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Sensor array signal processing

* |n array signal processing a group of sensors located at distinct
spatial locations is employed.

» A propagating wavefield is measured with an array of M elements
and a multichannel (A -channel) observation is formed.

* |t is many times necessary to transmit/receive a signal to/from a
certain direction and reject signals from other directions.

* This kind of spatial filtering is often called beamforming, and a
system that performs such operation is referred to as a
beamformer.
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Sensor array signal processing

» Determining the location of the signal source or direction of arrival
of the signal is often of interest

 Sampling may be non-uniform and arrays may be multidimensional.

* The key application areas include smart antennas in wireless
communications and radar, channel sounding and propagation
modeling, spatial sound processing, various electronic warfare
applications, biomedical measurements such as EEG, MEG as well
as sonar, seismology and radio astronomy.
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Sensor array signal processing

* signal processing takes place in spatial or angular domain.

* |n addition, time domain processing may be included and the
resulting techniques are called Space-Time processing. This is
necessary for broadband signals, e.g. in radar systems.

* Typically direction of arrival (DoA), number of signals and
parameters of the waveform as well as channel parameters are
estimated.
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Sensor array signal processing

* |f sensor array elements are uniformly spaced, the resulting signal
processing methods are closely related to spectrum estimation and
filtering in time domain.

« |n this section an array processing signal model is presented

 Commonly used DoA estimation methods and their performance in
statistical sense are described.

* |t is many times necessary to receive a signal from a certain
direction and reject signals from other directions.

* This kind of spatial filtering is often called beamforming, and a
system that performs such operation is referred to as a
beamformer.

* Adaptive beamforming algorithms are not considered here. See Van
Veen, B., Buckley, K., “Beamforming: A Versatile Approach to Spatial Filtering”,  —
IEEE ASSP Magazine, pp. 4-24, April 1988 for additional information. 100t

407

Sensor array signal processing

* Forming beams indicates to transmitting energy and sending
signals, but it can be used for either transmission or reception.

 |n radar, for example, interference usually occupies same frequency
band as the signal of interest, so temporal filtering cannot be used
to remove the harmful interference.

* The interference is usually radiating from different location than the
desired signal, so beamforming can be exploited for filtering it.

» Other important properties are discrimination capability (resolution,
aperture), adaptivity and capability of dealing with coherent
(perfectly correlated) sources.
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Array processing signal model
e Commonly used assumptions include

— Narrowband assumption: bandwidth of the signal is very small
compared to the center frequency

— Sources are point emitters

— Medium is homogeneous

— Far field assumption: a plane wave is observed at the array and
the propagation is characterized by pure delay

— Sensors are spaced less than A\/2 (X is wavelength) from each
other to avoid spatial aliasing.

* DoA characterizes the source location if the above assumptions
hold

* In wideband array processing, filterbanks and narrowband
processing or space-time structures are needed.

* Notation: Let there be K signals present at an array of A sensors,
K < M.
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Array processing signal model

s1(n) z2(n) sk(n)
XSL —\ 92 91{
p

xi(n) z2(n) - x(n) - zm(n)

410



Array processing signal model
* w,. is the center frequency, gi(0) represents the sensitivity of the kth
sensor to the DOA 4 and 75 (¢) is the time delay of the signal

coming from DOA @ at the kth sensor relative to some reference
point (typically the first sensor element).

* The positions and transfer characteristics of the array elements are
assumed to be known.

* The collection of steering vectors over the parameter space of
interest, ©, is the called array manifold, A,

A={a(6) | 8 c ©).

* For K distinct DOAs 44, ..., 6k and the corresponding steering

? ?

vectors are linearly independent

* The functions {gx(¢)}iL, depend on the type of sensors being
used.
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Array processing signal model

* w,. is the center frequency, g, (f) represents the sensitivity of the kth
sensor to the DOA ¢ and 7, () is the time delay of the signal
coming from DOA ¢ at the kth sensor relative to some reference
point (typically the first sensor element).

* The positions and transfer characteristics of the array elements are
assumed to be known.

* The collection of steering vectors over the parameter space of
interest, ©, is the called array manifold, A,

A={a(f) | # € 6}.
* For i + 1 distinct DOAs #,, ..., Ok, 011 the corresponding

steering vectors are linearly independent

~» The functions {g,(#)}}_, depend on the type of sensors being —
used. 1.2021
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Array processing signal model

Beampattern
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Array processing signal model

* Often the sensors may be considered omnidirectional and identical,

hence
(o fl g G, g AERAITE,

* Let us have an array of M identical sensors uniformly spaced on a
line, i.e., Uniform Linear Array (ULA)

* Now © = [0, w] and a(6) is given by

8(9) _ []_.. e?frj{d/}\) cos(€d) eQﬂj(l\-[—l}(d/)\) COS(B)]T

.....

where d denotes the element spacing and A denotes the
wavelength.

