ELEC-E4130

Lecture 17: Rectangular Waveguides Ch. 10

ELEC-E4130 / Taylor

Nov. 15, 2020

- Metallic pipe with rectangular cross section
- PEC walls
- Homogenous, isotropic dielectric fill
- Low loss, high power handling, easy to fabricate
- Significant dispersion

- Metallic pipe with rectangular cross section
- PEC walls
- > Homogenous, isotropic dielectric fill
- Low loss, high power handling, easy to fabricate
- Significant dispersion

Recap of separability in plane wave solutions

Arb vector field in \mathbb{R}^3

$$\mathbf{E}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{a}_{\mathbf{x}} \mathbf{E}_{\mathbf{x}}(\mathbf{x}, \mathbf{y}, \mathbf{z}) + \mathbf{a}_{\mathbf{y}} \mathbf{E}_{\mathbf{y}}(\mathbf{x}, \mathbf{y}, \mathbf{z}) + \mathbf{a}_{\mathbf{z}} \mathbf{E}_{\mathbf{z}}(\mathbf{x}, \mathbf{y}, \mathbf{z})$$

Shorthand notation

$$\left. \begin{array}{l}
 E_x(x, y, z) = E_x \\
 E_y(x, y, z) = E_y \\
 E_z(x, y, z) = E_z
 \end{array} \right\} \rightarrow \mathbf{E} = \mathbf{a_x} E_x + \mathbf{a_y} E_y + \mathbf{a_z} E_z$$

Vector wave equation

$$\nabla^2 \mathbf{E} + k^2 \mathbf{E} = 0$$

$$\nabla^2 (\mathbf{a_x} \mathbf{E_x} + \mathbf{a_y} \mathbf{E_y} + \mathbf{a_z} \mathbf{E_z}) + k^2 (\mathbf{a_x} \mathbf{E_x} + \mathbf{a_y} \mathbf{E_y} + \mathbf{a_z} \mathbf{E_z}) = 0$$

Scalar wave equation

$$\nabla^2 E_x + k^2 E_x = 0$$

$$\nabla^2 E_y + k^2 E_y = 0$$

$$\nabla^2 E_z + k^2 E_z = 0$$

- Consider the arbitrary electric vector field in cartesian coordinates
- Each unit vector is associated with a scalar function of the spatial variables x,y,z
 - ightharpoonup $E_x(x,y,z): \mathbb{R}^3 \to \mathbb{R}$
- Linear, homogenous, isotropic medium therefore no crosscoupling between field components
- Vector wave equation can be solved as three separate scalar wave equations

Scalar wave equation

$$\nabla^2 E_x + k^2 E_x = 0$$

Separable: product or three \mathbb{R}^1 equations

$$E_x(x, y, z) = f(x)g(y)h(z)$$

Rewrite scalar wave equation with separated functions

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) f(x)g(y)h(z) + k^2 f(x)g(y)h(z) = 0$$

Cancel out terms whose derivatives are 0

$$g(y)h(z)\frac{\partial^2 f(x)}{\partial x^2} + f(x)h(z)\frac{\partial^2 g(y)}{\partial y^2} + f(x)g(y)\frac{\partial^2 h(z)}{\partial z^2} + k^2 f(x)g(y)h(z) = 0$$

Collect like terms

$$\frac{1}{f(x)}\frac{\partial^2 f(x)}{\partial x^2} + \frac{1}{g(y)}\frac{\partial^2 g(y)}{\partial y^2} + \frac{1}{h(z)}\frac{\partial^2 h(z)}{\partial z^2} + k^2 = 0$$

- As a demonstration, lets focus on the x component Ex
- $ightharpoonup E_x(x,y,z)$ is separable therefore we can write $E_x(x,y,z)$ as the product of three 1D functions
- Dividing by these functions enables collection of like terms
- Each function is a function of a single, independent variable that can vary independently from the other variables therefore each term must equal a constant

