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Recap of separability in plane wave solutions
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Plane wave review

Arb vector field in R3
E(x,y,z) = ayEx(x,y,2) + ayEy(x,y,2) + a,E;(x,y,2)

Shorthand notation

E.(x,y,2) = E4
Ey(x,y,z) = Eyp > E = a,E, + a,E, + a,E,
E,(x,y,z) =E,

Vector wave equation
VZE+ k?E=0
VZ(axEx + ayE, + a,E,) + k?(a,E, + ayEy + a,E;) =0

Scalar wave equation
VZEX + szX =0

2 2R —

\Y Ey + k Ey =
VZEZ + kZEZ =0

Consider the arbitrary electric
vector field in cartesian
coordinates

Each unit vector is associated
with a scalar function of the
spatial variables x,y,z

> E (xY,2): R3> R

Linear, homogenous, isotropic
medium therefore no cross-
coupling between field
components

Vector wave equation can be
solved as three separate scalar
wave equations
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Plane wave review

Scalar wave equation
V2E, + k?E, =0

Separable: product or three R' equations
Ex(x,y,2) = f(x)g(y)h(z)

Rewrite scalar wave equation with separated functions

92 .Y
(axz + dy? + azz> f(x)g(y)h(z) + k*f(x)g(y)h(z) = 0

Cancel out terms whose derivatives are 0

92f(x) 0%g(y) 0°h(z)

B)h(@) 5 7~ + fOh(2) 75~ + fG0g) —5
Collect like terms

1 0% 1 d%() 1 0*h@ ., _

f(x) 0x? +g(y) dy? +h(z) 0z2

As a demonstration, lets focus
on the x component Ex

E.(X,y,z) is separable therefore
we can write E,(X,y,z) as the
product of three 1D functions

Dividing by these functions
enables collection of like terms

Each function is a function of a
single, independent variable
that can vary independently
from the other variables
therefore each term must equal
a constant

+ k*f(x)g(y)h(z) = 0
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Plane wave review

Solve for each spatial variable separately by rewriting k

1 9%f(x) o)
f(x) ax2 %
1 02
& ag(ZY) = —kZ p > k% = ki +kj + Kk
gly 62}}1’(2) » Define constant k? as a the sum of
= —k? three constants associated with each
h(z) 0z / differential term

» Problem is now couched as three 2nd

1D, 24 order ODE
order, 1D, hopmogenousODEs.

92 )
<ﬁ + k)2(> f(X) =0
9% 112 ) aly) = 06 - threee separte
dy2 Y s\ = 2nd order, ODEs
62
— 4+ K2 |h(z) =
(azz + Z> (Z) OJ
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Plane wave review

» Rectangular waveguides follow
similar principles
_ —jky Ky : : :
fi(x) = Age™% + By el > Solutions to differential
equations are separable

Traveling wave solution

» Standing wave solutions exist
due to boundary conditions with
finite distance between

0's of f;(x) — {kx - —]oo} - ky,x real

ky = +joo Not realizable

Rectangular waveguides

e i boundaries
Standing wave solution - > PEC boundary conditions
f,(x) = C; cos(kyx) + D; sin(k,x) provide straight forward

solutions to 2" order ODEs.

1 .
0's of f,(x) — cos(kyx) kyx = <n T E) T vnnt

sin(k,x) kyx = +(n)m V nint
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Transverse Electric (TE) and Transverse Magnetic (TM) Solutions
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Waveguide solutions

General z-direction solutions can be written as:

A// transverse variation

A —iBZ < longitudinal
E(x,y,z) = [ei(xy) + 2e,(x,y)]e ]BZf/ var?ation
H(xy,z) = [h(xy) + zh,(x, y)]e P
transverse component longitudinal component
" TEM waves: E,=H,=0 » Define z as the direction of
propagation
< TE waves: E,=0,H, #0 > Consider the axial component

TM waves: E,#0,H,=0 component

\. Other hybrid waves

separate from the transverse

Aalto University
School of Electrical
Engineering

ELEC-E4130 / Taylor
Lecture 17



General Waveguide solutions

Unknown phase constant yet at this point!