* In order to avoid spatial aliasing d < /2.

* There are some special nonuniform array structures (sparse arrays)
where element spacing is designed to give high aperture and
additional degrees of freedom with fewer elements.
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Array processing signal model

* Matrix A is then a Vandermonde matrix, i.e.

A=
EQTrj(d,’);}l-:os{ﬁj_} e?rj(df))cos{ﬂ;;) EQ?rj(d,r’)\} cos(B)
EZ?rj?(d,f}«) cos(f1) e?w?j{d,’)\) cosz(fa) . EQ?r:Z_j(d,f)\) cos(@k )
EQ?rj(_"lI—l.){df,\Jcos(ﬂljl e?wj(ﬂnf—l)(dj)\} cos(flz) EQ?rj(.-'lI—l.‘J{d,fAJ cos(f§ )

« |f the angle is against broadside of the array, we need to have
— sin(f) above.
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EX: Uniform Circular Array (UCA) model

* |n case of 2-D arrays such as uniform circular array (UCA), both
elevation and azimuth angles may be estimated.

* |n UCA, the antenna elements are uniformly spaced on a circle of
diameter 2r.

* The azimuth and elevation angles are denoted by ¢; and 6,.

* The M x 1 element-space UCA steering vector gets then form as
e_jw% sin # cos{d—~0)
e_jw% sin & cos{g—-=y1 )

a(f,¢) =

ejw% sin @ cos(¢—yar—_1)

where w = 27 f is the angular frequency, r is the radius of the array,
~; = 2= is the angular position of the element (counted in

M
21.11.2021

counterclock wise manner from z-axis) and ¢ is the speed of light. 416



EX: Uniform Circular Array (UCA) model

» Uniform Circular Array (UCA) with A elements. Elevation angle ¢
and azimuth angle ¢ may be estimated simultaneously.

z

21.11.2021
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Array processing algorithms

* The following methods are studied: classical Beamformer, Capon’s
Minimum Variance Distortionless Response (MVDR) method,
subspace methods (MUSIC, ESPRIT) as well as Deterministic and
Stochastic Maximum Likelihood methods. Subspace fitting is
considered as well.

* Similar signal methods are often used for time-domain processing
and time-series data. Beamforming is directly related to
FIR-filtering, periodograms and using windowing functions in
spectrum estimation. MVDR has also many applications in filtering
and communications SP.

* High resolution methods (MUSIC, ESPRIT) can be used for
frequency estimation and resolving closely spaced frequencies
based on autocorrelation matrix and its eigenvalue decomposition
as well as delay estimation.
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Beamforming: spatial filtering

* Let us denote the observations acquired by the array by x(n), the
vector of spatial filter coefficients by w and the output of the spatial
filter y(n), i.e.

y(n) = wix(n)

* The power of the spatially filtered signal is
Elly(n)]*] = w"Zw

and it should exhibit a peak in the direction where an emitter is
transmitting. ¥ = E[x(n)x (n)] is the covariance matrix of the
observations.

* In Beamforming we want to find optimal filter coefficients, typically
to maximize SNR.

Aalto University
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Beamforming: spatial filtering

Output Signal
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Beamforming: spatial filtering

* Beamformer is a direct extension of periodogram to spatial
processing (averaging spatial periodograms)

* |In beamforming the the array is steered in one direction at the time
and the power is measured.

 The beamformer is designed so that the output power E[|y(n)|?]
from given direction ¢ is maximized:
Ewx(n)x" (n)w] = wHEZw

» Steering to the DoA is done by choosing by weighting (w) the
sensor outputs so that output SNR is maximized subject to
wiw = 1. The constraint is needed to avoid trivial solution.

» Assume that there is one WSS signal present at angle ¢,. The
array output is then

x(n) = a(fy)s(n) + v(n). 21.11.2021
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Beamforming: spatial filtering

* The power of y(n) is given as
E[y(n)y*(n)] = wHEw = o2wHa(8,)a (6;)w + 2w w,

* The problem of maximizing the output SNR may now be formulated
as

max {w'a(8;)a” (6;)w} = llla.XHW a(61)||?, subjectto wHw =1,

* From Cauchy-Schwartz and the constraint ww = 1

wa(e1)I* < [Iw][*|la(81)]|* = |la(8)[|*.

Aalto University
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Beamforming: spatial filtering

* The optimal weighting vector is therefore given as
__a(f)
Vaf (61)a(6;)

e The denominator can be considered to be a normalization factor of
the steering vectors a’ (9)

WBF

* This can be considered to be a spatial filter matched to the
impinging signal.

Aalto University
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Beamforming: spatial filtering

* Using the optimal weighting, spatial spectrum is given by
af(0,)Xa(0;)
Ver(6,) = ’
sr () = A ryaen)

* This is a spatial extension of the Periodogram method in Spectrum
Estimation.

