ELEC-E4130

Lecture 18: Rectangular Waveguides Ch. 10

ELEC-E4130 / Taylor

Nov. 18, 2020

Recall from last time

General Waveguide Equations

$$\begin{split} H_{x} &= \frac{j}{k_{c}^{2}} \left(\omega \varepsilon \frac{\partial E_{z}}{\partial y} - \beta \frac{\partial H_{z}}{\partial x} \right) \\ H_{y} &= \frac{-j}{k_{c}^{2}} \left(\omega \varepsilon \frac{\partial E_{z}}{\partial x} + \beta \frac{\partial H_{z}}{\partial y} \right) \\ E_{x} &= \frac{-j}{k_{c}^{2}} \left(\omega \mu \frac{\partial H_{z}}{\partial y} + \beta \frac{\partial E_{z}}{\partial x} \right) \\ E_{y} &= \frac{j}{k_{c}^{2}} \left(\omega \mu \frac{\partial H_{z}}{\partial x} - \beta \frac{\partial E_{z}}{\partial y} \right) \end{split}$$

Cutoff wavenumber

$$k_c^2 = k^2 - \beta^2$$

$$k_c^2 = k_x^2 + k_y^2$$

- Once we know the longitudinal components, we know everything else
- > k_c , β need to be pre-determined
- > We need to determine E_z , H_z , k_x , and k_y
 - Boundary Conditions

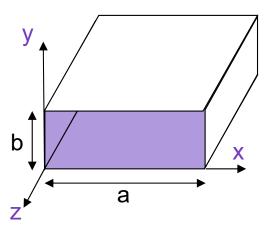
More on boundary conditions

Generalized on top of PEC

The curl equation

$$\mathsf{B.C.} \begin{cases} \mathsf{E}_{t1} = 0 & \mathsf{Tangential} & \nabla \times \mathbf{H} = \mathsf{j}\omega \varepsilon \mathbf{E} \\ \mathsf{H}_{n1} = 0 & \mathsf{(u, v)} & \mathsf{(u, v)} \\ \mathsf{i}_n \times \mathsf{H}_1 = \mathsf{J}_S & \mathsf{Normal} \\ \mathsf{(n)} & \mathsf{(u, v)} & \mathsf{(u, v)} \\ \mathsf{Normal} & \mathsf{(u, v)} & \mathsf{(u, v)} \\ \mathsf{Normal} & \mathsf{(u, v)} & \mathsf{(u, v)} \\ \mathsf{(u, v)} & \mathsf{(u, v)} \\ \mathsf{(u, v)} & \mathsf{(u, v)} & \mathsf{(u, v)} \\ \mathsf{(u, v)} & \mathsf{(u, v)} & \mathsf{(u, v)} \\ \mathsf{(u, v)} & \mathsf{(u, v)} \\ \mathsf{(u, v)} & \mathsf{(u, v)} & \mathsf{(u, v)} \\ \mathsf{(u, v)} & \mathsf{(u, v)} & \mathsf{(u, v)} \\ \mathsf{(u, v)} & \mathsf{(u, v)} & \mathsf{(u, v)} \\ \mathsf{(u, v)} & \mathsf{(u, v)} & \mathsf{(u, v)} \\ \mathsf{(u, v)} & \mathsf{(u, v)} & \mathsf{(u, v)} \\ \mathsf{(u, v)} & \mathsf{(u, v)} & \mathsf{(u, v)} \\ \mathsf{(u, v)} & \mathsf{(u, v)} & \mathsf{(u, v)} \\ \mathsf{(u, v)} & \mathsf{(u, v)} & \mathsf{(u, v)} \\ \mathsf{(u, v)} & \mathsf{(u, v)} \\ \mathsf{(u, v)} & \mathsf{(u, v)} & \mathsf{(u$$

$$\begin{array}{c} \text{Compare the tangential components (in u, v)} \\ \text{t yields} \left\{ \begin{array}{c} \displaystyle \frac{\partial}{\partial n} H_v = j\omega \epsilon E_u = 0 \\ \displaystyle \frac{\partial}{\partial n} H_u = j\omega \epsilon E_v = 0 \end{array} \right. \begin{array}{c} \text{Therefore} \\ \text{we have on} \\ a \text{ PEC} \end{array} \left\{ \begin{array}{c} \displaystyle \frac{\partial H_{t1}}{\partial n} = 0 \\ \displaystyle E_{t1} = 0 \end{array} \right. \\ \left. E_{t1} = 0 \end{array} \right. \end{array} \right.$$



The Wave Equation for TE modes

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + k_c^2\right) h_z(x,y) = 0$$

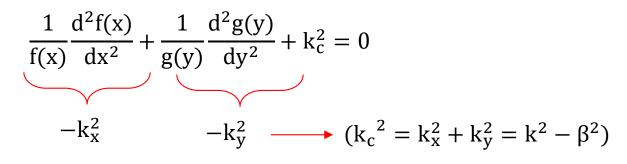
Separation of variables:

 $h_{z}(x, y) = f(x)g(y)$

Which leads to,

$$\frac{d^2 f(x)}{dx^2} g(y) + f(x) \frac{d^2 g(y)}{dy^2} + k_c^2 f(x) g(y) = 0$$

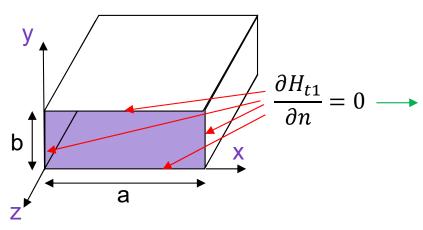
Dividing by f(x)g(x) yields,



Decoupling to two 1-D wave equations

$$\left(\frac{d^2}{dx^2} + k_x^2\right)f(x) = 0$$
$$\left(\frac{d^2}{dy^2} + k_y^2\right)g(y) = 0$$