-k
p z > z dependent variation
described entirely by
Definition of general waveguide solution propagation constant 3
0E _ J0H _ » Take curl and equate vector
5, = JBE & ——=—jgH t
7 9z components
The curl equation dx dy 4y
VxE = —iwuH d a4 /0 _
= —jop —_ 3% dy a = jop(ayHy + a,Hy, + a,H,)
Ex Ey E >~
—jB
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General Waveguide solutions

The curl equation No.1

VX E = —jouE

The curl equation No.2

V X H = josE

—> <

E + jBE

JE,

aX _]BEX
J0E, OE,
dx  dy
aHZ+' H

oH, H
aX ]B X
OHy, 0Hy
0x ady

Solve for
E,, H,
in terms of
EZ’ HZ

Solve for
E, H,
in terms of
EZ’ HZ
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Relationship between Trans. and Long.

General Waveguide Equations Cutoff wavenumber
H ] JE, J0H,, kZ = k? — B2
= — (we —

k2 = k2 + k2

_ 7 oH, JE, » Once we know the longitudinal components,
EX T 1,2 ((A)IJ. + B ) ;
ks dy 0x we know everything else
: > K., B need to be pre-determined
j J0H, 0E, c
Ey = k_g(“’“ Ox B ay) > We need to determine Ez, Hz, k,, and k,
» Boundary Conditions
Aalto University ELEC-E4130 / Taylor
Al S 0! Taver



TMwaves: H,=0,E,#0

k = w\/pe
General Waveguide Equations TM Wave Equations Wave Impedance: /
jwe OF Ex —E B v Bn
Hy = z(oos \6\ HX=]_2 z ZTM=HX=Hy= =
k ay kc ay y X We
—j _0E, 9H, —jwe O,
H =
v =i (@085 S +P y) Uy =2 &
_ = _ » Once we know E, we know
E, = 12] (wu\a\Hz 4 BaEZ) E, = ;JZB aaEZ everything else
ke 0 c 9% » Notice that the waveguide wave
j \@\HZ JE, _— —jB OE, :cmpedance.doesdnot equal the
E, == — Yy T 2 ree space impedance
» The presence of a traveling,

axial directed component
significantly changes the wave
impedance
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Wave equation for E,

Cutoff wave number

ke # 0, == B2 =k2—k2 > One only needs to solve a
wave equation that is only
defined in the cross-section!!

Original 3D wave equation:

02 92 ik
<6X2 * dy? * 0z

+k2>EZ=O \

—pB? Definition for the longitudinal component

2-D Wave equation or Helmholtz equation !! /

E,(xy,2) = e,(x,y)e P’
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In class Exercise: TE waves:

General Wave Equations

E,
Hy = \é\B)

k% dy dx

J0H,
Hy Z(wségx + 3 y)

By = (o5 +Bo

_ 4., OH, 9E,
=2 @G ThGR.

TM Wave Equations

X

X=

y:

y:

_]B aHz
kZ 0x

_]B aHz
kZ dy

_ —joudH,

ki Oy

joudH,
kZ 0Ox

H,#0,E,=0

Wave Impedance:

Ex —Ey owp kn

Z:: == —
"TH,T H, T BB

r Ly # Ly

» This is true independent of
waveguide geometry
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Transverse Magnetic (TM) Modes in a Rectangular Waveguide

Aalto University ELEC-E4130 / Taylor
School of Electrical Lect 17
Engineering ecture



Rectangular Waveguide, TM modes

yA

d

Z

v X

A
v

The Wave Equation for TM modes

92 92
(m + ay? + k%) e;(xy) =0

Separation of variables:
e.(xy) = f{(x)g(y)

Which leads to,

d2f(x)

d2
0 o) + ) o)

dy?

