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LP and MILP modelling

 Linear Programming and Mixed Integer Linear
Programming are most commonly used
approaches for practical problems because
— the modelling techniques are very versatile and flexible
— efficient and reliable solvers exist for these problems

 Arbitrary convex optimization problems can be
approximated with LP models

» Non-convex optimization problems can be
approximated with MILP models
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Non-convex optimization problems

* When the (minimized) objective function or some
of the constraints are not convex, then the problem
IS non-convex

* A non-convex problem may have several local
optima

— In the general case it Is not possible to know at
beforehand which local optimum is the global optimum
—> necessary to explore them all

— It can be difficult (and even impossible) to ensure that
all local optima have been explored

— In MILP problems it can be ensured!
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Mixed integer linear programming (MILP)
model

* A mixed integer linear programming problem is
similar to an LP model, but some of the variables

have integer domain:

min (max) cx+dy

S.1.

Ax+By <Db

x>0

yie {0,1} (or some other finite range of integers)

 |f all variables are integers, the problem is a (pure)
Integer linear programming (ILP) problem
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Properties of MILP models

 Special case of non-convex problems

— Optimum is always at a corner point of an LP model
that is obtained by fixing the integer variables to some
feasible values

« Lety* = vector of 0/1 values
— Then dy* = constant and By = constant vector
— An LP model results
min (max) cx + constant
S.1.
AXx < b — By = constant vector
x>0
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Properties of MILP models

» Reliable (but not so efficient) solution algorithms exist

— The Branch&Bound algorithm will enumerate explicitly or
implicitly the different value combinations of integer variables

— This reduces the MILP problem into multiple LP problems

 Finite non-convex problems can be approximated by MILP
models with arbitrarily good accuracy
— In principle a MILP model can always be solved

— However, the resulting model may become large and very slow to
solve

« number of LP models to solve can be astronomical
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How to define a MILP model?

1. Write down a verbal explanation of what is the goal or
purpose of the model
— E.g. to minimize costs or maximize profit from some specific

operation or activity

2. Define the decision variables (and parameters)
—  Specify if they are real numbers or binary or general integers
— Use as descriptive or generic names as you like: x1, x2, fuel, ...
—  Give short description for them
—  Also specify the unit (MWh, GJ, €/kg, m3/s, ...)

3. Define the objective function to minimize or maximize
as a linear function of the variables

4. Define the constraints as linear inequality or equality

constraints of the variables
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Example of energy MILP modelling

 Biofuel power plant that can be shut down

— Plant operation follows a linear characteristic in a range
X = Xpio R = Pioss
Xel
Xpio = Diofuel consumption
R = consumption ratio for biofuel

P|,ss = constant loss
Xo™N, XM = minimum/maximum power production

— But when the plant is shut down, X, = X,;, =0

min < Xel < Xelmax
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Biofuel power plant MILP model

« A binary variable y is defined as a switch to
determine if the plant is on (y=1) or off (y=0)

« Encoded model
MaX CyXei = ChioXbio
Xe1 = Xpio/ R = Y*Pjoss
y*xelmln = Xel = y*xelmax
y € {0,1}

C; = price for sold power
Cpio = fuel price

— The y-variable affects both the plant
characteristic and bounds for power output
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Wrong way to use binary variables

« Sometimes people try to write

MaX Y*(CoiXei — ChioXpio) // not linear
Xo1 = Y*(Xpio/ R - Pjoss) /I not linear
XM < X, <X,™ /I infeasible when plant is off
y € 10,1}

4 Objective i1s not linear, product of variables
4 Constraint is not linear, product of variables
a Lower bound of x,, Is infeasible when plant off

 Objective function and constraints in MILP
model must be linear as in an LP model!
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Encoding logical relations

« All logical operators (A,v,—,...) can be
encoded using binary variables and linear
constraints

X=YAZ D XY; XL Z; Xx2y+z-1
X=YVZLDXIY+Z; X2y, X>1Z
X==Y2>x=1y

 Arbitrarily complex logical expressions can be
encoded In sequence
Y=Y A=Y) VY, &Y=2ZVvY;Z=Y,AY,

DYty Y272,y 2 Y5
2<Yq; 221y, 22y,1(1-y,)-1
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MILP-encoding of general non-convex

problems

* A non-convex optimization problem is of form
Min f(X); s.t. x e X
— where f() Is a non-convex function,
— or X IS a hon-convex set,
— or both
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MILP-encoding of non-convex constraints

« X s partitioned into convex subsets X = UX

A binary variable y; is defined for each part
— the part is enabled when y;=1 and disabled when y;=0

« Each subset is modelled by linear constraints
Aix < b; +M(1-y;)
 Binary variables activate exactly one set of
constraints at a time
2yi=1
yi €10,1}
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MILP-encoding of hon-convex objective
function

* A non-convex objective function can be approximated by a
piecewise linear function
« Example: min f(x) = -x? in range [-2,2]:
— Choose points (X,F;) along function
— define (x,f) as convex combination of linear segments using

continuous variables x; and
— binary variables y; to enable

exactly one segment
X=LiXX;

f=2XiF;

2X=1

XiSYitYis

2y=1

x>0, y;€{0,1}
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Convex CHP model

« The power plant characteristic defines in the P-Q plane the
feasible operating area area
— p = power production, g = heat production, ¢ = fuel cost

