraints

• Ramp constraints state that the plant may adjust
during an hour the production too fast up
(uramp) or down (dramp)

– There may be ramp constraints for
• power production p

• heat production q

• fuel consumption f (boiler operation)

–Pdramp  p[t] – p[t-1]  Puramp;

–Qdramp  q[t] – q[t-1]  Quramp;

–Fdramp  f[t] – f[t-1]  Furamp;



R. Lahdelma

Multiperiod LP modelling:

Constraints over planning horizon

• Emission limit for planning horizon
– Sum(t:= 1 to T, e[t])  Emax;

• Fuel availability constraint for planning horizon
– Sum(t:= 1 to T, f[t])  Fmax;

• Compute overall profit during planning horizon
– Sum(t:= 1 to T, C[t]) = Ctotal;

• Normally there is no constraint on overall profit, that is just 
something to be maximized
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Multiperiod MILP modelling:

Startup/shutdown costs and constraints

• On/off status of power plant is represented by binary
variable y[t] and startup/shutdown by zup[t], zdown[t]

zup[t] >= y[t] - y[t-1];

zdown[t] >= y[t-1] - y[t]; (t= 1, …T)

– only y[t] must be binary variables, zup&zdown can be real

– y[0] is initial on/off status, which is fixed

• Startup/shutdown costs are included into objective

Min …+ cup[t]*zup[t] + cdown[t]*zdown[t];

• Startup/shutdown restrictions are represented as logical
constraints

zup[t] <= 1-zdown[t-1]; // disable immediate startup

zup[t] <= 1-zdown[t-2]; // and startup with 2-period delay etc.

• A long-term model can be large and too complex to solve