Solve for each spatial variable separately by rewriting k

$$\begin{split} &\frac{1}{f(x)}\frac{\partial^2 f(x)}{\partial x^2} = -k_x^2 \\ &\frac{1}{g(y)}\frac{\partial^2 g(y)}{\partial y^2} = -k_y^2 \\ &\frac{1}{h(z)}\frac{\partial^2 h(z)}{\partial z^2} = -k_z^2 \end{split} \rightarrow k^2 = k_x^2 + k_y^2 + k_z^2$$

1D, 2nd order ODE

$$\left(\frac{\partial^2}{\partial x^2} + k_x^2 \right) f(x) = 0$$

$$\left(\frac{\partial^2}{\partial y^2} + k_y^2 \right) g(y) = 0$$

$$\left(\frac{\partial^2}{\partial z^2} + k_z^2 \right) h(z) = 0$$

$$\Rightarrow \text{threee separte 2nd order, ODEs}$$

- Define constant k² as a the sum of three constants associated with each differential term
- Problem is now couched as three 2nd order, 1D, hopmogenousODEs.

Traveling wave solution

$$f_1(x) = A_1 e^{-jk_x x} + B_1 e^{jk_x x}$$

$$0's \text{ of } f_1(x) \to \begin{cases} k_x \to -j\infty \\ k_x \to +j\infty \end{cases} \to \begin{cases} k_x \text{ , x real} \\ \text{Not realizable} \end{cases}$$

Rectangular waveguides

Standing wave solution

$$f_2(x) = C_1 \cos(k_x x) + D_1 \sin(k_x x)$$

$$0' \operatorname{sof} f_{2}(x) \to \begin{cases} \cos(k_{x}x) & k_{x}x = \pm \left(n + \frac{1}{2}\right)\pi & \forall n \text{ int} \\ \sin(k_{x}x) & k_{x}x = \pm (n)\pi & \forall n \text{ int} \end{cases}$$

- Rectangular waveguides follow similar principles
- Solutions to differential equations are separable
- Standing wave solutions exist due to boundary conditions with finite distance between boundaries
- PEC boundary conditions provide straight forward solutions to 2nd order ODEs.

Transverse Electric (TE) and Transverse Magnetic (TM) Solutions

Waveguide solutions

General z-direction solutions can be written as:

TEM waves:
$$E_z = H_z = 0$$

TE waves:
$$E_z = 0, H_z \neq 0$$

TM waves:
$$E_z \neq 0, H_z = 0$$

Other hybrid waves

- Define z as the direction of propagation
- Consider the axial component separate from the transverse component

General Waveguide solutions

Unknown phase constant yet at this point!

$$\beta \rightarrow k_z$$

Definition of general waveguide solution

$$\frac{\partial \mathbf{E}}{\partial \mathbf{z}} = -\mathrm{j}\beta\mathbf{E} \qquad \mathbf{\&} \qquad \frac{\partial \mathbf{H}}{\partial \mathbf{z}} = -\mathrm{j}\beta\mathbf{H}$$

$$\frac{\partial \mathbf{H}}{\partial \mathbf{r}} = -$$

- z dependent variation described entirely by propagation constant β
- Take curl and equate vector components

The curl equation

$$\nabla \times \boldsymbol{E} = -j\omega \mu \boldsymbol{H}$$

$$\begin{vmatrix} \mathbf{a_x} & \mathbf{a_y} & \mathbf{a_z} \\ \frac{\partial}{\partial \mathbf{x}} & \frac{\partial}{\partial \mathbf{y}} & \frac{\partial}{\partial \mathbf{z}} \\ \mathbf{E_x} & \mathbf{E_y} & \mathbf{E_z} \end{vmatrix} = j\omega\mu(\mathbf{a_x}\mathbf{H_x} + \mathbf{a_y}\mathbf{H_y} + \mathbf{a_z}\mathbf{H_z})$$

General Waveguide solutions

Relationship between Trans. and Long.