 \We encode the model as a convex combination of
extreme (corner) points

max cp — Z; C;X; Qb (C3,P3,0s)
S.t.
%; pX; = p // variable power prod
5 ax = q // fixed heat demand ope
i Y i q (C2,p2,02)
X X = 1 // convex comb. .(c5,p5,q5)
X 2 0
.(C6,p6>;q6)
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Non-convex CHP model

» Necessary when either (or both)
— The cost function is non-convex

— P-Q the characteristic is non-convex
« E.g. when it is necessary to optimize the shut-down of the plant

* |dea
— Partition objective function into convex parts
— Partition characteristic into convex parts
— Use 0/1 variables to choose in which area to operate
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convex cogeneration model

Sample non
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Non-convex cogeneration model

Allocation of characteristic points to convex sub-areas

e Characteristic IS
Area Pl P2 P3 P4 P5 P6 P7 P8 P9

partitioned in three 57— B

1
A2 1 | 1 1 1
convex parts N oo L

* A Is set of areas to which x; belongs

 Define zero-one variables y1, y2, y3, and allow
exactly one of them to have value 1.

» y-variables select which

corner points are allowed XS ;} jedy,, uelU,
In the convex : | *
combination Zyﬂ =1, uelU,
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Solving MILP models

 In principle it is possible to solve MILP problems
using brute force:
— Choose a value combination of integer variables

— Solve the resulting LP problem
— The best feasible solution among all combinations gives
the optimum
» The number of problems to solve is exponential
with respect to number of variables
— With N binary variables, there are 2N combinations
— N=10 — 1024, 20 — 10°, 30 — 10, ...
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Solving MILP models

« The Branch & Bound algorithm solves MILP
models more efficiently by solving only a small
fraction of all combinations

— Still solution time may be exponential

 Standard software
— CPLEX, GAMS, Lindo, Lingo, Excel Solver ...

» Very efficient specialized algorithms exist for the
extreme point formulation

— Power Simplex, Extended Power Simplex, Tri-
Commodity Simplex, ...
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One specialized algorithm for CHP

Available online at www.sciencedirect.com
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Dynamic systems

« A dynamic system is one which develops in time
— Opposite: static system

* Normally, a dynamic system is modelled by
discretizing it into a sequence static models that
are connected by dynamic constraints
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Dynamic energy models

« Examples:

— Yearly CHP planning model is represented by a
sequence of 8760 hourly models
« Dynamic constraints result from
— energy storages
— startup and shutdown costs and restrictions
— Daily hydro power scheduling is represented by a
sequence of 96 15min models

« Dynamic constraints result from water level/amount in
reservoirs and waterflows between reservoirs
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Dynamic optimization

 Different ways to model and solve dynamic
systems exist
— Multiperiod LP/MILP models
— General mathematical optimization models
— Dynamic programming algorithm
— Other network algorithms
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Multiperiod LP/MILP modelling

« A multiperiod LP/MILP model is an LP/MILP

model with a special structure
— Time horizon is divided into a sequence of time
periods, t=1, ..., T.

— The behaviour during each period t is modelled by a
static LP/MILP model

— The periods are connected by dynamic constraints
linking together
« subsequent period models pairwise, or
« all period models for the entire horizon
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Multiperiod LP modelling:
Subsequent constraints for heat storage

« Let s[t] denote storage level at end of period t
(= storage level at beginning of period t+1)
* During each period, s[t] depends on previous
level plus charge minus discharge
s[t] = EtaS*s[t-1] + Etaln*sin[t] — sout[t]; (t=1, ...T)
q[t] — sin[t] + EtaOut*sout[t] = qdemand|t];// heat balance
— ¢[0] is the initial storage level (fixed, e.g. 0)
— g[t] 1s production of heat in period t
— qdemand]t] is the demand for heat in period t
— EtaS = storage efficiency in time, 1 if no loss
— Etaln = efficiency of charging storage
— EtaOut = efficiency of discharging storage
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Multiperiod LP modelling:
Subsequent ramp constraints

« Ramp constraints state that the plant may adjust
during an hour the production too fast up
(uramp) or down (dramp)

There may be ramp constraints for

power production p

heat production g
fuel consumption f (boiler operation)

—Pdramp < p[t] — p[t-1] < Puramp;
—Qdramp < q[t] — g[t-1] < Quramp;
—Fdramp < f[t] — f[t-1] < Furamp;
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Multiperiod LP modelling:
Constraints over planning horizon

« Emission limit for planning horizon
—  Sum(t:=1to T, e[t]) < Emax;

« Fuel availability constraint for planning horizon
—  Sum(t:=1to T, f[t]) < Fmax;

« Compute overall profit during planning horizon

—  Sum(t:=1to T, CJt]) = Ctotal,

Normally there is no constraint on overall profit, that is just
something to be maximized
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Multiperiod MILP modelling:
Startup/shutdown costs and constraints

On/off status of power plant is represented by binary
variable y[t] and startup/shutdown by zup[t], zdown[t]
zup[t] >=y[t] - y[t-1];
zdown[t] >=y[t-1] - Y[t]; =1, ...T)
— only y[t] must be binary variables, zup&zdown can be real
— y[0] is initial on/off status, which is fixed
«  Startup/shutdown costs are included into objective
Min ...+ cup[t]*zup][t] + cdown[t]*zdown[t];
«  Startup/shutdown restrictions are represented as logical
constraints
zup[t] <= 1-zdown|[t-1]; // disable immediate startup
zup[t] <= 1-zdown|[t-2]; // and startup with 2-period delay etc.

A long-term model can be large and too complex to solve
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