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LEARNING OUTCOMES

Students are able to solve the lecture problems, home problems, and exercise problems on
the topics of week 46:

O Bar truss displacements. Element contribution of a bar in the structural coordinate

system.

O Principle of virtual work and the fundamental lemma of variation calculus. Virtual work

expressions of elements and structures.
O Beam element loading modes and the element.

O Kinematic constraints, kinematic links, and boundary conditions.

Week 46-1



3.1 BAR TRUSS

Slender structural parts of a truss may act as bars or beams depending on the loading and

the type of joints. If internal forces are aligned with the axes of the parts, a simple bar model
may give satisfactory results!
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Typical applications are bridges, cranes, roof trusses etc.
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BAR TRUSS

Bar truss consists of straight slender structural parts connected by cylindrical or spherical
joints so that internal forces are aligned with the axes of the structural parts (a straight line
between the joints). The unknowns are the nodal displacements. Rotations do not matter as

they do not appear in the element contributions.
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EXAMPLE 3.1. The outer rim and center of a wheel are assumed to be fully rigid. The
center is fastened with 12 (diameter d =1mm) steel (E= ZIOGN/mZ) rods (length
L =300mm). Using bar elements, calculate the displacement of the center when a load of

F =1KkN is placed (buckling does not occur)?

Answer Uy, = i ( =

- [m]), when n=13
6EA " 5257
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BAR ELEMENT IN THE STRUCTURAL SYSTEM

-
X
. . . (U (Fx
R ||T —||T a |
1 :& 1 _M ¢, Where a=+ Uy > and R =4 Fy >
Ry hl T it [lag) 2 I
Uz | Fz )

The displacement components of the material system are expressed in terms of those in the
structural system, which brings the orientation into the element contribution. Column matrix

i contains the components of the unit vector i in the structural coordinate system!
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The starting point is the element contribution in terms of displacement and force

components in the material system (the simplest representation)

Fa| _EA[1 ~1)[ua] 1

Fo| hl-1 1||lun| 2 |1
With notations a={uy Uy uZ}Tand R={Fy K F; }T and taking into account
that Fy = F, =0 for a bar

rUX fFX
uX=iT< Uy .=i'a and R=- R =iFy, =
kuZ kFZ

o o) ma fl-5 o
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Therefore element contribution in the structural system

e s ] Y S PO
-2l AT el o -
g el «

In terms of the displacement components in the structural coordinate system contain also

the orientation i of the bar.
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The actual size of the matrix etc. depends on the number of components in i (dimension
of the problem). For example, assuming that the axes of the material and structural
coordinate systems are aligned, the bar elements for the uni-axial (X-axis), and planar

problems (XZ-plane) are

SN ol T

e (e K e
1 2
(Fyq) 1 0i-1 0](uyq) 1)
X1 X1 a={uy uylT R={Fy F 1"
<FZl>:EA 0.9 O<u21>—th<9>.
Fxo h|-1 0.1 Ofjux,l 2 |1 —»(XX&)»
(Fz2 ) 1 0 0:0 O]Jluzz] 0] ‘ 77
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EXAMPLE 3.2. The nodes of a bar are at (0,0,0) (node 1) and (L,L,L) (node 2) in the
structural coordinate system and the positive x-axis is directed from node 1 to 2. Determine

the element contribution R = Ka—F in the structural coordinate system if f, and EA are

constants.
(FXl\ 1 1 1 1-1 -1 -1 (qu\ (1)
FYl 1 1 1 -1 -1 -1 Uy 1 1
F 1 1 1:i-1 -1 -1{|u 1

Answer {22l = EA 3 22>—fXL<-->
Fyol 3V3L|-1 -1 -1 1 1 1 ||lux,| 2 |1
F o -1 -1 11 1 1]||U> 1
| Fzo -1 -1 -1;{1 1 1]|uzy) 1]
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EXAMPLE 3.3. If the space truss of the figure is loaded by a vertical force F acting on
node 1, determine the displacement of node 1. Assume that the displacement in Z-direction

vanishes due to the symmetry i.e. uy, = 0. Young’s modulus of the material E and the cross-

sectional area A are constants. Gravity is negligible.

