Dynamic modelling and network optimization

Risto Lahdelma

Aalto University Energy Technology Otakaari 4, 02150 Espoo, Finland risto.lahdelma@aalto.fi

Outline

- Dynamic systems
 - Dynamic energy models
 - Specialized dynamic programming (DP) algorithm
- Network flow modelling

Dynamic systems

- A dynamic system is one which develops in time
 Opposite: static system
- Normally, a dynamic system is modelled by discretizing it into a sequence static models that are connected by dynamic constraints

Dynamic energy models

- Dynamic constraints result from
 - Energy storages
 - Transient constraints (limits for rate of increasing/decreasing production)
 - Startup and shutdown costs
 - Startup and shutdown constraints
- Examples:
 - Yearly CHP planning model represented as a sequence of 8760 hourly models
 - Daily hydro power scheduling represented as a sequence of 96 15min models

Dynamic optimization

- Different ways to model and solve dynamic systems exist
- Multiperiod LP/MILP models
 - Network flow model (LP)
- General mathematical optimization models
- Heuristic techniques (do not guarantee optimality)
- Dynamic programming algorithm

Dynamic programming (DP)

- Special optimization method for certain kind of dynamic optimization problems
 - Network based modelling technique
 - Cost function must be additive with respect to periods
 - Each time step adds some (positive) amount to the cost function
 - Static models at nodes **do not need be linear**

Dynamic programming (DP)

- Based on Dijkstra's graph search algorithm
 - in a graph with non-negative edge path costs the algorithm determines the shortest path between a given node and all other nodes
 - Given node can be start or end node
- Optimality principle:
 - If the shortest path from node s to t goes through node b (s,...,b,...,t), then subpath (b,...,t) is the shortest path between b and t; also subpath (s,...,b) is the shortest path between s and b.

- Used for finding shortest path in a graph
- Shortest can mean
 - Shortest distance, shortest travel time, cheapest way to travel, or minimization of any other additive measure
 - Only required that each arc adds up to the objective
 - Arc costs may not be negative negative costs may result in infinitely good cyclic paths
- Used e.g. in GPS navigators to find shortest or fastest route
- The algorithm has almost linear time complexity with respect to number of nodes & arcs
 - Extremely fast even for huge networks!

Dijkstra's Algorithm

What is the shortest path to travel from A to Z?

- The algorithm maintains a set of paths L such that
 - each path $(s,...,b) \in L$ is the shortest so far found path to b, but it is not yet known if this path is optimal.
 - Initially L includes only node s for which a zero-length path (s) is known
- While L is non-empty, the algorithm works iteratively:
 - The *shortest* of the so far known paths (s,...,b) must be *optimal*, because reaching b by extending some of the other paths would yield a longer path (non-negative costs add up)
 - Path (s, ..., b) is removed from L
 - Each node c adjacent to b is explored to see if path (s,...,b,c) is a shorter path to c than the so far shortest found path.
 - L is updated: shorter paths are inserted, longer paths removed.
- With proper datastructures the algorithm has almost linear time complexity with respect to number of nodes & arcs!

- **1.** $L = \{(a):0\}$
- **2.** $L=\{(a,c):2, (a,b):4)\}$
- **3.** $L=\{(a,c,b):3, (a,b):4, (a,c,d):10, (a,c,e):12\}$
- **4.** $L = \{(a,c,b,d):8, (a,c,d):10, (a,c,e):12\}$
- 5. $L=\{(a,c,b,d,e):10, \frac{(a,c,e):12}{(a,c,b,d,z):14}\}$
- 6. L={(a,c,b,d,z):14}
 7. L={}

Dijkstra's Algorithm

What is the shortest path to travel from A to Z?

- At each step, first element of L is the shortest (optimal) path from a to corresponding end node
- Shortest path a to z is found at step 6: (a,c,b,d,z) with cost 14

Unit commitment: Production plant startup/shutdown scheduling

- Unit commitment of power plants means determining for each time step which *units* (plants) should be up and running, and which should be switched off
- Unit commitment results in a complex MILP problem, because
 - Binary ON/OFF status variables for each plant and time step result in a large number of binary variables
 - Time periods are linked together by startup and shutdown costs & constraints
 - Dynamic storage constraints may also be required

Dynamic programming (DP) for unit commitment of a single unit

- Status of the unit is an integer +1,+2,+3... or -1,-2,-3..., indicating for how many periods the plant has been on or off
- The arcs denote ⁺³ allowed transitions ⁺² with associated ⁺¹ costs ⁻¹
- The shortest path -2 from the initial -3 state to the final period is the optimal way to operate ON