* |n general, the optimal coefficients are
a(f)
af (0)a(d)

WEBF —

» The Beamforming estimates of the K DoA’s are the A highest
peaks of

afl(9)za(8).



Beamforming: spatial filtering

* array covariance matrix X is not typically known and it may be
estimated by

i
= Zx(n.)xH(n).

n=1

)

using the obtained snapshots.

* Maximum likelihood estimator if X' = 1 and consequently
consistent.

» When K > 1 beamforming DOA estimates are the angles of the K
highest peaks in spatial spectrum. These estimates are not
consistent then and asymptotic bias may be large if sources
correlated or closely spaced.

Aalto University
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Beamforming resolution

* The Beamformer can not resolve closely spaced DoA’s. For a ULA
of M sensors, the beamforming resolution limit is approximately ﬁ
(i.e. wavelength / array length).

» Beamwidth of the spatial filter is inversely proportional to array
aperture (=~ array length in wavelengths)

» For example, for a ULA of 6 sensors of \/2 inter-element spacing,
the resolution limit equals 1/3 rad ~ 19°.

e For ULA’s, the beamformer output is obtained through normalized
spatial DFT of z(n)

* Different windowing functions may be used similarly to time-domain
spectrum estimation.

Aalto University
School of Engineering 21.11.2021

426



Beamforming resolution

» Beamformer resolution depends on the number of elements
(example: 16 and 64 elements below).

| Array aperture:
' Size of array
. 1 in wavelenghts

[l

[=E1

Lz

)
D
D
)

20 40 60 a0 100
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Minimum Variance Distortionless Response (MVDR) or
Capon Beamformer

* MVDR (Minimum Variance Distortionless Response) was derived to
improve the resolution of the beamformer.

* |n the presence of multiple sources the power measured by the
spatial spectrum is not only due to the power of the source at that
direction, but also to power of other sources in other directions.

» MVDR minimizes the total output power of y(n) = wx(n) while
maintaining the gain along the look direction # constant (unity,
hence distortionless or unbiased)

* The spatial filter response is forced to be narrowband.

Consequently, the output power is due mostly to the power from the
look direction.

* Therefore, it tends to steer nulls towards interferers. -
* Let x(n) be WSS and ¥ = E[x(n)x (n)]. 1112021
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MVDR Beamformer

» Spatial filtering in MVDR: gain in direction #, is constrained to unity
and total output power is minimized.

This design tries to make the
Main Beam as narrow as possible

5] 1.2021
429

EX: MVDR Beamformer in GPS antilammina

* Gain in direction of satellites, nulls towards broadband and
narrowband jammers. Implemented using space-time Householder
multistage wiener filters (MSWF)

satellites
A/“/A/}S tellit

T

jammers
21.11.2021
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MVDR Beamformer
* MVDR problem is then formulated

minw’” Xw subjectto w'a(0) = 1.

* The following Lagrange expression is minimized
J(w) =wEw + v(1 — wHa(6))
wrt. w, and  denotes a Lagrange multiplier.
* The solution is found by

Y. 1a(6)
WMV DR = (0 Ta(d)

* |n practice, an estimate for w;v pr is formed from N snapshots
X(].)., A X(i\r). 21.11.2021

431

MVDR Beamformer
* Using sample estimate of covariance e
. 1)
MVDR aH(t?}i—la(B)'

 The DoA’s are the K highest peaks in the spatial spectrum

Vivor(f) = .r:l(f;;i)HEl_'l a(f)

* A significant improvement in the resolution is obtained. However, it
depends on M and on the SNR.

* The performance obviously deteriorates if signals are correlated
due to multipath.

* Method is also sensitive to errors in array manifold
* |n adaptive beamforming a recursive formula may be used 21112021
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MVDR Beamformer resolution

* Resolving close spaced sources using MVDR, difference in DoA is
(a) 3, (b) 7, (c) 10 and (d) 15 degrees. SNR 15 dB, 8-element array,
256 snapshots.

5 8 & B B

o
DoA (sogrees)

- i}
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MVDR Beamformer

* Estimates are not consistent for & > 1

* So called Generalized Sidelobe Canceller (GSC) solves the same
problem by reformulating it into unconstrained one. This allows for
simpler implementation and the use of well known adaptive filter
structures. e

Fixed Filter

o

21 SO e [Ad
7 —
> Interference _ Multiple Input Canceller
> TPMS signal

433
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Generalized Sidelobe Canceller (GSC)

* GSC provides a mechanism changing the constrained minimization
problem in MVDR to an unconstrained one.

» Let the constraint be of form a” (6)w = ¢, where ¢ is a constant
(typically g = 1).
* The single constraint may be generalized to several constraints.

» For example, if there is a fixed interferer in known direction, the gain
in that direction may be forced to zero.

