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Outline

• Dynamic systems

– Dynamic energy models

– Specialized dynamic programming (DP) algorithm

• Network flow modelling
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Dynamic systems

• A dynamic system is one which develops in time

– Opposite: static system

• Normally, a dynamic system is modelled by

discretizing it into a sequence static models that

are connected by dynamic constraints
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Dynamic energy models

• Dynamic constraints result from

– Energy storages

– Transient constraints (limits for rate of 

increasing/decreasing production)

– Startup and shutdown costs

– Startup and shutdown constraints

• Examples:

– Yearly CHP planning model represented as a sequence

of 8760 hourly models

– Daily hydro power scheduling represented as a 

sequence of 96 15min models
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Dynamic optimization

• Different ways to model and solve dynamic

systems exist

• Multiperiod LP/MILP models

– Network flow model (LP)

• General mathematical optimization models

• Heuristic techniques (do not guarantee optimality)

• Dynamic programming algorithm
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Dynamic programming (DP)

• Special optimization method for certain kind of 

dynamic optimization problems

– Network based modelling technique

– Cost function must be additive with respect to periods

• Each time step adds some (positive) amount to the cost

function

– Static models at nodes do not need be linear
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Dynamic programming (DP)

• Based on Dijkstra’s graph search algorithm

– in a graph with non-negative edge path costs the 

algorithm determines the shortest path between a given

node and all other nodes

– Given node can be start or end node

• Optimality principle:

– If the shortest path from node s to t goes through node

b (s,…,b,…,t), then

subpath (b,…,t) is the shortest path between b and t;

also subpath (s,…,b) is the shortest path between s and 

b.



R. Lahdelma

Dijkstra’s graph search algorithm

• Used for finding shortest path in a graph

• Shortest can mean
– Shortest distance, shortest travel time, cheapest way to 

travel, or minimization of any other additive measure

– Only required that each arc adds up to the objective
• Arc costs may not be negative – negative costs may result in 

infinitely good cyclic paths

• Used e.g. in GPS navigators to find shortest or
fastest route

• The algorithm has almost linear time complexity
with respect to number of nodes & arcs
– Extremely fast even for huge networks!
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Dijkstra’s graph search algorithm
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Dijkstra’s graph search algorithm

• The algorithm maintains a set of paths L such that
– each path (s,…,b)L is the shortest so far found path to b,

but it is not yet known if this path is optimal.

– Initially L includes only node s for which a zero-length path (s) is 
known

• While L is non-empty, the algorithm works iteratively:
– The shortest of the so far known paths (s,…,b) must be optimal, 

because reaching b by extending some of the other paths would
yield a longer path (non-negative costs add up)

– Path (s,…,b) is removed from L

– Each node c adjacent to b is explored to see if path (s,…,b,c) is a 
shorter path to c than the so far shortest found path.

– L is updated: shorter paths are inserted, longer paths removed.

• With proper datastructures the algorithm has almost linear
time complexity with respect to number of nodes & arcs!
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Dijkstra’s graph search algorithm

1. L={(a):0}

2. L={(a,c):2, (a,b):4)}

3. L={(a,c,b):3, (a,b):4, 
(a,c,d):10, (a,c,e):12}

4. L={(a,c,b,d):8, 
(a,c,d):10, (a,c,e):12}

5. L={(a,c,b,d,e):10, 
(a,c,e):12,
(a,c,b,d,z):14}

6. L={(a,c,b,d,z):14}

7. L={}

• At each step, first element of 
L is the shortest (optimal) path
from a to corresponding end
node

• Shortest path a to z is found at 
step 6: (a,c,b,d,z) with cost 14
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Unit commitment:

Production plant startup/shutdown scheduling

• Unit commitment of power plants means

determining for each time step which units

(plants) should be up and running, and which

should be switched off

• Unit commitment results in a complex MILP 

problem, because

– Binary ON/OFF status variables for each plant and time

step result in a large number of binary variables

– Time periods are linked together by startup and 

shutdown costs & constraints

– Dynamic storage constraints may also be required
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Dynamic programming (DP) for unit

commitment of a single unit

• Status of the unit is an integer +1,+2,+3… or -1,-2,-3…, 

indicating for how many periods the plant has been on or

off

• The arcs denote

allowed transitions

with associated

costs

• The shortest path

from the initial

state to the final

period is the optimal

way to operate
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DP for production plant startup/shutdown

scheduling

• Arcs for illegal transitions are omitted

– When startup/shutdown is not allowed (minimum on/off time)