OFF

DP for production plant startup/shutdown scheduling

- Arcs for illegal transitions are omitted
 - When startup/shutdown is not allowed (minimum on/off time)
 - When a plant is required to be running or off
 - Scheduled service break
- The costs for allowed transitions include
 - Startup/shutdown costs
 - Operating costs within period in the given on/off state subtracted by possible revenues
- Operating costs can be determined by optimizing static model for the period
 - Arbitrary optimization model can be used

Limitations of DP for unit commitment

- With one plant, the number of on/off states per period is reasonable (6 in previous example)
- With multiple plants, it is necessary to consider all combinations of on/off-states of all plants
 - With two plants 36 combinations: (+1,+1), (+1,+2), (+1,+3), (+1,-1), (+1,-2), (+1,-3), (+2,+1,) ...
 - Problem size and solution time grows exponentially by the number of plants
 - Solution: Sequential DP (see article by Rong, Hakonen, Lahdelma)
- Including storages further complicates the model
 Storage level is discretized and treated as a plant

Network flow model

- A network consists of nodes and connecting arcs
 - Some commodity (power, heat, ...) can flow through the arcs
 - Normally arcs are **directed** allowing flow in only one direction
 - Two-way flow is represented as a pair of opposite arcs

- Attributes are associated to nodes and/or arcs
 - **Supply**/demand $\pm d_i$ of commodity at each node
 - Transfer **price** c_{ij} through each arc
 - Possibly a maximum **capacity** u_{ij} for each arc

The transshipment network flow model

- The aim is to determine flows x_{ij} through each arc so that
 - All nodes in the network are balanced
 - For this to succeed, it is necessary that total supplies/demands at nodes $\Sigma_i d_i = 0$
 - Overall transportation costs are minimized
 - Transshipment = commodity can pass through other nodes before reaching its final goal

The transshipment network flow model

- LP-formulation
 - Min $\sum_i \sum_j c_{ij} x_{ij}$ // minimize total costs s.t.
 - $\Sigma_j x_{ij} \Sigma_j x_{ji} = d_i$ for each node i $x_{ii} \ge 0$ for each arc (i,j)

(optionally also capacity constraints $x_{ij} \le u_{ij}$)

- Here
 - x_{ij} is flow from node i to j
 - c_{ij} is unit cost for flow from node i to j
 - d_i is supply at node i, negative value = demand
 - u_{ij} is maximum allowed flow from node i to j

The transshipment network flow model

- It is a special case of an LP model
- Can be solved using
 - generic Simplex algorithm for LP
 - much more efficient network simplex algorithm
- Applies to a wide variety of different problems
 - Static models
 - Power production and transfer between market areas
 - District heat production and transmission
 - Dynamic models
 - Hydro power optimization

Transshipment flow problem example: Power transmission problem

- Minimize transmission costs while balancing fixed supply & demand in different areas
- Decision variables

 x_{ij} power transmission from area i to j (MWh)

• Parameters

 c_{ij} power transmission cost from area *i* to *j* (€/MWh) u_{ij} capacity limit for transmission from area *i* to *j* (MWh) d_i net supply (supply – demand) in area *i*

• Model

$$\begin{split} & \operatorname{Min} \Sigma_i \Sigma_j \, c_{ij} x_{ij} \\ & \text{s.t.} \quad \Sigma_j \, x_{ij} - \Sigma_j \, x_{ji} = d_i \qquad \text{for each area i} \\ & 0 \leq x_{ij} \leq u_{ij} \end{split}$$

Numerical example: Power transmission problem

- Areas 1, ... 4
- Supply/demand, transmission costs, infinite capacities

$$\mathbf{d} = \begin{bmatrix} 5 \\ 0 \\ -6 \\ 1 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} - & 1 & \infty & 3 \\ \infty & - & 2 & 1 \\ \infty & \infty & - & 1 \\ \infty & \infty & 1 & - \end{bmatrix} \quad \mathbf{u} = \begin{bmatrix} 0 & \infty & 0 & \infty \\ 0 & 0 & \infty & \infty \\ 0 & 0 & 0 & \infty \\ 0 & 0 & \infty & 0 \end{bmatrix}$$

Min x12 + 3*x14 + 2*x23 + x24 + x34 + x43

s.t.

x12 + x14 = 5; // area 1 x23 + x24 - x12 = 0; // area 2 x34 - x23 - x43 = -6; // area 3 x43 - x14 - x24 - x34 = 1; // area 4x12, x14, x23, x24, x34, x43 >= 0;

Numerical example: Power transmission problem

• In matrix format (min **cx** s.t. $A\mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0$) we have

- A has +1 and -1 on each column
- One of the constraints is redundant
 - Any row of A is the negated sum of all other rows