* |n case of two constraints, this would be expressed as

lanl)]W{g]
at’(6,) |~ |0

« The L constraints may be written in the form C*w = f where C is
constraint matrix and f response vector. Constraints are assumed
to be linearly independent. 21.11.2021
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Generalized Sidelobe Canceller (GSC)

* Suppose we decompose the weight vector w into two orthogonal
components wy and v that lie in the range (column) and null space
of matrix C.

* The range and null space span the entire space so the
decomposition may be used to represent any w

* Since C'Hv = (), we must have
wo = C(CHo) 't
if w satisfies the constraints

» Let C,, form a basis to null space of the matrix C'. The vector v is a
linear combination of the columns of (blocking) matrix C,,, (i.e.
v =C,wyy)

e (', may be obtained from C by using SVD or QR decomposition, for ——
example. 1112021
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Generalized Sidelobe Canceller (GSC)

* The weight vector is
w=wg— Cp,Wy
* The choice for wy and C,, implies that w satisfies the constraints
independent of w;,; and reduces the MVDR problem to an
unconstrained one

min [Wo — Cowin]" E[wo — Cw ]

* The solution is
wy = (CHEC,)1CHEw
* Jargon: wy is fixed beamformer, C,, is called blocking matrix (will
block the DOA’s given in constraints and those signals are
processed by wg) and unconstrained weights w;; may be
computed using standard adaptive filter

Aalto University
School of Engineering 21.11.2021
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Generalized Sidelobe Canceller (GSC)
H

* By setting the output of the fixed beamformer d(n) = wy @(n) as
the desired signal, and u(n) = C7x(n), and by defining error signal
e(n) = d(n) — wiu(n), R, = Cov(u) we get the following LMS
update for the beamformer coefficients:

wir(n+ 1) =wpr(n) + pu(n)e*(n)
* Filter is initialized by w(0) = 0, ¢(0) = d(0) and 0 < pu < mR_T
Fixed beamformer —=——nwu__

data independent 3
( p ) , 5 )

Adaptive filter

/ (unconstrained

weights)

Blocking matrix

Aalto University
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GSC using LMS or Recursive Least Square (RLS)

* LMS and RLS weight adaptation algorithms. u(n) is the data signal
and d(n) is the desired signal.

Algorithm

LMS

RLS

Initialization

w(0) =0
e(0) = d(0)

1
i e Trace[Rqy

w(D) =0
P(0) = 41

& small, T identity matrix

Update

Equations

w(n) = w(n — 1)
4+ pu(n — De*(n — 1)
e(n) = d(n) — WH(?L]u(n)

q(n) = P(n — l)u(n)
A~ 1g(n)
1+x~Tuf (n)q(n)
a(n) = d(n) — wH(n — Du(n)
w(n) =w(n — 1) + k(n)a*(n)
P(n) = A" 1P(n—1) — A~ 1k(n)qH (n)

k(in) =

Aalto University
School of Engineering

Subspace methods in array processing

* We will study subspace DoA estimation techniques
— MUSIC (MUIltiple Signal Classification)

— TLS-ESPRIT (Total LS-Estimation of Signal Parameters via
Rotational Invariance Techniques)

* Such techniques are high-resolution techniques that can resolve

arbitrarily closely spaced angles of arrival.

* The groundwork was done by V.F. Pisarenko (Pisarenko Harmonic
Decomposition)

* These techniques are related to eigen-decomposition of the array
covariance matrix.

* They decompose the observation vector space in a subspace

associated with the signal and a subspace associated with noise.

Aalto University
School of Engineering
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Array processing signal model

s1(n) g el
\\91 ey B Ok
d—=
T (ﬂ-) x9(n) ) (ﬂ) LM (H) 2111.2021
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Subspace methods in array processing

* Recall the signal model
x(n) = A(f)s(n) + v(n).
* Assume that we have K signals present and the K x K signal

covariance matrix ¥, = E{s(n)s”(n)} is of rank K.

« |f signals are highly correlated, some preprocessing steps are
required such as spatial smoothing.

* The noise was assumed to be spatially and temporally white and
independent from the signals.

* The array M x M covariance matrix of x(n) is

¥ = Efx(n)x"(n)] = AR, A" + 0T

2 - - -
where < is the noise variance. 21112001
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Subspace methods in array processing

* The eigevaluedecomposition of X is
Y =UAUH

eleth > A =2 Ax :')‘A'K—i—l N = . = o2 be the
eigenvalues of X (diagonal elements of A).

« The M — K smallest eigenvalues of ¥ are equal to #2 and the
corresponding eigenvectors are orthogonal to the columns of A.

* These eigenvectors U,, span the noise subspace.

* The eigenvectors U, corresponding to the K largest eigenvalues
span the signal subspace.