General Waveguide Equations

$$H_{x} = \frac{j}{k_{c}^{2}} (\omega \epsilon \frac{\partial E_{z}}{\partial y} - \beta \frac{\partial H_{z}}{\partial x})$$

$$H_{y} = \frac{-j}{k_{c}^{2}} (\omega \varepsilon \frac{\partial \mathbf{E}_{z}}{\partial x} + \beta \frac{\partial \mathbf{H}_{z}}{\partial y})$$

$$E_{x} = \frac{-j}{k_{c}^{2}} \left(\omega \mu \frac{\partial H_{z}}{\partial y} + \beta \frac{\partial E_{z}}{\partial x}\right)$$

$$E_{y} = \frac{j}{k_{c}^{2}} (\omega \mu \frac{\partial H_{z}}{\partial x} - \beta \frac{\partial E_{z}}{\partial y})$$

Cutoff wavenumber

$$k_c^2 = k^2 - \beta^2$$

$$k_c^2 = k_x^2 + k_v^2$$

- Once we know the longitudinal components, we know everything else
- k_c, β need to be pre-determined
- We need to determine Ez, Hz, k_x, and k_y
 - Boundary Conditions

TM waves: $H_z = 0$, $E_z \neq 0$

General Waveguide Equations

$$H_{x} = \frac{j}{k_{c}^{2}} \left(\omega \epsilon \frac{\partial E_{z}}{\partial y} - \beta \frac{\partial H_{z}}{\partial x}\right)$$

$$H_{y} = \frac{-j}{k_{c}^{2}} \left(\omega \varepsilon \frac{\partial E_{z}}{\partial x} + \beta \frac{\partial H_{z}}{\partial y}\right)$$

$$E_{x} = \frac{-j}{k_{c}^{2}} \left(\omega \mu \frac{\partial H_{z}}{\partial y} + \beta \frac{\partial E_{z}}{\partial x}\right)$$

$$E_{y} = \frac{j}{k_{c}^{2}} \left(\omega \mu \frac{\partial H_{z}}{\partial x} - \beta \frac{\partial E_{z}}{\partial y}\right)$$

TM Wave Equations

$$H_{x} = \frac{j\omega\epsilon}{k_{c}^{2}} \frac{\partial E_{z}}{\partial y}$$

$$H_{y} = \frac{-j\omega\epsilon}{k_{c}^{2}} \frac{\partial E_{z}}{\partial x}$$

$$E_{x} = \frac{-j\beta}{k_{c}^{2}} \frac{\partial E_{z}}{\partial x}$$

$$E_{y} = \frac{-j\beta}{k_{c}^{2}} \frac{\partial E_{z}}{\partial y}$$

$$Z_{TM} = \frac{E_x}{H_y} = \frac{-E_y}{H_x} = \frac{\beta}{\omega \varepsilon} = \frac{\beta \eta}{k}$$

 $k = \omega \sqrt{\mu \epsilon}$

- Once we know E_z we know everything else
- Notice that the waveguide wave impedance does not equal the free space impedance
- The presence of a traveling, axial directed component significantly changes the wave impedance

Wave equation for E_z

Cutoff wave number

$$k_c \neq 0$$
, $\beta^2 = k^2 - k_c^2$

Original 3D wave equation:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} + k^2\right) E_z = 0$$

Definition for the longitudinal component

One only needs to solve a

wave equation that is only defined in the cross-section!!

$$E_z(x, y, z) = e_z(x, y)e^{-j\beta z}$$

2-D Wave equation or Helmholtz equation !!

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + k_c^2\right) e_z = 0$$

In class Exercise: TE waves: $H_z \neq 0$, $E_z = 0$

General Wave Equations

$$H_{x} = \frac{j}{k_{c}^{2}} \left(\omega \epsilon \frac{\partial E_{z}}{\partial y} - \beta \frac{\partial H_{z}}{\partial x}\right)$$

$$H_{y} = \frac{-j}{k_{c}^{2}} \left(\omega \varepsilon \frac{\partial E_{z}}{\partial x} + \beta \frac{\partial H_{z}}{\partial y}\right)$$

$$E_{x} = \frac{-j}{k_{c}^{2}} \left(\omega \mu \frac{\partial H_{z}}{\partial y} + \beta \frac{\partial E_{z}}{\partial x}\right)$$

$$E_{y} = \frac{j}{k_{c}^{2}} \left(\omega \mu \frac{\partial H_{z}}{\partial x} - \beta \frac{\partial E_{z}}{\partial y}\right)$$