FL FL
ANSWEr Uyq=-/2— and uy, =-3v2—
X1 A Y1 A
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e The bar element contribution in the structural coordinate system

e Uy
R ST T (g -
1| _EAN 'l 1_M!,R=<FY$,anda=<uY$
R, hl it it | l@ 2 |
Fz ) Uz |

is useful in hand calculations. The elements of i are the components of the unit vector i

In the structural coordinate system which can be deduced from the figure:

rl\ rl\ rl\

. . . 1

|1:i< 0 +and h=+/2L, |2:i<0$and h=+2L, iP=—{-1land h=+/2L.
\/E -1 \/E 1 \/E 0

e The element contributions of the three bars and one point force are
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(Fl ) -
>i4 1 0 -1i-1 0 171( 0
a7 0 0 0 0 1)
= 1 0 0 -1/| 0
Bar1: {- Zl -4-->=\EfA G 511 >,(ll=%< 0¢ h=+2L)
Fi1 8L| — —1||Ux1 2 q
1 0 0 0 u -
F1 Y1
. 1 0 -1;,-10 1][0
F _ — J
L' Z1
(F2, i N
X3 1 0 1i-1 0 1[0
2
F3 0 0 0 0 0| O o
F2 1 0 1. -10 -1/lo0
Bar 2: JoE3 0 EA S >,(|2:i<0$, h:\/EL)
F2, J8LI-1 0 -1/ 1 0 1 ||uyg J2 .
5 0 0 O 0 u <
FYl Y1
, 10 -1/1 0 1]l 0
F _ — J
(" Z1)
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(FB ) - .
X2 1 -1 0i-1 1 0]f(o0
3
Fyo 1 1 0/1 -1 0]|lo0 1)
| EA|O 0i0 0 ol o0
Bar 3: - 23 2l S 3 (|3:i<—1$,h:\/§L)
F3, JsLl-1 1 0/ 1 -1 0|uy; *Eo
3 1 -1 0i-1 1 0 qu R
vl
3 0O 0 0;0 O OO
F i i )
| Fz1
( 4\ e N
Fx1 0
Force 4: /¢ FY41 s =—<—F }.
4
FZl \O)

In assembly, internal forces acting on the nodes are added to end up with the equilibrium
equations for the nodes. To get the minimal system for the unknown displacement

components, only the non-constrained directions are considered first (the remaining
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equilibrium equation can be used to get the solution to the constraint forces and element

contributions to solution for the internal forces)

FANLAN LA :EF 4}{”“}4{0}20.
rL R2 3, R, JsL|—-1 1 ||uy,q 1

e The unknown displacement components follow as the solution of the system equations

-2l 27520 et

FL FL
Uy1=—+vV2— and uy,=-3v2— . €&
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EFFECT OF WEIGHT

Weight f = pAg acting on bars of a truss may not be aligned with the axes. Assuming that

the joints are not capable for taking moments, the bar model may give a good picture about

the internal forces if the weight is taken to act at the element nodes according to

LT T Uy | (Fx Ox |
{Rl}:&{ i i Hal}_ﬁ{g},whereaﬂ Uy +, R=4FR rand g=1 gy .

R2 h _"T T az 2 g
R Uz | Fz ) 197 )

Above, g contains the components of acceleration by gravity in the structural coordinate
system. The elements of i are the components of the unit vector i in the structural coordinate

system.
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EXAMPLE 3.4. A space truss is loaded by its own weight. If the joints do not take any
moments, determine the displacement of node 1. Young’s modulus E, density p, and cross-

sectional area A are constants. Use symmetry.