* Consequently, the covariance matrix ¥ may also be decomposed
as -
D= [U., Un] diag{)\l., SR )\A.j’} [Uq [;‘Tn]H_ 21.11.2021
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Subspace methods in array processing

* The projection matrix to the signal subspace is
Iy — U (TN, Ul

* The columns of A also span the signal subspace. Hence,
I, = AAT, where AT = (AF A)~1AH,

* The projection matrix to the orthogonal noise subspace is
W= 0N =i M,

* Depending whether noise or signal subspace is used in the DoA
estimation method, the methods are called noise subspace
methods and signhal subspace methods.

* MUSIC methods is a noise subspace method that exploits the fact
that signals are orthogonal to the entire noise subspace.

*» ESPRIT methods is a signal subspace method.

* Other methods include Weighted Subspace Fitting and Minimum
norm method, for example.

* Maximum likelihood methods employ the projection matrices 11

21.11.2021
above. -




Subspaces and projection matrices
Iy = AAT = A(AH A)"1AH — U ,UH

Hpy oo :

S Wy

Aalto University
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MUSIC Subspace method
* MUSIC (MUltiple Signal Classification) by Schmidt 1979.

* MUSIC uses a covariance matrix of size M > K + 1 and computes
its eigenvalues and eigenvectors.

* Eigenvalues form 2 groups: those corresponding to signal
subspace and those corresponding to noise subspace. The
eigenvalues corresponding to noise subspace are small and almost
equal.

* |If the number of signals K is not known a priori it can be found from
the pattern of eigenvalues.

* For low SNR’s the pattern may not be that obvious. In such cases
criteria such as Akaike Information Criterion (AIC), Bayesian IC
(BIC) or Minimum Description Length (MDL by Rissanen) may be
used.

* The method uses projection of signal to the entire noise subspace.

Aalto University
School of Engineering 21.11.2021
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MUSIC Subspace method

* Because of the orthogonality of the signal and noise subspace,
a® (0)UAU, a(l;) =D

at the true DOAs 6;, i =1,...,K. If 8 # 6;, the denominator is > 0.

* Each of the signals (direction of arrival vectors) is orthogonal to the
entire noise subspace, hence the projection goes to zero for true
DoA's.

» When U,, is estimated using the matrix of the eigenvectors U,
corresponding to the M — K smallest eigenvalues of the sample
covariance matrix 3, the pseudo-spectrum

Vi (6) = =
M all ()0, UHa(0)

will exhibit large peaks at the correct DOAs due to the orthogonality.

Aalto University
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MUSIC Subspace method

* This expression holds for colored noise as well.

* The estimates of the DOAs are the K largest peaks in this
pseudo-spectrum.

* The height of the peak gives an index of orthogonality and does not
describe the signal power.

» MUSIC can resolve sources with arbitrary close DOAs.

* Maximum of M — 1 DOAs can be estimated with an A/ element
array.

* The estimates are consistent
» MUSIC does not achieve CRLB for finite Al (Stoica and Nehorai).

» For uncorrelated sources, very good performance is achieved. For ——
correlated sources the performance deteriorates. 112021
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MUSIC Subspace method

» Small sample sizes may yield poor results as well.

 |n practise, resolution and variance depend on SNR, array size and
number of snapshots.

* Typically at least 3 — 4 dB SNR is required so that the low rank
model works well.

» Subspace tracking (or root tracking in case of ULA's) algorithms
may be used to reduce computation.

* Root-MUSIC may be applied to ULA's. It uses eigenfilter
formulation and polynomial rooting.

Aalto University
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Root-MUSIC method

* The denominator of the pseudospectrum expression is presented
as a polynomial of z using eigenfilter formulation
Ui(2) = ui(0) + ws (D)2t + -+ - + ug(N — 1)z~ M1,
where u; (k) are components of the eigenvector u;
* The expression a”’ U, U7 a may now be rewritten

M

M
Z afuulla = Z U:(2)U(1/z")

i=K+1 i=K+1
and it is set to zero and its roots are found.

* The AoA is associated with the phase angle of the K roots on
(close to) the unit circle. The remaining zeros are spurious.

Aalto University
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Root-MUSIC method

* Then exhaustive search for steering vectors (orthogonality) may be

avoided with Root-MUSIC.
* Roots in case of 2 sources. Difference in AoA (from upper left

corner): 1, 2, 3 and 20 degrees.

A ‘S\glr:g;:r:ai:glsgi:xeering 21.11.2021
High resolution in direction of arrival estimation
e ! i DA [d’ligreas} e

Aalto University
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ESPRIT method
* ESPRIT (Estimation of Signal Parameters via Rotational Invariance
Technique)
— “son” of MUSIC
— The original technique by Paulraj, Roy and Kailath 1985.
— an improved version by Roy and Kailath 1989.
— Can be used only for special array configurations

* Significantly lower computational complexity than MUSIC. No
exhaustive search for steering vectors needed.

* The original ESPRIT and the version using Total LS (TLS-ESPRIT)
are described here.