– When a plant is required to be running or off

• Scheduled service break

• The costs for allowed transitions include

– Startup/shutdown costs

– Operating costs within period in the given on/off state subtracted

by possible revenues

• Operating costs can be determined by optimizing static

model for the period

– Arbitrary optimization model can be used
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Limitations of DP for unit commitment

• With one plant, the number of on/off states per 
period is reasonable (6 in previous example)

• With multiple plants, it is necessary to consider all
combinations of on/off-states of all plants

– With two plants 36 combinations: (+1,+1), (+1,+2), 
(+1,+3), (+1,-1), (+1,-2), (+1,-3), (+2,+1,) ...

– Problem size and solution time grows exponentially by
the number of plants

– Solution: Sequential DP (see article by Rong, Hakonen, 
Lahdelma)

• Including storages further complicates the model

– Storage level is discretized and treated as a plant



Network flow model

• A network consists of nodes and connecting arcs

– Some commodity (power, heat, …) can flow through the arcs

– Normally arcs are directed allowing flow in only one direction

– Two-way flow is represented as a pair of opposite arcs

• Attributes are associated to nodes and/or arcs

– Supply/demand dj of commodity at each node

– Transfer price cij through each arc

– Possibly a maximum capacity uij for each arc
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The transshipment network flow model

17

• The aim is to determine flows xij through each arc

so that

– All nodes in the network are balanced

• For this to succeed, it is necessary that total supplies/demands

at nodes i di = 0

– Overall transportation costs are minimized

– Transshipment = commodity can pass through other

nodes before reaching its final goal



The transshipment network flow model

• LP-formulation

Min ij cijxij // minimize total costs

s.t.

j xij - j xji = di for each node i

xij  0 for each arc (i,j)

(optionally also capacity constraints xij  uij)

– Here

• xij is flow from node i to j

• cij is unit cost for flow from node i to j

• di is supply at node i, negative value = demand

• uij is maximum allowed flow from node i to j
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The transshipment network flow model

• It is a special case of an LP model

• Can be solved using

– generic Simplex algorithm for LP

– much more efficient network simplex algorithm

• Applies to a wide variety of different problems

– Static models

• Power production and transfer between market areas

• District heat production and transmission

– Dynamic models

• Hydro power optimization
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Transshipment flow problem example:

Power transmission problem

20

• Minimize transmission costs while balancing fixed

supply & demand in different areas

• Decision variables
xij power transmission from area i to j (MWh)

• Parameters

cij power transmission cost from area i to j (€/MWh)

uij capacity limit for transmission from area i to j (MWh)

di net supply (supply – demand) in area i

• Model

Min ij cijxij

s.t.     j xij - j xji = di for each area i

0  xij  uij



Numerical example:

Power transmission problem

21

• Areas 1, … 4

• Supply/demand, transmission costs, infinite capacities

Min x12 + 3*x14 + 2*x23 + x24 + x34 + x43

s.t.

x12 + x14 = 5; // area 1

x23 + x24 – x12 = 0; // area 2

x34 – x23 – x43 = –6; // area 3

x43 – x14 – x24 – x34 = 1; // area 4

x12, x14, x23, x24, x34, x43 >= 0;
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Numerical example:

Power transmission problem

22

• In matrix format (min cx s.t. Ax = b, x0) we have

• A has +1 and -1 on each column

• One of the constraints is redundant

– Any row of A is the negated sum of all other rows



















−−−

−−

−
=

1111

111

111

11

A

 Txxxxxx 413424231412=x



Solution of transshipment flow problem

23

• Special Network Simplex algorithm can solve the 

transshipment problem even faster than generic LP

• Assuming that none of the transmission costs is negative, 

the optimal solution will not contain cyclic flows

– A cyclic flow means that some amount of commodity completes a 

cycle ending at the same node where it started

• Assuming that the network is connected, the optimal

solution will form a spanning tree of the network

– A tree is a connected acyclic (cycle-free) graph

– Spanning tree is a tree that connects all nodes of the graph

– To find optimum, it is sufficient to examine only tree-solutions

– Tree-solutions are equivalent to basic solutions of LP formulation



Piecewise linear approximation of power 

plant with convex characteristic

24

• Assume a power (or heat) plant with convex

characteristic (c,p), c = cost, p = power (or heat)