Aalto University School of Electrical Engineering



General solutions of electric field:

$$f(x) = A \sin(k_x x) + B \cos(k_x x)$$
$$g(y) = C \sin(k_y y) + D \cos(k_y y)$$

General solutions of electric field:

 $h_{z}(x,y) = f(x)g(y)$

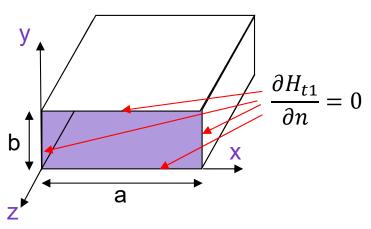
 $h_{z}(x,y) = (A\sin(k_{x}x) + B\cos(k_{x}x))(C\sin(k_{y}y) + D\cos(k_{y}y))$

Aalto University School of Electrical Engineering

Reduced equation

$$h_z(x, y) = B' \cos(k_x x) \cos(k_y y)$$

 $B' = BD$



Reduced equation

$$h_{z}(x, y) = B' \cos(k_{x}x) \cos(k_{y}y)$$
$$B' = BD$$

Boundary conditions at the x = a wall

$$\frac{\partial h_z(x,y)}{\partial x}\Big|_{x=a} = -A'k_x \sin(k_x a) \cos(k_y y) = 0$$

$$\sin(k_x a) = 0 \quad \rightarrow \quad k_x a = m\pi$$

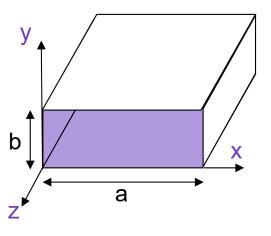
$$k_x = \frac{m\pi}{a} \quad \forall \text{ m integers}$$

Boundary conditions at the y = b ceiling

$$\frac{\partial h_z(x, y)}{\partial y} \bigg|_{y=b} = -A' k_y \cos(k_x x) \sin(k_y b) = 0$$
$$\sin(k_y b) = 0 \quad \rightarrow \quad k_y b = n\pi$$
$$k_y = \frac{n\pi}{b} \quad \forall \text{ n integers}$$

Longitudinal component

$$h_{z}(x, y) = B_{mn} \cos\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right)$$
$$B_{mn} = B' \checkmark$$



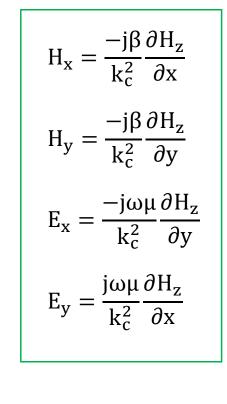
Longitudinal field

$$h_z(x, y) = B_{mn} \cos\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right)$$

 $H_{z}(x, y, z) = h_{z}(x, y)e^{-j\beta z}$

$$H_{z}(x, y, z) = B_{mn} \cos\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right) e^{-j\beta z}$$

TE Wave Equations



- Now that the longitudinal field is full characterized, we can compute all the transverse fields
- Propagation constant
 β is the same for TE
 and TM

TM modes

$$E_z(x, y, z) = A_{mn} \sin\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right) e^{-j\beta z}$$

$$H_{x}(x, y, z) = \frac{j\omega\epsilon n\pi}{bk_{c}^{2}}A_{mn}\sin\left(\frac{m\pi x}{a}\right)\cos\left(\frac{n\pi y}{b}\right)e^{-j\beta z}$$

$$H_{y}(x, y, z) = \frac{-j\omega\epsilon m\pi}{ak_{c}^{2}} A_{mn} \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

$$E_{x}(x, y, z) = \frac{-j\beta m\pi}{ak_{c}^{2}} A_{mn} \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

$$E_{y}(x, y, z) = \frac{-j\beta n\pi}{bk_{c}^{2}} A_{mn} \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

$$Z_{TM} = \frac{E_x}{H_y} = \frac{-E_y}{H_x} = \frac{\beta}{\omega\epsilon} = \frac{\beta\eta}{k}$$

Aalto University School of Electrical Engineering

ELEC-E4130 / Taylor Lecture 18

TE modes

$$H_{z}(x, y, z) = B_{mn} \cos\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right) e^{-j\beta z}$$

$$E_{x}(x, y, z) = \frac{j\omega\mu n\pi}{bk_{c}^{2}} B_{mn} \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

$$E_{y}(x, y, z) = \frac{-j\omega\mu m\pi}{ak_{c}^{2}} B_{mn} \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

$$H_{x}(x, y, z) = \frac{j\beta m\pi}{ak_{c}^{2}} B_{mn} \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

$$H_{y}(x, y, z) = \frac{j\beta n\pi}{bk_{c}^{2}} B_{mn} \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

$$Z_{TE} = \frac{E_x}{H_y} = \frac{-E_y}{H_x} = \frac{\omega\mu}{\beta} = \frac{k\eta}{\beta}$$

Mode numbers

TM modes

$$E_{z}(x, y, z) = A_{mn} \sin\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right) e^{-j\beta z}$$

- > If m = 0 or n = 0, $E_z = 0$
- > If $E_z = 0$ then E_x , E_y , H_x , and $H_y = 0$.
 - No propagation of energy
- > If m > 0 and n > 0, $E_z \neq 0$
 - YES propagation of enery

TE modes

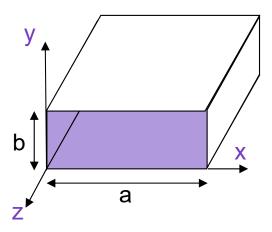
$$H_{z}(x, y, z) = B_{mn} \cos\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right) e^{-j\beta z}$$

> If m = 0 and n = 0, $H_z = 0$

> If
$$H_z = 0$$
 then E_x , E_y , H_x , and $H_y = 0$.

