Statistical Mechanics
FO415

Fall 2021, lecture 8
Quantum phase transitions
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Quantum Ising

transverse-field quantum |sing model:

e cach site 1 has spin-

e 5% operators obeying [67,67] = —2i€y,,6] 0

!

e In G” basis, [T}, 1),

{1j): nearest neighbours

H=-J 6767
iy

- Jg) &7
:

d.o.f.

s,s € {+1, -1}

3,# |5}; = (U"“')ssf |5J>,- o*: Pauli matrix

Quantum Ising model has symmetry under spin-flip operator U = [], &7

e, [H, U =0



Paramagnet

H=-J) 6i67—Jg)» &

K } G- = ), where ) = (1) + )

]

For g — +o0, |g.s.) = [ [;|—)i
spins align with applied field: “quantum paramagnet”
g.s. iIs symmetric under spin flip: Ulg.s.) = |g.s.)
(9.5.[67]9.s.) =0 U Hﬁf
product state, so no correlations: (9.5.|f':‘r,-zfij-z|g.5.)J = 0j;
For large finite g, |g.s.) = [[.|->); + perturbative corrections in 1/g

correlations (g.s.|6767|g.s.) ~ e~ ~XI/¢ with £ — 0 for g — oo

“kinetic energy (i.e., off-diagonal term) wins"
("kinetic" / “potential” depends on choice of basis)



Ferromagnet

H=—JY 6767 —Jg> &7
(i) i
For g = 0, two degenerate ground states: |1) = [[,|[T); and [{) = [];|1)
spins align with each other: ferromagnet
both states break spin-flip symmetry (U|1) = [{}))
(9.5./671g.5) =1
product state: (g.s.|6767]g.s5.) = (9.5./67]9.5.)(9.5./67(g.5.) =1
For g = 07, superpositions |1t} &£ ||}) are e'states, but splitting —+ 0 as N — o
N = oc: macroscopic superpos'ns unstable; take |1}, |{}) as degenerate g.s.

for small g and N = oo, |g.s.;) = [[;|1); + perturbative corrections in g
lg.s._) = [[,|4)i + perturbative corrections in g

“potential energy (i.e., diagonal term) wins"



Partititon function

at temperature T = 1/, partition function
Z =Tre PH

= Z(s|e_m{|5} for any (orthonormal) basis {|s)}
5

split operator e ™ into M pieces e~ with Ma = (3

Z =) (sole”Me ... e"H|s) Y Is)(s =1
50 M 5
= Z (sole™®"|s1)(s1le”|s2) (sn] -+ - |sm—1)(Sm-1]e"""|s0)
50,511,000, 501 | | . L s ! |
Lo 1]
| | | | | | |
e~@": evolution by “imaginary time” t=—ia « , 1 1 1 | | | | |a
(real-time evolution £ T
operatore Mty T | 917111 0
- I I T R T R R
D susi...s .. SUM over trajectories -3
“path integral” representation of Z 51°,—';E/; i i i i i i i

d-dimensional space (lattice)




Quantum model to classical mapping

Z= ) (sole”™|si)(s1le”"|s2)(sa| - Ism-1){Sm-1le”""|s0)

50,51, .51
A

choose basis states |s) corresponding
to classical configurations s

define £(s, s') = —log(sle™?%|s') = [£(s', s)]”
z=Y e~ Xito Esisia)

50.51,....50-1

imaginary time 1

N

where sy = so (periodicity in 7) 50 d-dimensional space (I}e;tticc)

ﬂ:f. classical statistical system with reduced Hamiltonian Eg \
on (d + 1)-dimensional lattice (with p.b.c.)