* Matrix A is not necessarily precisely known.

* ESPRIT assumes that the sensor array can be decomposed into
two identical subarrays separated by some fixed displacement
vector.

Aalto University
School of Engineering

ESPRIT method

» Subarrays do not need to calibrated, just identical (displacement
between subarrays accurate)

* The subarrays may be overlapping, e.g., in case of ULA first
subarray elements 1...., M — 1 and second subarray elements

v

* Denote the dimension of the twin subarrays by P. Let ./; be the
P x M matrix that selects the left subarray from the array output
vector.

» Let .J; denote the corresponding matrix for right subarray.

* |n the ULA example above, P = M — 1 and the selection matrices
Ji and J; are given as J; = [Iy;—1 0] and J3 = [0 Ipr—1].

e let 4y =J1Aandlet A = JA and A;. A; be of full column rank

21.11.2021
453
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ESPRIT method

. 00000
oo o[0T 0 0o

; _|olo oo oo

3 Ciovariande ma bt {}i_[::u oo oo

—° clo 0 0 olo|

o (PR o000

Covariance matrix for 2

- .I.rrd-rl - i

overlapping arrays of 5 elements,

s2

total of 6 array elements

Aalto University
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ESPRIT method
« ESPRIT exploits the following shift invariance property
J1A® = A
i.e.
As = A9,
where ¢ = diag(d1. oo, ..., ¢k ) is a diagonal matrix and
o; = exp{j2n(d/N)cos(8;)}, i=1,..., K.

where d < )\/2 is the displacement and 6, are DoA's.

* Angles of arrival ¢; are obtained from ¢;’s by

0; = acos(=——arg{6.}).

i
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ESPRIT method

» Typically, the angle is measured against broadside of the array then
® = diag(e~ 35 dint) =1 .. K

» Matrix A and signal subspace eigenvectors U, span the same
column space (Range space of U is the range space of array
steering matrix A)

* Consequently, there exist a nonsingular K" x K matrix C' such that
U,C=A

{L&C—LA
JoU,C = JoA.
* Substituting the above to the expression on shift invariance property
JLUCP = JHLU,C we get JoUg = UV,
where ¥ = COC 1.
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ESPRIT method

¢ is a diagonal, hence C®C ! is in a form of eigenvalue
decomposition.

* A result from linear algebra says that that ¥ and ® have the same
eigenvalues.

* Now by finding ¥ we get ® and using ¢; we find 6.

e Estimate U, of U, is formed from array outputs and the following
approximate invariance equation

JQUS ~ Jl US‘IJ:
may be solved using the Least Square or TLS approach
JoUy = LU0,

because the equality does not hold exactly.
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ESPRIT method

* The corresponding methods are coined LS-ESPRIT and
TLS-ESPRIT

* TLS is a natural choice because the error can be assumed to be
identically distributed on LHS and RHS of the above equation.

* The resulting ¥ may be expressed in terms of eigendecomposition
U = CPC~!, where eigenvalues ® = diag(¢;),i =1,.... K

* DOA's ; are obtained from ¢,’s by
A |
s—arg{oi}).

e

i

f; = acos(

* Correspondingly, if angle against broadside is used spatial

frequencies I
= —Td sin(6;) = arg(o;)
ESPRIT method
e The DOA is:
A . . )
6, = agresin(jy), 1 £i< K

- 2nd
 The estimates are consistent
* The asymptotic variance is larger than that of MUSIC.

e Can not be used in the presence of coherent sources without
appropriate preprocessing (spatial smoothing)
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Weighted Subspace Fitting (WSF) method

» A method originally developed by Viberg and Ottersten.

* The method links the subspace methods and maximum likelihood
methods. In fact, asymptotically optimal performance may be
achieved similarly to Stochastic ML method.

* The rank of the signal covariance matrix ¥, K’/ < K

» the eigenvalues of ¥ are
.)\1 :_:'/\-2 X pnn EAKf })\}{-’__1 =...=/‘\_.U=JQ

* The corresponding eigenvectors are u;..... uyy.
e Itis assumed that K < (M + K')/2 to ensure identifiability.

e Let us denote A, = diag[\,..., Ak, Us = [uy,..., ugl,
Dar=Tmmrie, ... 00
A ‘s\zlhtg;:r:)irz';lsgi:zeering 21.11.2021
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Weighted Subspace Fitting (WSF) method

e |If X, is of full rank (K’ = K), then A and U, span the same column
space.

* In case K’ < K, the space spanned by the columns of U, is
contained in the space spanned by the columns of A.

* Consequently, there has to be a unique K x K’ transformation
matrix 7 such that
Bl = AT

* |In subspace fitting we want to find the best transform such that
6, 7] = axgmin U — AT 7

is optimized.
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Weighted Subspace Fitting (WSF) method
A solution for 7 is found by
T = AlU,
where AT is the Moore-Penrose pseudoinverse of A.