- No propagation of energy
- > If m > 0 or n > 0, $E_z \neq 0$
 - YES propagation of enery

Cutoff Frequency Analysis



$$k_c = \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}$$

$$\beta = \sqrt{k^2 - k_c^2} = \sqrt{k^2 - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}$$

Two possibilities may happen

 $\begin{cases} k > k_c, & \beta \text{ real, wave propagating } e^{-j\beta z} \\ \text{The longitudinal variation of field follows } e^{-j\beta z} \\ \text{that is with constant amplitude} \end{cases}$

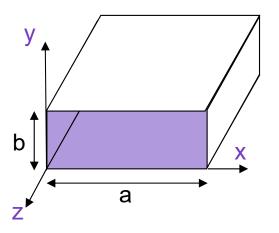
 $2 \begin{cases} k < k_c, \quad \beta \text{ imaginary,} \quad \text{wave decays exponentially} \\ (\text{assuming } \beta = -j\alpha, \qquad e^{-j\beta z} \Rightarrow e^{-\alpha z}) \end{cases}$

k < k_c → f < f_c propagation constant has a 0 real part meaning NO traveling wave meaning no flow of energy

 Exponentially decaying wave is an evanescent wave

Aalto University School of Electrical Engineering

Cutoff Frequency Analysis



Consider TM mode

$$Z_{TM} = \frac{-E_y}{H_x} = \frac{\beta}{\omega\epsilon} = \frac{\beta\eta}{k} \qquad \begin{cases} \text{ real } \text{ for } f > f_c \\ \text{ imaginary for } f < f_c \end{cases}$$

The complex poynting vector:

$$S = E \times H^* = \mathbf{a}_{\mathbf{z}} \frac{|E|^2}{Z_{TM}} \begin{cases} real & \text{for } f > f_c \\ imaginary & \text{for } f < f_c \end{cases}$$

No power will be carried through under the cutoff frequency!

The average power density:

$$\mathbf{S}_{av} = \frac{1}{2} \operatorname{Re}[\mathbf{E} \times \mathbf{H}^*] = \frac{1}{2} \operatorname{Re}\{\mathbf{S}\} = 0$$

Propagation constant parameters (1/2)

Cutoff wavenumber

$$k_c^2 = k_x^2 + k_y^2 = \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2$$

$$k_{c} = \sqrt{\left(\frac{m\pi}{a}\right)^{2} + \left(\frac{n\pi}{b}\right)^{2}}$$

Cutoff frequency

Cutoff wavelength

$$f_{c} = \frac{k_{c}}{2\pi\sqrt{\mu\varepsilon}} = \frac{c}{2\sqrt{\varepsilon_{r}}}\sqrt{\left(\frac{m}{a}\right)^{2} + \left(\frac{n}{b}\right)^{2}}$$

Propagation constant

$$\beta = \sqrt{k^2 - k_c^2} = \sqrt{k^2 - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}$$

Wave impedance

$$\label{eq:ZTE} Z_{TE} = \frac{\omega\mu}{\beta} = \frac{k\eta}{\beta} = \frac{k}{\sqrt{k^2-k_c^2}} \eta = \frac{1}{\sqrt{1-(f_c/f)^2}} \frac{\eta_0}{\sqrt{\epsilon_r}}$$

$$Z_{TM} = \frac{\beta}{\omega\epsilon} = \frac{\beta\eta}{k} = \frac{\sqrt{k^2 - k_c^2}}{k} \eta = \sqrt{1 - (f_c/f)^2} \frac{\eta_0}{\sqrt{\epsilon_r}}$$

Wavenumber in medium

$$k=\omega\sqrt{\mu\epsilon}$$

Aalto University School of Electrical Engineering

 $\lambda_{\rm c} = \frac{2\pi}{k_{\rm c}} = \frac{2}{\sqrt{\left(\frac{\rm m}{\rm a}\right)^2 + \left(\frac{\rm n}{\rm b}\right)^2}}$

Propagation constant parameters (2/2)

Phase velocity

 $\frac{1}{u_p} = \frac{\beta}{\omega} = \frac{1}{c}\frac{\beta}{k}$

$$u_p = f\lambda_g = \frac{\omega}{\beta} = \frac{\omega}{\sqrt{k^2 - k_c^2}} = \frac{c/\sqrt{\epsilon_r}}{\sqrt{1 - (f_c/f)^2}}$$

Group velocity

$$\frac{1}{u_g} = \frac{d\beta}{d\omega} = \frac{1}{c}\frac{d\beta}{dk}$$

$$\frac{d\beta}{dk} = \frac{k}{\sqrt{k^2 - k_c^2}}$$

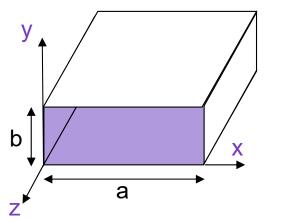
$$u_g = (c/\sqrt{\epsilon_r}) \cdot \sqrt{1-(f_c/f)^2}$$

Guide wavelength

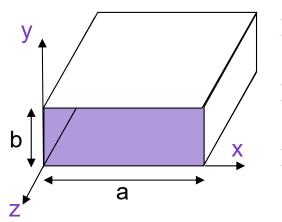
$$\lambda_g = \frac{2\pi}{\beta} = \frac{2\pi}{\sqrt{k^2 - k_c^2}} = \frac{2\pi}{k\sqrt{1 - (f_c/f)^2}} = \frac{\lambda}{\sqrt{1 - (f_c/f)^2}}$$

Relation

$$u_p u_g = \frac{c^2}{\epsilon_r}$$

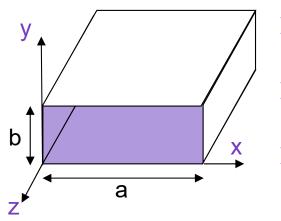


- For an air-filled rectangular waveguide with inner dimensions 0.9 in by 0.4in.
- > (1) calculate the cutoff frequencies for the TE_{10} , TE_{01} , TE_{20} , TE_{11} and TM_{11} modes.
- > (2) Recalculate the cutoff frequencies for the TE_{10} , TE_{01} , TE_{20} , TE_{11} and TM_{11} modes if the same guide is filled with polystyrene (ε_r =2.55).