E = Z [E1(s;) + Ea(si,5i41)] E.: layer configuration energy
i E->: interaction between adjacent layers

M—1
- Z{ [E1(si) + E1(six1)] + Ea(si, Si41) } = Z E(s;, Sic1)
\ i=0 _/

if £(s,s’) is real, interpret Z as partition f'n for classical (d + 1)-dimensional system




Summary

quantum classical

imaginary time 1 extra spatial dimension T

: 1 . . , :
inverse temperature J = T system size L, in 7T direction

_sn Boltzmann weight (transfer
matrix) e=5(55) = (s|e=7H|s")

sum over trajectories sum over configurations
(“path integral") (canonical ensemble)

imaginary-time evolution e

quantum critical phenomena  classical critical phenomena
at 7 =0 in d dimensions in d + 1 dimensions

Imaginary time 7

1

i
|
|
!
|
r O
|
|
i
|

.

d-dimensional space (lattice)

n.b., distinct from relationship between classical stochastic dynamics
(in d dimensions) and quantum mechanics (in d dimensions)

at zero temperature, 8 = 1/T = oc: imaginary-time direction is infinite



ISing again

transverse-field quantum Ising model: H = —JZ&ZE}Z — JQZE},’-‘
{if) '
define £(s,s") = —log(sle *"|s") use 67 basis, [1),. 1)
N
7 — Z o M E(sisi0) s) = {s1, 5, ... sw}) = II;" [,

S h—1

for sufficiently small a, use e?(AtB) = e2 eas[l FO(a)]
(s| e~ aM Is') ~ (s 09 2 87 ad X2y 7 6F s')
= (5| €927 |s') &2/ 20 5% (s]e?%"|s") = A(a)eB(@)s
e 2t *% H (si| €97 |s]) B(a) = —1 log tanh &
;

[A(an)]N EJL {ify 5:5’+B ajg:}xrgjg:

E(s,s') aJZs" '~ B(aJg) Zs, t- const

"



Ising I

transverse-field quantum Ising model: H = —JZU JgZo

iy
i Z o 2o E(sisin)

50,5100y Sp-1

k.
Fal

For a — 0, B(a) = —4 log tanh &

E(s,s') = —aJZs,-’sj — B(aJg) Zs;s}'
(r’f)) i '

layer configuration energy e >h

d-dimensional space (lattice)

Imaginary time 7

(=)

interaction between adjacent layers

e Transverse-field Ising model in d dimensions maps to highly anisotropic
(a — 0) classical Ising model in d + 1 dimensions

e By universality, quantum Ising model has identical critical properties
to isotropic classical Ising model in d 4+ 1 dimensions




Ising chain

transverse-field quantum Ising model in 1D:
H=-JY (6767, + 967]

!
(related to 2D classical Ising model, so ordering transition at g.)

for g = o0, [g.5.) = [[;| =)

excited states have +—+—+—+—+—+—+

flipped spins

for large g, use perturbation +_+_+_+_+_+_+

theory, with 6H = >, 6767,

OH creates flipped spins in pairs & +—+—+—+—+—+—+

hops them between sites

5 (I1) + |J,>) &*
7 (1)

) G

$ 5

so treat flipped spins as particles



Use a transformation....

; .
Treat flipped spins as particles +—+—+ + + +—+

either:
e 2as bosons—but then need interactions
to forbid two flipped spins on one site a

e as fermions—double occupation automatically forbidden,
but fermion operators anticommute on different sites:

{ci.c]} =0, R

6, 6Y] = —2i€,,,670;
{ci.¢t = {c}", cj‘."} =5 [ ] uwp0; 0jjf

Jordan—Wigner transformation (in 1D): add a string of minus signs
é‘rf‘:l—Qn,- ”j:%icj'
67 = —(¢i CJ-T)H(]. 2n))
P
including this string, [67,67] = 0 for | # J, as required



... diagonalize... exact spectrum.

transverse-field quantum Ising model in 1D: H = —JZ 16767, + g67]

JW transformation: 67 =1 —2n; nj = CJ-T ¢
67 = —(ci+c) ] -2n)
J<i
6767,y = (ci+¢)(cv + ) [T —2m) T (1 - 2np)
J<i J<i+l
= (ci+ e+, ) —2m) {ci.c[} =4y
=(—a+ (e +cly) {ci.g}={c.c} =46

result: quadratic Hamiltonian in terms of fermion operators

(see practice

i i problems)