Solution of transshipment flow problem

- Special **Network Simplex** algorithm can solve the transshipment problem even faster than generic LP
- Assuming that none of the transmission costs is negative, the **optimal solution will not contain cyclic flows**
 - A cyclic flow means that some amount of commodity completes a cycle ending at the same node where it started
- Assuming that the network is connected, the optimal solution will form a *spanning tree* of the network
 - A **tree** is a connected *acyclic* (cycle-free) graph
 - **Spanning tree** is a tree that connects all nodes of the graph
 - To find optimum, it is sufficient to examine only tree-solutions
 - Tree-solutions are equivalent to basic solutions of LP formulation

Piecewise linear approximation of power plant with convex characteristic

- Assume a power (or heat) plant with convex characteristic (c,p), c = cost, p = power (or heat)
 - Two part piecewise linear approximation of characteristic
 - Model
 - Min $c_1 * p_1 + c_2 * p_2$

s.t.

- $p_1 + p_2 = P$ // fixed demand $p_1 \le p_1^{\max}$ $p_2 \le p_2^{\max}$
- $p_2 p_2$ $p_1, p_2 \ge 0$

Encoding production model as transshipment problem

- Previous power or heat plant with convex characteristic approximated with 2 line segments
 - Source node with supply P, sink node with demand -P
 - For each line segment an arc with cost and capacity
 - Model
 - Min $c_1 * x_1 + c_2 * x_2$

s.t.

- $x_1 + x_2 = P$ // source node
- $(-x_1 x_2 = -P // sink node)$
- $x_1 \le x_1^{max}$
- $x_2 \le x_2^{\max}$ $x_1, x_2 \ge 0$

Combined power production and transmission problem

- Problem definition
 - Minimize overall power production costs across multiple market areas (e.g. countries or cities inside one country)
 - Each area has local power production (both CHP and condensing power)
 - Each area has specified demand for power and heat
 - It is possible to transmit power between areas using capacitated transmission lines (but heat cannot be transmitted across areas)
 - The target is to determine how much power should be produced in each area and how power should be transmitted between areas
- For example the Nordic power market (NordPool) ideally implements such production cost minimization

Three condensing power plant model

- We have three power plants:
 - capacities 100, 200 and 300 MWh
 - production costs 25, 30, 22€/MWh
 - Power demand is P
- Define an LP model for minimizing the production costs and solve the problem for power demand P = 50, 150, 250, 350 MWh using Solver

Next, reformulate the problem as a network flow problem

Define an LP model for minimizing the production costs.

• Decision variables

x1, x2, x3: power production at each plant (MWh)

Parameters

P: power demand (MWh)

• Model

```
min 25*x1 + 30*x2 + 22*x3
s.t.
x1 + x2 + x3 = P;
x1 \le 100; x2 \le 200; x3 \le 300;
x1, x2, x3 \ge 0;
```

Reformulate the problem as a network flow problem and draw a picture

- Define two nodes
 - Source N0 with supply +P, sink N1 with demand -P
- Define one arc for each linear segment
- Model min 25*x1+30*x2+22*x3 s.t. -x1 - x2 - x3 = -P; // for node N1 x1 + x2 + x3 = P; // for node N0 x1 <= 100; x2 <= 200; x3 <= 300;x1, x2, x3 >= 0;

– Note! One constraint is redundant, model equal with LP R. Lahdelma

Combined power production and transmission problem

- Represent optimal production cost in each area as piecewise linear convex function of power production
 - Cost functions can be computed using parametric analysis on LP model for production in area (heat demand should be known)

Transshipment model of power transmission across market areas

- A node is created for each market area *i* with fixed demand P_i
- Transmission lines are represented by directed arcs
 - Transmission capacity is represented by capacity limit u_{ij} for arc
 - Transmission loss is represented as a unit cost c_{ij} for arc
- Production capacity and elastic demand in each area
 - Production cost and demand are piecewise linear functions
 - Represented by multiple incoming/outgoing capacited arcs from a common production (source) node

Combined power production and transmission problem

- Transmission lines = (blue) transmission arcs with capacities&costs between areas
- Piecewise linear production costs = red production arcs from production node to corresponding area
- Combined fixed demand = supply at production node

Review questions

- Please review lecture material at home before next lecture and be prepared to answer review questions at beginning of next lecture.
 - 1. Is it necessary that the static models in dynamic programming are convex?
 - 2. Why should there not be negative costs/distances in the shortest path network?
 - 3. Why must the sum of all supplies/demands in a transshipment network equal zero?
 - 4. What kind of problems can be represented as a transshipment network flow model?
 - 5. What is the advantage of representing a problem as a transshipment network flow model?