- For an air-filled rectangular waveguide with inner dimensions 0.9 in by 0.45in.
 - (1) calculate the cutoff frequencies for the TE₁₀, TE₀₁, TE₂₀, TE₁₁ and TM₁₁ modes.
- > (2) Recalculate the cutoff frequencies for the TE_{10} , TE_{01} , TE_{20} , TE_{11} and TM_{11} modes if the same guide is filled with polystyrene (ϵ_r =2.55).

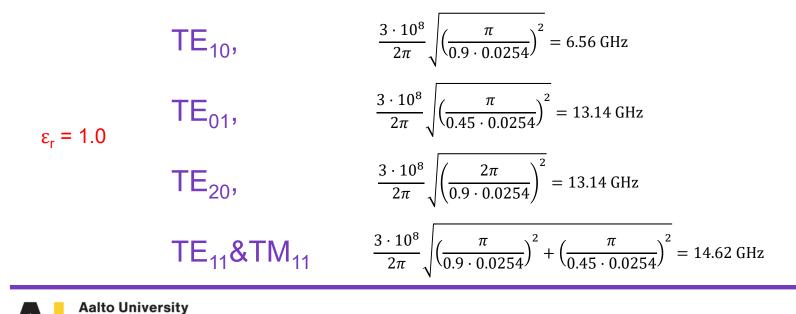
$$k_c^2 = \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 \qquad \qquad f_c = \frac{\omega_c}{2\pi}, \quad \omega_c = \frac{k_c c}{\sqrt{\varepsilon_r}} \qquad \qquad f_c = \frac{k_c c}{2\pi\sqrt{\varepsilon_r}}$$

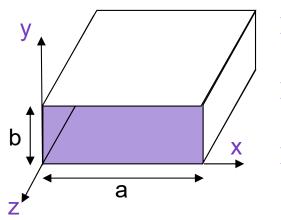


ool of Electrical

naineerina

- For an air-filled rectangular waveguide with inner dimensions 0.9 in by 0.45in.
- > (1) calculate the cutoff frequencies for the TE_{10} , TE_{01} , TE_{20} , TE_{11} and TM_{11} modes.
- > (2) Recalculate the cutoff frequencies for the TE_{10} , TE_{01} , TE_{20} , TE_{11} and TM_{11} modes if the same guide is filled with polystyrene (ϵ_r =2.55).

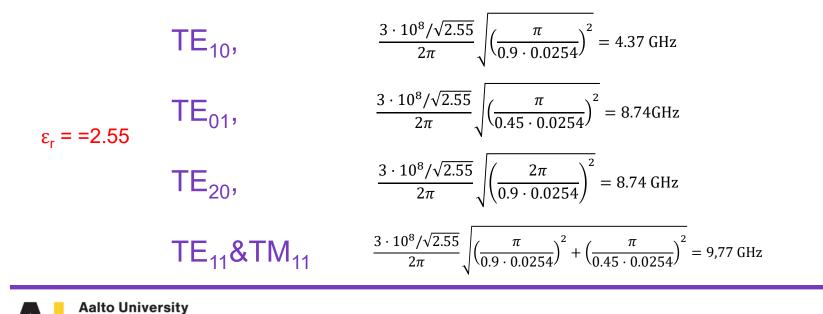




School of Electrical

naineerina

- For an air-filled rectangular waveguide with inner dimensions 0.9 in by 0.45in.
- > (1) calculate the cutoff frequencies for the TE_{10} , TE_{01} , TE_{20} , TE_{11} and TM_{11} modes.
- > (2) Recalculate the cutoff frequencies for the TE_{10} , TE_{01} , TE_{20} , TE_{11} and TM_{11} modes if the same guide is filled with polystyrene (ϵ_r =2.55).



Lambdas

Wavelength in a vacuum

 $\lambda_0 = \frac{c_0}{f}$

Wavelength in media

 $\lambda = \frac{\lambda_0}{\sqrt{\varepsilon_r}}$

Guide wavelength

 $\lambda_{g} = \frac{2\pi}{\beta}$

Wavelength in a vacuum corresponding to the waveguide operational frequency. Remember that time is fixed.

Wavelength in the waveguide fill medium

Peak-to-peak distance for propagating energy
 Dependent on waveguide fill permittivity

Cutoff wavelength

- Cutoff wavelength corresponding to cutoff wavenumber
 - Independent of waveguide fill permittivity

Guide wavelength vs guide velocity

Propagation constant

$$\beta = \sqrt{\mathbf{k}^2 - \mathbf{k}_{\rm c}^2} \quad \rightarrow \quad \beta < k$$

Wavelength

$$\lambda_{\rm g} = \frac{2\pi}{\beta} > \frac{2\pi}{k} \quad \to \quad \lambda_{\rm g} > \lambda$$