Answer Uy, =-3

Week 46-16



The Length of all the bars h = J2L. The unit vectors to the directions of the x-axes and

the components of the acceleration by gravity are (figure)

Y

1

im=——=<0 ;,
\/E -1

Bar 1: -

1

rl\

< J

rl\ rO\
~1t,andg=<-0.
kO/ kO/

1 0 -1{-1 0 11( 0"
0 0 0{0 0 0|0
EA|-1 0 1{1 0 -1|| O
= < > —
J8L|-1 0 1 i1 0 -1||luy,
0 0 0:0 0O O]|uyg
1 0 -1{-1 0 1|0 |
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Bar 2: <

Bar 3: <
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1 0 1/-10 -1]({0" (0
2

Fy3 0 00 0 0 0]|O -1

F2;] EA|1 0 1 /-1 0 -1|| 0| pALg|O
- = s —

F2, J8L|-1 0 —1!1 0 1 ||luy, J2 |0
5 0 0 00 0 0]|uy -1
vz
A 10 -1/1 0 1][0 0
F 1 J . J
Z1 )

F S o
X2 1 -1 0i-1 1 0|0 0
3
Ry -1 1 0i1 -1 0/|lo0 -1
F3,| EA|O0 0 0 0 0l| 0| pALg|O

- = s —

F3,| v8L|-1 1 0} 1 -1 Ofjuxs| ~2 |0
FY3 1—10—110UY1 —1
' 0 0 0|0 oll 0




e Sum of the forces acting on node 1 need to vanish for the equilibrium

O_{F>1<1+F>%1+F>§1}_ EA {3 4HUX1} PALQ{O}
Tl el 2 3 [ _ B _3("
Ry tRA+RY ) 2v2L[-1 1]{ua] V2 (-3

e The values of the unknown displacement components are obtained from the equation

SyStem
ux1] _,pl%g[3 -1]7[0]_pgl?[1 1][0] pgl®[-3] _
™ E |1 1| =3[ E |1 3[|-3] E |-9
2 2
qu:_sng and UYl:—nggL R
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3.2 PRINCIPLE OF VIRTUAL WORK

Principle of virtual work is one of the equivalent forms of equilibrium equations (an

Important form). . =
P ) o i F
O \.---/""""-- -~
- ext int - e P \
— e . ()
Virtual work oW = oW ™" + oW 0 Vor I;/_\ fi © \
II I \\ \‘
= I \ -
External forces W =" 6F R Ji O N\ i
‘\ plf \\ :
. . \\ L /'
Internal forces WM =3 5 fi ==Y 9p;i \ j 7
O\\\ ””/ O
o St----

The principle is very useful, for example, in connection with kinematical constraints. As an
example, oW Nt _0 for a rigid body, as the distances between particles are constants and

therefore 6p;; = 0!
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e The starting point is the equilibrium equations of a particle system

W =% sF-F and W™= SF-f.

icl

—_

e The virtual work of internal forces can be written in a more concise form: Let us consider

a typical pair (1, J)of particles:

Wil = i - % + fji -0 = B - 0(5 - 1) =— T - 955 = —fijopy

where pi: =T; —T; IS the position of particle j relative to particle i. The expression for
Pij i N

a body (a closed system of particles) is obtained as a sum over the particle pairs.
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FUNDAMENTAL LEMMA OF VARIATION CALCULUS

The fundamental lemma of variation calculus in one form or another is an important tool in
FEM. In MEC-E1050 the lemma tells how to deduce the equilibrium equations of a structure

using a virtual work expression and the principle of virtual work:

Il
o

O uvelR - vu=0 WYv < U

Il
o

O uveR" - viu=0 Wv < u
O U,VECO(Q) ; jQ uvdQQ=0 YW < u(x,y,...)=0 in Q

In mechanics of the materials, variable or function v is often chosen as the kinematically

admissible variation of the displacement field ou.
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PRINCIPLE OF VIRTUAL WORK IN FEM

Principle of virtual work oW =0 Voa is just one form of equilibrium equations. In
connection with MEC-E1050, the principle is a representation of the equilibrium equations

of nodes. i
forces from given forces

elements acting on nodes

W ==Y > (6G;-F°+66-M{)+>".  (6Gi-F+566-M;) =
oW = ZEEE OWE = —5aT(Ka— F). (point forces treated as one-node elements)

The negative sign in the first term is due to the selection that the forces acting on the elements
are positive in the direction of displacement. Therefore, according to Newton's 3rd law,

forces acting on the nodes are negative.
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FORCE ELEMENT CONTRIBUTION

External point forces and moments are assumed to act on the joints. They are treated as
elements associated with one node only. Virtual work expression is usually simplest in the

structural coordinate system:

NT ¢ 3 - N T

(Suy | [Fx 60x | [My /
W ={5u b 1R trlsa b Imy ! /‘ X o7 Uy,Uy,Uy
Y Z

ouz J (Fz) (00z] | Mz] X@X,ey,ez

Above, Fy,K~,F; and My ,My,M5 are the given components. A rigid body can be

- J J J

modeled as a particle at the center of mass connected to the other joints of the body by rigid

links!
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BAR ELEMENT CONTRIBUTION

T
ou 1 -1||u 1 .