TM Wave Equations

$$H_{x} = \frac{-j\beta}{k_{c}^{2}} \frac{\partial H_{z}}{\partial x}$$

$$H_{y} = \frac{-j\beta}{k_{c}^{2}} \frac{\partial H_{z}}{\partial y}$$

$$E_{x} = \frac{-j\omega\mu}{k_{c}^{2}} \frac{\partial H_{z}}{\partial y}$$

$$E_{y} = \frac{j\omega\mu}{k_{c}^{2}} \frac{\partial H_{z}}{\partial x}$$

Wave Impedance:

$$Z_{TE} = \frac{E_x}{H_y} = \frac{-E_y}{H_x} = \frac{\omega\mu}{\beta} = \frac{k\eta}{\beta}$$

- $ightharpoonup Z_{TE} \neq Z_{TM}$
- This is true independent of waveguide geometry

Transverse Magnetic (TM) Modes in a Rectangular Waveguide

The Wave Equation for TM modes

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + k_c^2\right) e_z(x, y) = 0$$

Separation of variables:

$$e_z(x,y) = f(x)g(y)$$

Which leads to,

$$\frac{d^2f(x)}{dx^2}g(y) + f(x)\frac{d^2g(y)}{dy^2} + k_c^2f(x)g(y) = 0$$

Dividing by f(x)g(x) yields,

$$\frac{1}{f(x)} \frac{d^2 f(x)}{dx^2} + \frac{1}{g(y)} \frac{d^2 g(y)}{dy^2} + k_c^2 = 0$$

$$-k_x^2 \qquad -k_y^2 \qquad (k_c^2 = k_x^2 + k_y^2 = k^2 - \beta^2)$$

Decoupling to two 1-D wave equations

$$\left(\frac{d^2}{dx^2} + k_x^2\right) f(x) = 0$$

$$\left(\frac{d^2}{dy^2} + k_y^2\right) g(y) = 0$$

Boundary conditions at the x,y = 0

$$\begin{array}{ll} e_z(x=0,y)=0 & \to & B=0 \longrightarrow & \text{Left wall} \\ e_z(x,y=0)=0 & \to & D=0 \longrightarrow & \text{Bottom} \\ & \text{Floor} \end{array}$$

General solutions of electric field:

$$f(x) = A \sin(k_x x) + B \cos(k_x x)$$

$$g(y) = C\sin(k_y y) + D\cos(k_y y)$$

Reduced equation

$$e_z(x, y) = A' \sin(k_x x) \sin(k_y y)$$

$$A' = AC$$

General solutions of electric field:

$$e_z(x, y) = f(x)g(y)$$

$$e_{z}(x,y) = (A\sin(k_{x}x) + B\cos(k_{x}x))(C\sin(k_{y}y) + D\cos(k_{y}y))$$

Reduced equation

$$e_z(x, y) = A' \sin(k_x x) \sin(k_y y)$$

$$A' = AC$$

Boundary conditions at the x = a wall

$$e_z(x = a, y) = A' \sin(k_x a) \sin(k_y y) = 0$$

 $\sin(k_x a) \rightarrow k_x a = m\pi$
 $k_x = \frac{m\pi}{a} \quad \forall \text{ m integers}$

Boundary conditions at the y = b ceiling

$$e_z(x, y = b) = A' \sin(k_x x) \sin(k_y b) = 0$$

 $\sin(k_y b) \rightarrow k_y b = n\pi$
 $k_y = \frac{n\pi}{b} \quad \forall \text{ n integers}$

Boundary conditions at the x = a wall

$$e_{z}(x,y) = A_{mn} \sin\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right)$$

$$A_{mn} = A'$$

Longitudinal field

$$e_z(x, y) = A_{mn} \sin\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right)$$

$$E_z(x, y, z) = e_z(x, y)e^{-j\beta z}$$

$$E_z(x, y, z) = A_{mn} \sin\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right) e^{-j\beta z}$$