Phase velocity

$$u_p = \frac{\omega}{\beta} > \frac{\omega}{k} \rightarrow u_p > c$$

Frequency

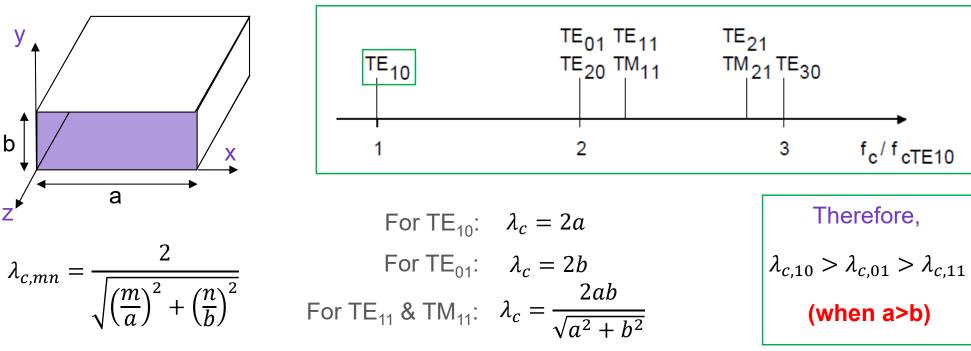
$$\frac{u_{\rm p}}{\lambda_{\rm g}} = \frac{\frac{\omega}{\beta}}{\frac{2\pi}{\beta}} = \frac{\omega}{2\pi} = f$$

- The wavelength of a propagating mode inside the waveguide of some frequency f is always larger than the wavelength of a TEM mode of the same frequency
- The phase velocity of a propagating mode inside the waveguide of some frequency f is always larger than the phase velocity of a TEM mode of the same frequency

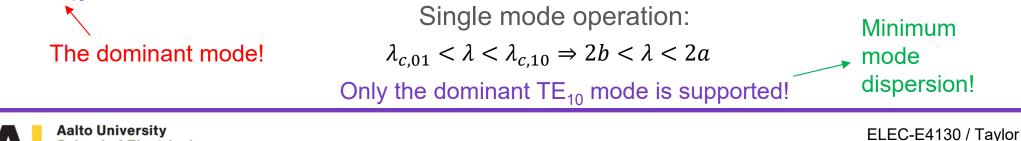
▷ u_p > c

School of Electrical

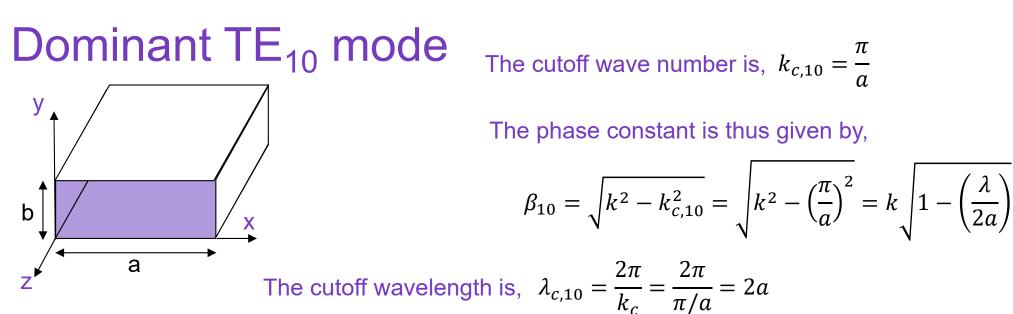
Engineering



For rectangular waveguides, when a>b, the longest λ_c and the lowest cutoff frequency exist for TE₁₀ mode!!!



Lecture 18



(the waveguide has to be at least greater than half of the wavelength in order for the wave to propagate)

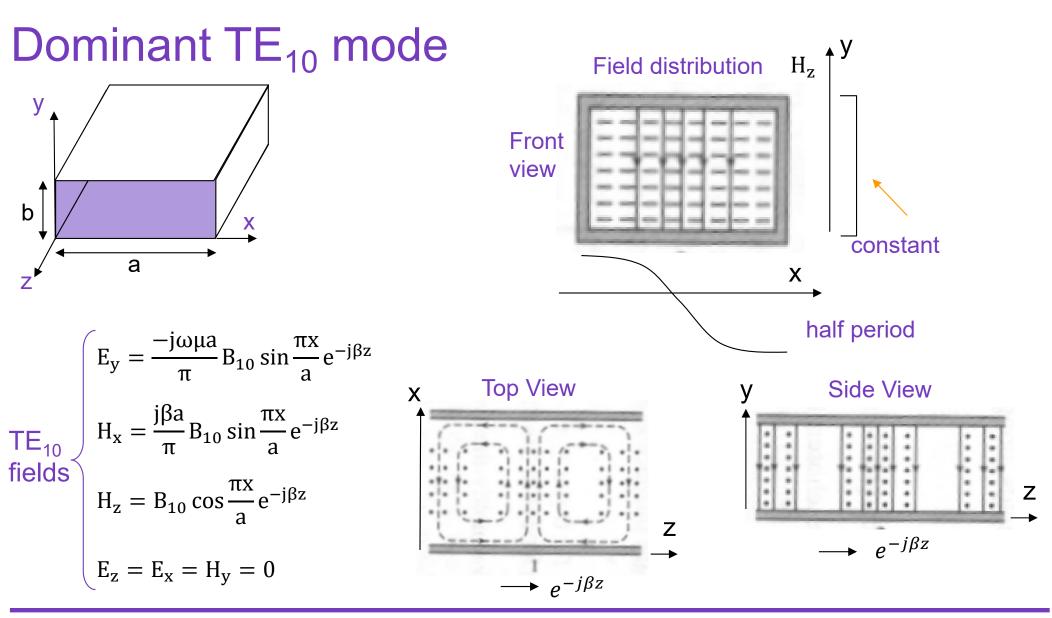
The cutoff frequency is thus:
$$f_{c,10} = \frac{c/\sqrt{\varepsilon_r}}{\lambda_{c,10}} = \frac{c/\sqrt{\varepsilon_r}}{2a} = \frac{1}{2a\sqrt{\mu\varepsilon}}$$

The guide wavelength:

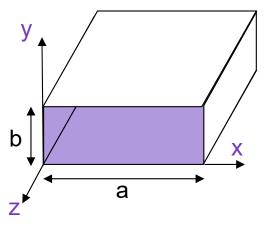
The phase velocity:

$$\lambda_g = \frac{2\pi}{\beta_{10}} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{2a}\right)^2}}, \qquad \qquad \nu_p = \frac{\omega}{\beta_{10}} = \frac{c/\sqrt{\varepsilon_r}}{\sqrt{1 - \left(\frac{\lambda}{2a}\right)^2}} = \frac{c/\sqrt{\varepsilon_r}}{\sqrt{1 - \left(\frac{f_c}{f}\right)^2}},$$

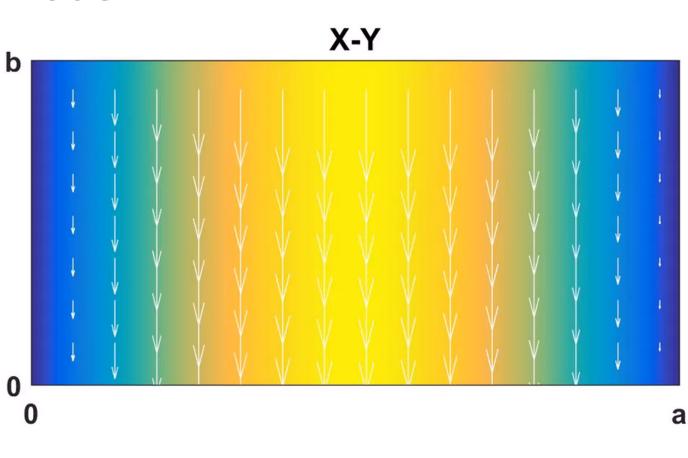
Aalto University School of Electrical Engineering



Aalto University School of Electrical Engineering

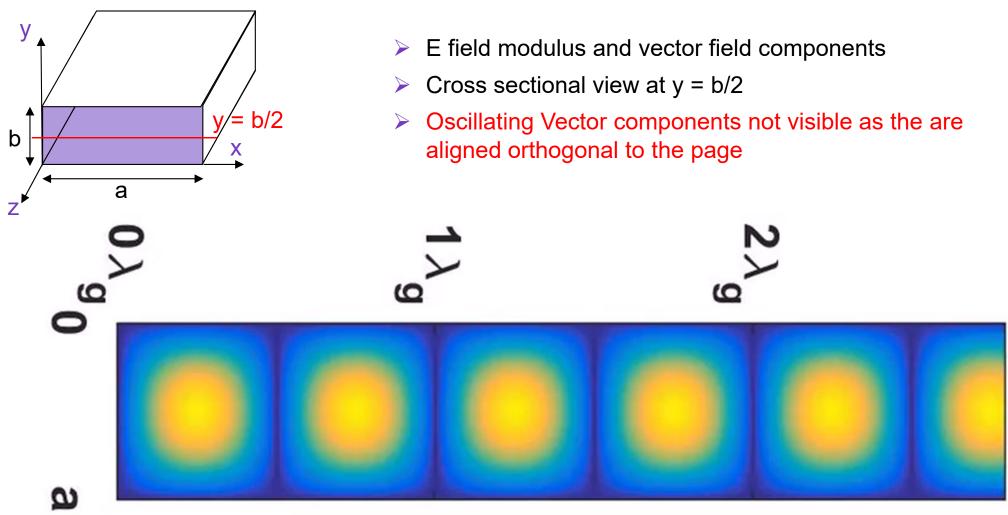


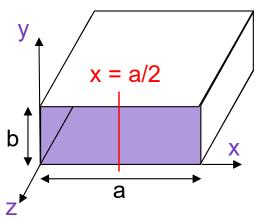
- E field modulus and vector field components
- ➤ Z = 0
- Electric field in the along horizontal axis is ½ period which corresponds to n = 1



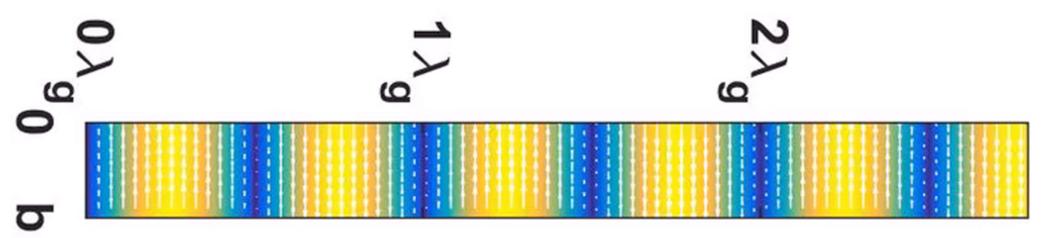
Electric field in the vertical axis is constant which corresponds to m = 0 (not sinusoid)

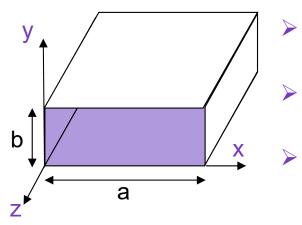
Aalto University School of Electrical Engineering



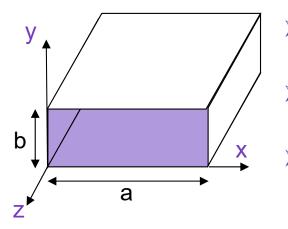


- > E field modulus and vector field components
- > Cross sectional view at x = a/2





- For an air-filled rectangular waveguide with inner dimensions 0.9 in by 0.4in. Assume f = 9 GHz
 - (1) calculate Z_{TM} and Z_{TE} for each of the TE₁₀, TE₀₁, TE₂₀, TE₁₁ and TM₁₁ modes
- > (2) what is λ_g , u_p and u_g for TE₁₀ mode