SW=-4" " (E al_fh ), Where Uy =i'{uy ¢.
5UX2 h | -1 1 UX2 2 1

Element contribution in its variational form is a scalar which simplifies assembly

considerably. Mathematica code of MEC-E1050 uses the variational form of the element

contribution!
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DISPLACEMENT ANALYSIS; THE IMPROVED RECIPE

O Express the nodal displacements and rotations uy,uy,u,, 6y,6y,6, of the material
coordinate systems in terms of those in the structural coordinate system Uy ,Uy,U7,

Ox,6 ,07 (u,={ux uy uz}i etc.) and write down the element contributions
SW =-5a' (Ka-F).

O Sum the element contributions to end up with the virtual work expression of the structure
oW = ZEEE OW® (point forces can be considered as elements also). Re-structure to get
the “standard” form oW =—ga' (Ka—F).

O Use the principle of virtual work oW =0 Voa, the fundamental lemma of variation

calculus for saeR", and solve for the dofs from the system equations Ka—F =0.
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EXAMPLE 3.5. A bar truss is loaded by a point force having magnitude F as shown in the
figure. Derive the equilibrium equations and determine the nodal displacements. The cross-
sectional area of bar 1 is A and that for bar 2 </8A. Young’s modulus is E and weight is

omitted. Use the principle of virtual work.

2 1
Answer E
L |1 1
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Element contributions oW :—5aT(Ka—F) to the virtual work expression of the

structure are

-
0 1 -1 0 0
Bar 1: éle— (E — )=—%Ux25ux2’
5Ux2 L | -1 1 Ux2 0 L

-
0 1 -1 0 0

Bar2: W2 oL EVBA 1 IR
V2 [Suyp+8uza ) T N2L | -1 1 ]V2 [uxp+uza) (O

EA
SW?2 = —T(5Ux2 +0Uzo)(Uxo +Uz2),

Force 3: SW* = ouzoF.

Virtual work expression is obtained as the sum of the element contributions
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EA EA
oW = —T5UX2UX2 —T(5Ux2 +0Uz9)(Ux o +Uzp)+0UzF <

EA EA EA EA
oW = —5Ux2(2TUx2 +TU22)—5U22(—F = Ux2 +TU22) =

T
ow =1 2Ux2 (EA 2 Ljuxa| JO ). “standard” form

5U22 L1 1 Uz 2 F
Principle of virtual work oW =0 Vda and the fundamental lemma of variation calculus

imply
& 2 1 Ux 2 B 0 _0 o Ux 2 :E -1 |
L{1 1]|uy, F Uz EA | 2
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3.3 BEAM ELEMENT CONTRIBUTION

The beam element is obtained by combining the virtual work expressions of tension, torsion,
and bending loading modes (b~bending, t~torsion, s~stretching)!

Virtual work of a structure: oW = ZEEE oW

Virtual work of abeam:  OW® =) Wy = My, + MWy, + Wi +Wey

In hand calculations, one starts with the expressions in the material coordinate system,
expresses the nodal displacements and rotations in the structural coordinate system, and
sums over the elements and loading modes. The remaining follows from the principle of

virtual work oW =0 Voa.
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BAR MODE

X

ou T EA|l 1 1(|u fohil qu\ 1 AXC

SW=—{ L (= AL 2B ug =i {uy b, where i=={AY \,
5UX2 h|-1 1 UX2 2 |1 h

Uz | |AZ ]

Above, f, and EA are assumed constants and the elements of the column matrix i are the

components of the unit vector i in the structural coordinate system.
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TORSION MODE

N

(AX

.
56 1 -1](6 1

ow =— 0l &L al MBIy g ZiTla L where i=2lav !
S0, “hl-1 1|6, 2 |1 h

0, AZ

J " J

Above, my and GJ are assumed constants and the elements of the column matrix i are the

components of the unit vector i in the structural coordinate system.