» By substituting 7 to the above optimization problem we find an
estimate for ¢

0 = arg méin Tr{llsU AU},

where II} is a projection matrix I — 114 = A[A¥ A]"1AH,
* We may weight the eigenvectors and obtain better estimates by

0 = arg ngn Tr{ll;UWUH}
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Weighted Subspace Fitting (WSF) method

* This is equivalent to minimizing

UW'/2 _ AT||%

[0, 7] = arg min|

* Weighting matrix should be such that the variance of the estimation
error is minimized.

* The optimum weighting matrix is
Wopt = (As — 0°1)2A 1,

where A, are the eigenvalues of X correponding to U..
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Weighted Subspace Fitting (WSF) method
* However, we have to use
Wopt = (As —2I)2A7T

because of the unknowns.

» Estimate of the noise variance may be found via arithmetic mean of
the M — K’ smallest eigenvalues of .

 The method has lower computational complexity than Stochastic
ML method but is asymptotically efficient (reaches CRLB).
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Maximum Likelihood method in DoA Estimation

= Two different techniques depending on sighal model

» Stochastic Maximum Likelihood (SML) assumes the signal and
noise be random and gaussian.

* Deterministic Maximum Likelihood (DML) assumes that the signal
is deterministic and noise are Gaussian.

» These methods can deal with coherent (highly correlated signals)
resulting for example from multipath or jamming.

* The error criteria to be minimized have many local minima

= hence ML methods require a multidimensional search which has a
high computational cost.

* EM algorithm and improved versions of it such as SAGE are often
used to find the optimum.

= Other techniques include Iterative quadratic ML (IQML) method and
Newton-type techniques.
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Deterministic Maximum Likelihood (DML) method in DoA Estimation

« Signals are unknown deterministic waveforms and the noise is a
zero mean spatially and temporally white circular Gaussian random

process, i.e. E[v(n)vT(n)] = 0and E[v(n)vH(n)] = o?1.
 The observations x are distributed as CN(As, 021)
» The pdf of one observation vector x(k) is

(k) = ﬁemp(—um(m ~ As(k)|2/0?)
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DML method in DoA Estimation

» Measurements are independent, hence the likelihood function is
the product

N
10:8,0%) = [ groaymreop(—le() — As(h)| /e

* By ignoring terms independent of parameters of interest, we get the
log-likelihood function

L(8,s,0%) = M log(o

N
Z — As(k)||?

with respect to o2, 9, s(k)
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DML method in DoA Estimation

* The DML estimate for ’Ehe DOAs is of the form
8= arg{1n9111 T )

where & = 4 3, z(k)x(k)H

* Measurements are projected onto orthogonal (null subspace of A)
subspace and power is minimized. Or one could also say that the
projection to signal subspace is maximized.

* |In addition to ¢ other parameters may be estimated simultaneously
* ML estimates for the signals and noise variance can be calculated

b i .
y 5’2 = mTY{HﬁE} and é(n) = ATX(H)
where AT is the Moore-Penrose pseudoinverse of A. -

469

DML method in DoA Estimation

* Typically ¥ = < Zj—il x(i)x™ (i) but other estimates of covariance
may also be used.

 The method is the same as the least squares fitting method (which
is ML in Gaussian case)

* DML method does not achieve the Cramer-Rao lower bound when
N — oo for finite M. The number of unknowns s(k) increases when
the number of observations increases.

* Non-linear multidimensional optimization problem. One could use
Gauss-Newton methods or alternating projection method such as

SAGE (EM-algorithm). Spectral methods (BF, MVDR, MUSIC)

used as initial estimates to Gauss
Newton method
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Stochastic Maximum Likelihood method

* In SML the signal vector s is modeled as a zero mean and
temporally white circular Gaussian random process distributed as

CN(0, )

where circular means that E[s(k)s(k)7] = 0.

* The noise are assumed to be Gaussian distributed as well, hence
the observations x are temporally white and distributed as

CN(0,X)
* |ts second order moments are given by
E{s()s™(k)} = 2.6 and E{s()sT(k)} =0

where ¢;; is the Kronecker delta and X, signal covariance matrix.

Aalto University
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Stochastic Maximum Likelihood method

* The above expression implies that the real and imaginary parts of

any marginal component of s(n) are independent and identically
distributed.

» Some key assumptions
—therank of X, is K’ < K.
— to ensure parameter identifiability K < (M + K')/2.
— noise v(n) is assumed to be zero mean spatially and temporally

white circular Gaussian process
E{v()v?(k)} =a*Iéy, and E{v()v'(k)} =0.
— signal and noise are mutually independent.