+ kef(x)g(y) = 0

Dividing by f(x)g(x) yields,

1 d?f 1 d?
(9 50) | 12
f(x) dx* g(y) dy?
—kg k2 —— (kZ=kZ+k2=

Decoupling to two 1-D wave equations
d2
<@ + k)2(> f(X) =0

d2
(d_yz + k321> g(y) =0

k2 _ BZ)
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Rectangular Waveguide, TM modes

/4 Boundary conditions at the x,y =0
E =0 e,(x=0y)=0 - B=0—— Leftwall
. ;=
bI e,x,y=0=0 - D=0—— Bottom
el X, Floor
< 3 >
Z

General solutions of electric field: Reduced equation

f(x) = Asin(kyx) + B cos (k) e,(x,y) = A sin(kx) sin(ky)

g(y) = Csin(kyy) + D cos(kyy) T~
A= AC
General solutions of electric field:
e,(xy) = f(x)g)

e,(xy) = (Asin(kyx) + B cos(kxx))(Csin(kyy) + D cos(kyy))
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Rectangular Waveguide, TM modes

Y,

d

o

Z

A

v

Reduced equation

e,(x,y) = A’ sin(kyx) sin(kyy)

N\

A= AC

Apn = A

Boundary conditions at the x = a wall
e,(x = a,y) = A’ sin(kya) sin(kyy) =0

sin(kya) — Kkgya=mm

mTt _
ky = — V mintegers
a

Boundary conditions at the y = b ceiling
e,(x,y = b) = A’ sin(kyx) sin(kyb) =0
sin(kyb) -  Kkyb =nm

nT
ky = —

b V n integers

Boundary conditions at the x = a wall

e,(X,y) = Ay Sin (? X) sin (I%T y)

A
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Rectangular Waveguide, TM modes

yA

d

Z

v X

v

A

Longitudinal field
. /mm \ . (N
e,(X,y) = Ay Sin (T x) sin (F y)

E,(xy,2) = e, (% Y)e_jBZ

E,(X,V,2) = Ay Sin (? x) sin (n?n

y) a—iBz

TM Wave Equations

H _ jwedE,
K¢ Oy
_ —jwedE,
y kZ ox
E =_jBaEz
* o KkZ ox
=_jBaEz
Y ké Oy

» Now that the
longitudinal field is full
characterized, we can
compute all the
transverse fields
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Rectangular Waveguide, TM modes

Transverse Fields

y A
o] .
< a >
z
Longitudinal field
mTt nt :
— . i . i -iBz
E,(X,y,2) = Apun sm( " x) sm( b y) e

jwent . /mTX
Hy(x,y,2) = WAmn sin (T
—jwemT
Hy(x,y,2) = 1Kk2 Amnp cOS ( 3
C
—jBmm
Ex(X,y,2) = TAmn cos (
C
—jBnm . (MTIX
Ey(x,y,2) = bTAmn sin (
C

) cos (ﬂ) e IBz

m) sin (ﬂ) e )Pz

m:x) sin (n%r) L

" ) cos (?’) e~ Bz

b

b

A
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Rectangular Waveguide, TM modes

Boundary conditions also determine that,

mtt

kX=T,m=1,2,3... 5 5 5 mTt 2 nm 2
—» Kk=Kk+ki=(—) +(7)
ntt c * 4 a b
ky = T,n =1,2,3...
Cutoff wave number Propagation constant
mmy2 /N2 2 2
k. = (—) (—) mt nm
c j 2 ) T\% — = k-kE= [k—(—) - (7))
a
]
w+/HLE dependent on the
geometry of the waveguide
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Cutoff Frequency

yA

Free space wave number Frequency
2T k
k=w = — = 2nuf\/ue 7 f=
b
)é Cutoff pOint is defined when Cutoff angular frequency:
< > k
a c
k=k —» f=f.= — .C
Z C C ZT[\/E (l)c —_— kC /—\/S_r,
Put it together
e _We_ck ¢ (m“)z N (E)z > Cutoff frequency a function of
© 2n 2mfE  2m/E; a b waveguide geometry and waveguide
fill
) ) > As we'll see next time, below this
f. = : (m) + (n) frequency the mode will not propagate
c =3 =\a b q y propag
Aalto University ELEC-E4130 / Taylor
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Conclusions
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Propagation

i B # K

z k2 = k? — 2

A
v

2 2
PRI LRk, Bz\/kz_(m) _(n_n)

» The one conductor geometry supports TE/TM operation

» The longitudinal phase variation of a TE/TM is not equal to the free space (plane wave)
TEM phase variation

» B — rectangular waveguide longitudinal phase variation
» k — free space longitudinal phase variation
» B is a strong function of frequency and geometry
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Next time

» WEe'll derive the expressions for the TE modes
» WEe'll focus on lower order modes and compare and contrast TE and TM.
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