Week 46-32



xz-PLANE BENDING MODE

3
vhL

le YUu
S |-
(Suy )" (12 —6hi-12 —6h|(u, (6 ) o
u
R L R
50y2 | —6h 2h? | 6h 4h? ||Yy2) ) -

Above, f, and El, are assumed to be constants and the elements of the column matrices

i, j and k are the components of the unit vectors i, j and k in the structural coordinate

system.
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Xy-PLANE BENDING MODE

Jy
LT

LplETiTEIiIIIONIOIpTONI I AL pRe gt Y BT A0y / -----
017Uy ) O T2
y' g
suyg) [12 6h i-12 6h (uy, (
50, | El,|6h 4h?|-6h 2n%|[g,| fyh X
W ==t (S ety =Ty fete
Suy,| h®|-12 —6h{ 12 —6h||uy,| 12 |6 g )
Z)
(0022 | 6h  2h® | -6h 4h* (6, —h]

Above, f, and El;, are assumed to be constants and the column matrices I, j and k contain

=

the components of the unit vectors i, ] and k in the structural coordinate system.
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EXAMPLE 3.6. Consider the beam of the figure and determine the rotation of point 2 by
using a generic beam element. The x-axis coincides with the geometrical axis, the spherical
joint at point 2 is frictionless, and the components of the external moment acting on point 2

are My ,My, and Mz. The second moments of area are I,y =1,, =1 and J=2].

My, My, My,
/&
T X
L
AnSWGI’ HXZ Z%% , &2 :l MY L : and sz :E_MEZIL

Week 46-35



The element contribution consists of parts of the loading modes. The active degrees of

freedom are rotations 6y », &, and &7, (element and structural systems coincide here)

T

(0 ) 12 6L =12 6L |( o )
0 El|-6L 4% i 6L 2L°|| O El
W = =58 5 — 4L
bz o [ ‘BT el iz eL || o [T e p e
1082 6L 2L° | 6L 4L% (2]
0 1T (12 6L | -12 6L | 0 )
0 El| 6L 4L° | —6L 2L% || 0 , El
SWE = —d = —50,5,41% — 0
bxy o[ BT el 12 el || o )T 0%z2tt [3 b
10072 ] 6L 2% | -6L 4L% |92z,
T
0 1 -11( 0
Mgy =~ (ﬁ )=—59x2ﬂ9x2 (J=21)
56y » L | -1 1|6y, L
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W2 =50y ;M y + 66 oMy + 5675M .

e Virtual work expression of the structure is sum over the elements and their loading

modes
W =" SWE =W+ W2 = (W, + Wy, +IWpe) + W 2
— L - - bxz T OVWpxy + tx) + —

) » El 2GI
—5@2 4L6§(2 5607541 fezz 80 2 =02+ 80x M +

5®2MY +5(922MZ <

2GlI El El
é\N__5‘9X2(_‘9X2_ x)—5@(2(ﬁ4|—2®2—MY)—5922(4|—ZT<922— z7)
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(50y,]' [26 0 07(6yx,)] [My

oW = —< 5&2> (I 0 4E 0 <6y2 3 MY >).
567, | 0 0 4E||6;,] (Mg

Principle of virtual work SW =0 Vv 6a and the fundamental lemma of variation calculus

in the form sa'R=0 véa < R=0 give

) (G 0 0 |[Oxs] [My) (Oy 5 ] [ MG |
T 0 2E O <®2 " S MY >:O = <®2 >:E< MY/(ZE) s 6
0 0 2E](0z2) (Mz] 072 Mz /(2E),

Week 46-38



EXAMPLE 3.7. A beam truss is loaded by a point force having magnitude F as shown in
the figure. Determine the nodal displacements. The cross-sectional area of beam 1 is A and

that for beam 2 +/8A. Young’s modulus is E and weight is omitted. Use the principle of

virtual work.