– Two part piecewise linear approximation of 

characteristic

– Model

Min c1*p1 + c2*p2

s.t.

p1 + p2 = P  // fixed demand

p1  p1
max

p2  p2
max

p1,p2  0

c

p

c1

c2

p1
max

p2
max



Encoding production model as 

transshipment problem

25

• Previous power or heat plant with convex

characteristic approximated with 2 line segments

– Source node with supply P, sink node with demand –P

– For each line segment an arc with cost and capacity

– Model

Min c1*x1 + c2*x2

s.t.

x1 + x2 = P  // source node

(-x1 - x2 = -P  // sink node)

x1  x1
max

x2  x2
max

x1,x2  0

Source

+P

Sink

-P

c1, p1
max

c2, p2
max



Combined power production and 

transmission problem

26

• Problem definition

– Minimize overall power production costs across multiple market 

areas (e.g. countries or cities inside one country)

– Each area has local power production (both CHP and condensing 

power)

– Each area has specified demand for power and heat

– It is possible to transmit power between areas using capacitated 

transmission lines (but heat cannot be transmitted across areas)

– The target is to determine how much power should be produced in 

each area and how power should be transmitted between areas

• For example the Nordic power market (NordPool) ideally 

implements such production cost minimization
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Three condensing power plant model

• We have three power plants:

– capacities 100, 200 and 300 MWh

– production costs 25, 30, 22€/MWh

– Power demand is P

• Define an LP model for minimizing the 

production costs and solve the problem for power 

demand P = 50, 150, 250, 350 MWh using Solver

Next, reformulate the problem as a network flow 

problem
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Define an LP model for minimizing the 

production costs.

• Decision variables

x1, x2, x3: power production at each plant (MWh)

• Parameters

P: power demand (MWh)

• Model

min 25*x1 + 30*x2 + 22*x3

s.t.

x1 + x2 + x3 = P;

x1 <= 100; x2 <= 200; x3 <= 300;

x1, x2, x3 >= 0;
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Reformulate the problem as a network flow 

problem and draw a picture

• Define two nodes

– Source N0 with supply +P, sink N1 with demand –P

• Define one arc for each linear segment

• Model

min 25*x1+30*x2+22*x3

s.t.

-x1 - x2 - x3 = -P; // for node N1

x1 + x2 + x3 = P;  // for node N0

x1 <= 100; x2 <= 200; x3 <= 300;

x1, x2, x3 >= 0;

– Note! One constraint is redundant, model equal with LP

N0

+P

N1

-P

c=25; u=100

c=30; u=200

c=22; u=300



Combined power production and 

transmission problem

30

• Represent optimal production cost in each area as piecewise linear

convex function of power production

– Cost functions can be computed using parametric analysis on LP 

model for production in area (heat demand should be known)



Transshipment model of power 

transmission across market areas

– A node is created for each market area i with fixed demand Pi

– Transmission lines are represented by directed arcs

• Transmission capacity is represented by capacity limit uij for arc

• Transmission loss is represesnted as a unit cost cij for arc

– Production capacity and elastic demand in each area

• Production cost and demand are piecewise linear functions

• Represented by multiple incoming/outgoing capacited arcs from a common 

production (source) node
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Combined power production and 

transmission problem

32

• Transmission lines = (blue) transmission arcs with 

capacities&costs between areas

• Piecewise linear production costs = red production arcs from 

production node to corresponding area

• Combined fixed demand = supply at production node
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Review questions

• Please review lecture material at home before next lecture and be prepared to 

answer review questions at beginning of next lecture.

1. Is it necessary that the static models in dynamic programming are convex?

2. Why should there not be negative costs/distances in the shortest path network?

3. Why must the sum of all supplies/demands in a transshipment network equal zero?

4. What kind of problems can be represented as a transshipment network flow model?

5. What is the advantage of representing a problem as a transshipment network flow model?