TM Wave Equations

$$H_{x} = \frac{j\omega\epsilon}{k_{c}^{2}} \frac{\partial E_{z}}{\partial y}$$

$$H_{y} = \frac{-j\omega\epsilon}{k_{c}^{2}} \frac{\partial E_{z}}{\partial x}$$

$$E_{x} = \frac{-j\beta}{k_{c}^{2}} \frac{\partial E_{z}}{\partial x}$$

$$E_{y} = \frac{-j\beta}{k_{c}^{2}} \frac{\partial E_{z}}{\partial y}$$

Now that the longitudinal field is full characterized, we can compute all the transverse fields

Longitudinal field

$$E_z(x, y, z) = A_{mn} \sin\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right) e^{-j\beta z}$$

Transverse Fields

$$H_{x}(x,y,z) = \frac{j\omega\epsilon n\pi}{bk_{c}^{2}}A_{mn}\sin\left(\frac{m\pi x}{a}\right)\cos\left(\frac{n\pi y}{b}\right)e^{-j\beta z}$$

$$H_{y}(x, y, z) = \frac{-j\omega\epsilon m\pi}{ak_{c}^{2}} A_{mn} \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

$$E_{x}(x,y,z) = \frac{-j\beta m\pi}{ak_{c}^{2}} A_{mn} \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

$$E_{y}(x, y, z) = \frac{-j\beta n\pi}{bk_{c}^{2}} A_{mn} \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

Boundary conditions also determine that,

$$\begin{cases} k_{x} = \frac{m\pi}{a}, m = 1,2,3... \\ k_{y} = \frac{n\pi}{b}, n = 1,2,3... \end{cases} k_{c}^{2} = k_{x}^{2} + k_{y}^{2} = \left(\frac{m\pi}{a}\right)^{2} + \left(\frac{n\pi}{b}\right)^{2}$$

Cutoff wave number

$$k_{c} = \sqrt{\left(\frac{m\pi}{a}\right)^{2} + \left(\frac{n\pi}{b}\right)^{2}}$$

Propagation constant

Cutoff Frequency

Free space wave number

$$k = \omega \sqrt{\mu \epsilon} = \frac{2\pi}{\lambda} = 2\pi f \sqrt{\mu \epsilon}$$

Cutoff point is defined when

$$k = k_c$$
 $f = f_c = \frac{k_c}{2\pi\sqrt{\mu\epsilon}}$

Frequency

$$f = \frac{k}{2\pi\sqrt{\mu\epsilon}}$$

Cutoff angular frequency:

$$\omega_{c} = k_{c} \cdot {}^{c}/_{\sqrt{\epsilon_{r}}},$$

Put it together

$$f_{c} = \frac{\omega_{c}}{2\pi} = \frac{c \cdot k_{c}}{2\pi\sqrt{\varepsilon_{r}}} = \frac{c}{2\pi\sqrt{\varepsilon_{r}}} \sqrt{\left(\frac{m\pi}{a}\right)^{2} + \left(\frac{n\pi}{b}\right)^{2}}$$

$$f_c = \frac{c}{2\sqrt{\epsilon_r}} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$

- Cutoff frequency a function of waveguide geometry and waveguide fill
- As we'll see next time, below this frequency the mode will not propagate

Conclusions

Propagation

$$\begin{cases} k_{c}^{2} = k^{2} - \beta^{2} \\ k_{c}^{2} = k_{x}^{2} + k_{y}^{2} \end{cases} -$$

$$\beta^2 = k^2 - k_x^2 - k_y^2$$

$$k_{c}^{2} = k^{2} - \beta^{2}$$

$$k_{c}^{2} = k_{x}^{2} + k_{y}^{2}$$

$$\beta^{2} = k^{2} - k_{x}^{2} - k_{y}^{2} \longrightarrow \beta = \sqrt{k^{2} - \left(\frac{m\pi}{a}\right)^{2} - \left(\frac{n\pi}{b}\right)^{2}}$$

- The one conductor geometry supports TE/TM operation
- The longitudinal phase variation of a TE/TM is not equal to the free space (plane wave) TEM phase variation
 - ightarrow $\beta \rightarrow$ rectangular waveguide longitudinal phase variation
 - ightharpoonup k ightharpoonup free space longitudinal phase variation
- \triangleright β is a strong function of frequency and geometry

Next time

- We'll derive the expressions for the TE modes
- ➤ We'll focus on lower order modes and compare and contrast TE and TM.