Answer UX2=UX4:_% and UZZZUZ4=2%.

Week 46-39



e A joint is generated by using a duplicate node in the Mathematica code. The

displacement components coincide at the nodes but the rotations may not:

model properties geometry
1 BEAM {{E, G}, {A, I, I}) Line[{1, 2}]
2 BEAM {{E, G}, {2 V2 A, T, 1}} Line[{3, 4}]
3 FORCE {0, 0, F) Point[{4}]
{X:Y:Z} {UXJUY:UZ} {ex:eY:@Z}
1 {0, 0, L} {0, 0, 0} {0, 6Y[1], 0}
2 {L, 0, L} {uX[2], @, uZ[2]} {0, oY[2], 0}
3 {0, 0, 0} {0, 0, 0} {0, 6Y[3], 0}
4 {L, 0, L} {uX[2], @, uzZ[2]} {0, 6Y[4], 0}
FL 2FL 2F
{uX[Z]%——,u 2] » ——, 6Y[1] » - —,
AE E AE
ov[2] 5 - 2F  ev(3] 5 - >F Y[4]—>—£}
’ ’ 2AE

Solution to the displacements is the same as with the bar model!
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3.4 CONSTRAINTS AND LINKS

name symbol equation
A _
clamped ( - Up=0and 6, =0
fixed ® A s =0
slide ﬁ/\.A .Gy =0
joint Ug =Up
rigid i_?ﬁ.s U = Up + 0 % pag and G = Oa
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EXAMPLE 3.8. Consider the beam truss of the figure. Determine the displacements and
rotations of nodes 2 and 4. Assume that the beams are rigid in the axial directions so that

the axial strain vanishes. Bending rigidity of the beams EI is constant.

{ '151Ei51515151Ei51515151Ei515151515151‘%15151515151?? - X

3 fL? 19 fL° 5 fL3

Answer Uy, =Uyyy = —————, = . and =
x2=Uxa="To 5 K2 =100 7E %4 =008 E
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e Only the bending in XZ-plane needs to be accounted for. The non-zero displacement and
rotation components of the structure are Uy o, &, and & 4. As the axial strain of beam

2 vanishes, axial displacements satisfy Uy 4 = Uy 5.

0 1T (12 —6L {-12 -6L]¢ 0 )
0 El|-6L 4% (6L 2L°|| 0
SWE = — U, =Uy o, Byo =
bxz <5UX2> (L3 TRl T TRL <UX2>) (Uzz =Ux2 y2 & 2)
| 0& 5 | 6L 2L% | 6L 4L% (%2
0 VT [ 12 6L {-12 -6L]¢ 0 )
56, EI|-6L 4L% | 6L 2L°||&,
SW2. =_177Y2 Or =8 o, O =
bxz ) 0 ( (L3 TRl T TR ) 0 ) (yl & y2 & 1)
(& 4 6L 2L° | 6L 4L% | (&4
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Suy,)" 12 6L |-12 —6L](_y,,) (6
56,4 | EI|l-6L 4L% | 6L 2L%|| &4 | fL|-L
é\NZ = < — < U-1 =—U
e =51 (| T T e [0 [Tz )6 P M T )
0| 6L 21° 6L 4L%|l O | L)

e Virtual work expression of the structure is

’ 5T ’ S R

suxz|" 24 6L 6L (y,, L[
OW =W, + W2, + W, =—1 56/ © (F 6L 8L 2L° {6, -~ 0 1)

(0%4) 6L 21 8L |4 L

e Principle of virtual work oW =0 Voda and the fundamental lemma of variation calculus

give

Week 46-44



24 6L 6L |(y,.,
ElleL 812 212] |_fL
L3 &2 12

6L 212 8L% |4

In Mathematica code calculation, horizontal displacements of nodes 2 and 4 are forced

to be same (Uy 4 = Uy 2)