H=-JY (cfc,-ﬂ +clg+clcl, + g —29c]c+ g)
f.
diagonalize with FT and unitary transformation: ¢, = ugye + ivw‘ik {qu,qrf(} = Ok i

H = Zsk(whk =) ground state |g.s.): ¥x|g.s.) = 0 (all k)
i

ex = 2J\/1+ g2 —2gcosk gap A=E; — Egs =€9=2J|1 - ¢]



Chain: QPT

4 nonanalyticity in ground state
gap A (in thermodynamic limit)

>
01970 const 70 =t N0 aeren ~ e
as |x; — xj| = o as |x; — x| — o

€c =2J\/1+ g2 —2gcosk
A=2J]1—-9g|~|g— g
critical exponent zv = 1

Sachdev (1999/2011)




Quantum annealing

Solution

Quantum Tunnelling

Solution

Adiabatic evolution

ldea: take a classical Hamiltonian
(energy function). Instead of doing
things at finite T and lowering it
(Simulated Annealing)... Glauber
dynamics with a decreasing T.

Do the quantum version with
decreasing quantum effects.

Tunneling through barriers.



Kibble-Zurek

Approach a 2" order phase transition at a (fixed) finite rate. Eg. The
Ising transition.

At some point, the correlation time / relaxation timescale becomes so

large, that the system no longer relaxes (“adiabatically”) or is able to
follow the change.

Consequence: topological defects are created. The density depends on
the correlation scale (length) and dimension (“coherent volumes”).

Lots of applications...
Physics depends on the rate of approach (velocity).



Kibble-Zurek mechanism in colloidal monolayers

KI b b ‘ e_Z u re k | | Sven Deutschlander,! Patrick Dillmann,! Georg Maret,! and Peter Keim!:*

PNAS 2015

quasi-adiabatic polycrystalline
dynamics phase
. y ; :
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*‘"'v Py FIG. 5. Snapshot sections of the colloidal ensemble
n. (992 x 960 um?, 2 4000 particles) illustrating the defect (a,c)
o and domain configurations (b,d) at the freeze out temperature

i T for the fastest (a,b: I = 0.0326 1/s, T ~ 30. 3) and slowest
d'Star.u.:e to cooling rate (c,d: T' = 0.000042 1/s, T' &~ 66.8). The defects
transition are marked as follows: Particles with five nearest neighbors

are colored red, seven nearest neighbors green and other de-
fects blue. Sixfold coordinated particles are colored greyv. Dif-
ferent symmetry broken domains are colored individually and
high symmetry particles are displayed by smaller circles.




Quantum take-home

The classic reference for this stuff is by Subir Sachdeev (Quantum Phase Transitions) but we utilize here
two sets of lecture notes that exploit it. The first set is from Warwick

https://warwick.ac.uk/fac/sci/physics/mpags/modules/theory/cgpt/lectures9-10.pdf

And if you want another viewpoint, with partly more detail, check lectures 5 and 6 from Dresden
(Lukas Jansssen), https://tu-dresden.de/mn/physik/itp/tfp/studium/lehre/ss18/qpt ss18

For the applications, we have quantum annealing and the Kibble-Zurek mechanism. The take home is
now like this: check those notes so that you recall the main points of QPT. Then pick either a topic on
guantum annealing (including the D-Wave simulator), in other words

https://www.nature.com/articles/s41598-019-49172-3

... or if you want to have more insight on the Kibble-Zurek, you should take

https://www.nature.com/articles/s41586-019-1070-1

And your task is like the previous time "2+8" sentences on the selection and main points.


https://warwick.ac.uk/fac/sci/physics/mpags/modules/theory/cqpt/lectures9-10.pdf
https://tu-dresden.de/mn/physik/itp/tfp/studium/lehre/ss18/qpt_ss18
https://www.nature.com/articles/s41598-019-49172-3
https://www.nature.com/articles/s41586-019-1070-1