- For an air-filled rectangular waveguide with inner dimensions 0.9 in by 0.4in. Assume f = 9 GHz
- (1) calculate Z_{TM} and Z_{TE} for each of the TE₁₀, TE₀₁, TE₂₀, TE₁₁ and TM₁₁ modes
- > (2) what is λ_g , u_p and u_g for TE₁₀ mode

$$Z_{TE} = \frac{\omega\mu}{\beta} = \frac{k\eta}{\beta} = \frac{k}{\sqrt{k^2 - k_c^2}} \eta = \frac{1}{\sqrt{1 - (f_c/f)^2}} \frac{\eta_0}{\sqrt{\epsilon_r}}$$

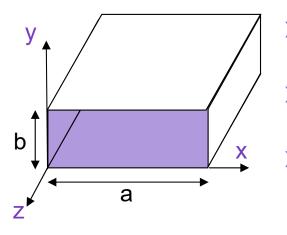
$$Z_{TM} = \frac{\beta}{\omega\epsilon} = \frac{\beta\eta}{k} = \frac{\sqrt{k^2 - k_c^2}}{k}\eta = \sqrt{1 - (f_c/f)^2}\frac{\eta_0}{\sqrt{\epsilon_r}}$$

$$\lambda_g = \frac{2\pi}{\beta} = \frac{2\pi}{\sqrt{k^2 - k_c^2}} = \frac{2\pi}{k\sqrt{1 - (f_c/f)^2}} = \frac{\lambda}{\sqrt{1 - (f_c/f)^2}}$$

$$v_p = f\lambda_g = \frac{\omega}{\beta} = \frac{\omega}{\sqrt{k^2 - k_c^2}} = \frac{c/\sqrt{\epsilon_r}}{\sqrt{1 - (f_c/f)^2}}$$

$$f_{c} = \frac{k_{c}}{2\pi\sqrt{\mu\varepsilon}} = \frac{c}{2\sqrt{\varepsilon_{r}}} \sqrt{\left(\frac{m}{a}\right)^{2} + \left(\frac{n}{b}\right)^{2}}$$

$$v_{g} = \frac{\left(c/\sqrt{\epsilon_{r}}\right)^{2}}{v_{p}} = (c/\sqrt{\epsilon_{r}}) \cdot \sqrt{1 - (f_{c}/f)^{2}}$$



- For an air-filled rectangular waveguide with inner dimensions 0.9 in by 0.4in. Assume f = 9 GHz
- > (1) calculate Z_{TM} and Z_{TE} for each of the TE₁₀, TE₀₁, TE₂₀, TE₁₁ and TM₁₁ modes
- > (2) what is λ_g , u_p and u_g for TE₁₀ mode

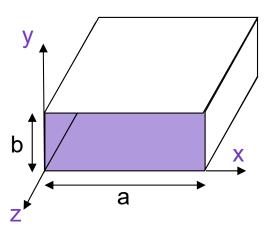
Part (1)

 $f_{c}(TE10) = 6.55 \text{ GHz} \qquad Z(TE10) = 550.38 \Omega$ $f_{c}(TE01) = 14.75 \text{ GHz} \qquad Z(TE01) = 0.00 - \text{j}355.70 \Omega$ $f_{c}(TE20) = 13.11 \text{ GHz} \qquad Z(TE20) = 0.00 - \text{j}355.70 \Omega$ $f_{c}(TE11) = 16.15 \text{ GHz} \qquad Z(TE11) = 0.00 - \text{j}292.92 \Omega$ $f_{c}(TM11) = 16.15 \text{ GHz} \qquad Z(TM11) = 0.00 - \text{j}292.92\Omega$

Part (2)

- $\lambda_0 = 33.3 \ mm$
- $\lambda_g = 48.6 mm$
- $u_{p} = 4.38 \times 10^{8} m/s$
- $u_g = 2.05 \times 10^8 \ m/s$

Real WG



Some standard	waveguide specs.
---------------	------------------

Guide	Size (inch)	Rec. (GHz)	$f_c~({ m GHz})$	Band	(GHz)			
WR650	6.500×3.250	1.12 - 1.70	0.91	L	(1.0 - 2.0)			
WR284	2.840×1.340	2.60 - 3.95	2.08	S	(2.0 - 4.0)			
WR187	1.872×0.872	3.95 - 5.85	3.15	C	(4.0 - 8.0)			
WR90	0.900×0.400	8.20 - 12.40	6.56	X	(8.0 - 12.0)			
WR62	0.622×0.311	12.40 - 18.00	9.49	Ku	(12.0 - 18.0)			
WR42	0.420×0.170	18.00 - 26.50	14.05	K	(18.0 - 27.0)			
WR28	0.280×0.140	26.50 - 40.00	21.08	Ka	(27.0 - 40.0)			
	a b		$f_{c}(TE_{10})$		ν »			
$< f_c(TE_{20})$								

- All the above waveguides are $a \sim 2b$ \succ
- They are all intended to operate in the TE_{10} (lowest order mode)
- Recommended operating range provides buffer above the TE10 cutoff frequency and \geq below the TE_{20} and TE_{01} cutoff frequencies
- > $a \sim 2b \rightarrow f_c(TE_{20}) \sim f_c(TE_{01})$

Real WG

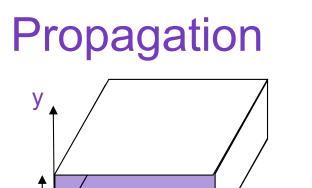
Virginia Diodes Inc. Waveguide Band Designations