(—27L)
19

(_6\ ru a

0 +=0 & <6§):2>—f—|_3<
2 [~ 1008El

L) (A4 )

model properties geometry
1 BEAM {({E, G}, {A, I, I}} Line[{1, 2}]
2 BEAM ({E, G}, {A, I, I}) Line[{2, 4}]
3 BEAM ({E, G}, {A, I, I}, {-Ff, 0, 0}} Line[ {4, 3}]
{XJYJZ} {UXJUY:UZ} {GXJQYJGZ}
1 {0, 0, L} {0, 0, 0} {0, 0, 0}
2 {0, 0, 0} {ux[2], 0, 0} {0, 6Y[2], 0}
3 {L, @, L} {0, 0, 0} {0, 0, 0}
4 {L, 0, O} {uxX[2], 0, 0} {0, 6Y[4], 0}
3fL* 19 f L3 5f L3
{uX[z] - , N , N }
112ET 1008 E T 1008 E T
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EXAMPLE 3.9. Consider the beam truss of the figure and displacements and rotations at
nodes 2 (3) and 4 (5) modeled by using duplicate nodes. Write down the element tables by

considering 4 (5) as a cylindrical frictionless joint.
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The structural parts can be joined by kinematical constraints. At nodes (black circle),

displacement and rotation components coincide. At a joint (white circle), only

displacement components need to coincide:

model properties geometry
1 BEAM {{E, G}, {A, I, I}, {0,0,Agp}} Line[ {1, 2}]
2 BEAM {{E, G}, {A, I, 1}, {0,0, Agp}} Line[ {3, 4}]
3 BEAM {{E, G}, {A, I, I}, {0,0,Agp}} Line[ {5, 6}]
{X.’YJZ} {UXJUYJUZ} {@XJGYJGZ}
1 {0, 0, L} {0, 0, 0} {0, 0, 0}
2 {0, 0, 0} {uX[2], @, uz| {0, 6Y[2], 0}
3 {0, 0, 0} {uX[2], @, uzZ| {0, 6Y[2], 0}
4 {L, @, 0} {uX([4], 9, uZ| {0, 6Y[4], 0}
5 {L, 0, 0} {uX[4], 0, uzZ] {0, 6Y[5], 0}
6 {L, @, L} {0, 0, 0} {0, 0, 0}

Solution to the problem is a bit lengthy so it is not given here (see the examples section

of the Mathematica code).
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POINT CONSTRAINT CONTRIBUTION

Displacement and rotation constraints can be enforced by using a given value in

calculations. Alternatively, one may use a one-node constraint element:

(5UX\T (FX
oW =+ 5UY > FY
\5UZ ) FZ
Above, Fy,KH ,F;

fux _QX\
>+ < UY _QY
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are considered as unknown constraint

forces/moments whenever the corresponding displacement/rotation should be constrained

to the value indicated by an underline. Notice that the variation of a given quantity vanishes.

Explicit constraint in this form can be used to find some of the internal forces in calculations

based on the virtual work expressions.
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EXAMPLE 3.10. A bar truss is loaded by a point force having magnitude F as shown in
the figure. The cross-sectional area of bar 1 is A and that for bar 2 +/8A. Young’s modulus

IS E and weight is omitted. Determine the nodal displacements. Enforce the zero

displacement conditions at nodes 1 and 3 by point constraints

Answer
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An alternative way to enforce displacement/rotation constraints uses a one-node

constraint element:

model properties geometry
1 BAR {{E}, {A}} Line[ {1, 2}]
2 BAR [{E}, {22 A}} Line[{3, 2}]
3 FORCE (0, 0, F) Point [{2}]
4 RIGID ({0, 0,0}, {0,0, 0} Point [{1}]
5 RIGID ({0, 0,0}, {0,0,0}} Point[{3}]

{X:Y:Z} {UX:UYJUZ} {QXJQY:QZ}
1 {0, 0, L} {uxX[1], @, uzZ[1]} {0, 0, 0}
2 {L, 0, L} {ux(2], @, uz[2]} {0, 0, 0}
3 {0, 0, 0} {uX[3], 0, uzZ[(3]} {0, 0, 0}

{FX[l] -F, FX[3] - -F, FZ[1] -0, FZ[3] - -F, uX[1] -0,

FL 2FL
UX[2] > -—, uX[3] >0, uZ[1] -0, uz[2] - ——, uZ[3] a@}
AE AE

Week 46-50