Last Modified : 6/29/2010

Internal		Internal	Internal	Frequency	TE(10)	WG Loss	Flange	Description	Letter
Band	EIA Band	Dimensions	Dimensions	Range	Cutoff	Low - High ¹	Designation		Desig.
Designation	Designation	(mils)	(mm)	(GHz)	(GHz)	(dB/mm)	-		-
WR- 51.0	WR- 51	510 x 255	12.954 x 6.477	15.0 - 22.0	11.6	0.0005 - 0.0004			
WR- 42.0	WR- 42	420 x 170	10.668 x 4.318	17.5 - 26.5	14.0	0.0008 - 0.0006			к
WR- 34.0	WR- 34	340 x 170	8.636 x 4.318	22.0 - 33.0	17.4	0.001 - 0.0007			
WR- 28.0	WR- 28	280 x 140	7.112 x 3.556	26.5 - 40.0	21.1	0.0013 - 0.0009	UG-599/U	Square, Four hole fixing	Ka
WR- 22.4	WR- 22	224 x 112	5.690 x 2.845	33.0 - 50.5	26.3	0.0019 - 0.0013	UG-383/U	Circular, Four hole fixing/doweled	Q
WR- 18.8	WR- 19	188 x 94	4.775 x 2.388	40.0 - 60.0	31.4	0.0023 - 0.0016	UG-383/UM	Circular, Four hole fixing/doweled	U
WR- 14.8	WR- 15	148 x 74	3.759 x 1.880	50.5 - 75.0	39.9	0.0034 - 0.0024	UG-385/U	Circular, Four hole fixing/doweled	V
WR- 12.2	WR- 12	122 x 61	3.099 x 1.549	60.0 - 90.0	48.4	0.0047 - 0.0032	UG-387/U	Circular, Four hole fixing/doweled	Е
WR- 10.0	WR- 10	100 x 50	2.540 x 1.270	75.0 - 110.0	59.0	0.0061 - 0.0043	UG-387/UM	Circular, Four hole fixing/doweled	W
WR- 8.0	WR- 8	80 x 40	2.032 x 1.016	90.0 - 140.0	73.8	0.0092 - 0.0059	UG-387/UM	Circular, Four hole fixing/doweled	F
WR- 6.5	WR- 6	65 x 32.5	1.651 x 0.826	110.0 - 170.0	90.8	0.0128 - 0.0081	UG-387/UM	Circular, Four hole fixing/doweled	D
WR- 5.1	WR- 5	51 x 25.5	1.295 x 0.648	140.0 - 220.0	116	0.0185 - 0.0117	UG-387/UM	Circular, Four hole fixing/doweled	G
WR- 4.3	WR- 4	43 x 21.5	1.092 x 0.546	170.0 - 260.0	137	0.0227 - 0.0151	UG-387/UM	Circular, Four hole fixing/doweled	
WR- 3.4	WR- 3	34 x 17	0.864 x 0.432	220.0 - 330.0	174	0.0308 - 0.0214	UG-387/UM	Circular, Four hole fixing/doweled	
WR- 2.8	n/a	28 x 14	0.711 x 0.356	260.0 - 400.0	211	0.0436 - 0.0287	UG-387/UM	Circular, Four hole fixing/doweled	
WR- 2.2	n/a	22 x 11	0.559 x 0.279	330.0 - 500.0	268	0.063 - 0.041	UG-387/UM	Circular, Four hole fixing/doweled	
WR- 1.9	n/a	19 x 9.5	0.483 x 0.241	400.0 - 600.0	311	0.072 - 0.051	UG-387/UM	Circular, Four hole fixing/doweled	
WR- 1.5	n/a	15 x 7.5	0.381 x 0.191	500.0 - 750.0	393	0.105 - 0.073	UG-387/UM	Circular, Four hole fixing/doweled	
WR- 1.2	n/a	12 x 6	0.305 x 0.152	600.0 - 900.0	492	0.159 - 0.104	UG-387/UM	Circular, Four hole fixing/doweled	
WR- 1.0	n/a	10 x 5	0.254 x 0.127	750.0 - 1100.0	590	0.192 - 0.135	n/a		
WR- 0.8	n/a	8 x 4	0.203 x 0.102	900.0 - 1400.0	738	0.292 - 0.188	n/a		
WR- 0.65	n/a	6.5 x 3.25	0.165 x 0.083	1100.0 - 1700.0	908	0.406 - 0.258	n/a		
WR- 0.51	n/a	5.1 x 2.55	0.130 x 0.065	1400.0 - 2200.0	1157	0.586 - 0.369	n/a		

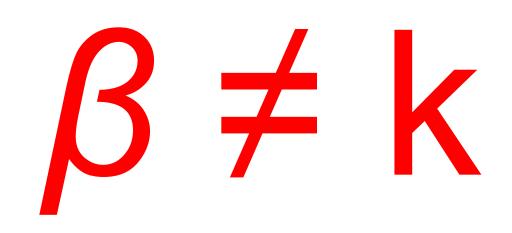
1) The waveguide loss is calculated assuming the conductivity of Gold, and a surface roughness factor of 1.5. The two values listed represent the loss at the low end and high end of the frequency range.

Γ



а

b



- The one conductor geometry supports TE/TM operation
- The longitudinal phase variation of a TE/TM is not equal to the free space (plane wave) TEM phase variation
 - $\succ \beta \rightarrow$ rectangular waveguide longitudinal phase variation
 - \succ k \rightarrow free space longitudinal phase variation
- > β is a strong function of frequency and geometry

Conclusions and Next time

- TE and TM modes derived in the same manner
- TE mode uses implicit boundary conditions
- If the frequency of operation is below the so called cutoff frequency, propagation down the waveguide is not supported
 - > No power will flow
 - > "Cut-on" frequency, the waveguide is a high pass filter
- Analysis of cutoff frequencies for and mode numbers indicates the TE10 mode has the lowest cutoff frequency
- > TE_{10} mode is the dominant mode
- Next time we'll go more in depth on group and phase velocity and compute the surface current densities on the walls in support of waveguide propagation loss calculations