* From Gaussianity it follows that that the negative log likelihood
function of the snapshot data x(1)... ., x(n) is proportional to

1(0, ., 0%) = THIT45)]

21.11.2021
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Stochastic Maximum Likelihood method

* \We can write the likelihood: )
16, s, 0%) = log | AL, A + o21| + Tr{(AX. A +21) 715}

where | - | stands for the determinant, Tr denotes the trace, and
0=1[6,..., 0x]T and & = AL A" 4 o1

* For fixed #, the minimum with respect to o2 and ¥, can be shown to

be i on
Tr{II X}

gl M—K

¥.(0) = AT —6%(9)1)ATH.

* Finally, the estimate of 6 is
Osmr = al'g{n}ginlog |AY,(6) AT +62(0)I]}.
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Stochastic Maximum Likelihood method

* Converges for large N

» Asymptotically SML reaches the CRLB for Gaussian s(k), itis
consistent and asymptotically efficient. To conclude SML is optimal.

* For small number of sensors, low SNR and highly correlated
signals SML estimates are significantly better that deterministic ML

estimates (DML).
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CRLB for DoA Estimation

* Let us have an array of M sensors and K signals with AoA’s
0 = [01,...,0k] impinging the array. Signals are assumed to be
stochastic, hence we talk about stochastic CRLB. The number of
snapshots is N.

* Cramer-Rao Lower Bound gives the lowest possible variance for an
unbiased estimator. It is defined as the inverse of the Fisher
Information Matrix.

Slepian-Bangs formula can be used in Gaussian models
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CRLB for DoA Estimation

* By employing asymptotical analysis of ML estimate of @ and by
using the fact that the covariance matrix of the ML estimator
asymptotically coincides with the CRB, we find the CRB (as
function of the incident angles 0) as

o2

CRLB(60) = 2= { Re[(AMTLA) © (S ATS AR )]} @)

where A = [4;,...,0k] with §;, = d‘:g) ,isa M x K vector
6=~0y

containing the derivative of the array steering vector with respect to

the angle, evaluated at a certain DoA 6., A isthe M x K array

steering matrix, 3; is the K x K signal covariance matrix, ., is the

M x M array covariance matrix, N is the number of snapshots, o2

is the AWG noise power and - denotes the Hadamard-Schur —
product, i.e., element-wise muiltiplication of matrices. 1112001
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CRLB for DoA Estimation

» Iic[s] means that real part is taken

* Moreover, 11, =1 — 11, is the M x M projection matrix to noise
subspace where IT, = A(A¥ A)~1A¥ is the M x M projection
matrix to signal subspace.

» The following approximate formula was found by Stoica and
Nehorai:

-~ 0
6 SNHR; Approximation for
CRLB(coc, 00) = T o Large arrays and high
M3N SNR, for ULAs only
1
0 SNREk

for sufficiently large array sizes M and number of snapshots V.
SN R; denotes the SNR for the ith signal.
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EX: CRLB for DoA Estimation

 CRLB as function of snapshots N for 8-element ULA. SNR = 20
dB, 2 sources at angles 10 and 30 degrees. Error variances of
MVDR, MUSIC and ESPRIT are shown as well.

SNR-10, 9,~10% ¢ 307, N-g, 0.5k

S T
£ MUsIC
- TLE-ESPRIT
—&— Siochastic CRE
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Model Order / Number of Signals Estimation

 Different ways to estimate the number of signals:
— Hypothesis testing: Generalized Likelihood Ratio Test (GLRT)
— Akaike Information Criterion (AIC)
— Minimum Description Length (MDL) by Rissanen

* Typically eigenvalues of the covariance matrix are employed

* MDL technique presented here is consistent

* MDL estimates the number of signals by finding an integer
k€{0,1,..., M — 1} which minimizes the criterion

1

)1/{_-’\-1—k} =R
+5k(2M—k)log N,

M 3
(Hz‘:k+l Ai

MDL(k) = —log A
1 M
T Dimk+1 i

where 5\1-, i=1...., M are the eigenvalues of the sample

covariance matrix. 21.11.2021
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Model Order / Number of Signals Estimation

» Signals and noise are assumed to be Gaussian in the derivation of
the criterion.

* The ratio of geometric and arithmetic mean of the eigenvalues tests
the equality of the noise subspace eigenvalues (symmetry of the
noise subspace)

* Noise power may be estimated as

M

i 1 .
C=TTR 2

i=K+1

i.e, the arithmetic mean of the noise subspace eigenvalues and the
noise covariance matris estimate is ¥, = o2/

In some special cases Bayesian Information Criterion (BIC)
has the same form as MDL. This array processing model is one such case.
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Coherent or correlated signals

* Multipath propagation or intentional jamming may cause the
received signal from different 0, to be perfectly correlated

* Consequently, signal covariance matrix may not be of full rank
« Maximum Likelihood methods can deal with such situations
» Subspace methods obviously perform poorly

* Weighted subspace fitting can deal with coherent signals as well
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Spatial Smoothing

* |n the case of ULA, the DOAs can, however, be estimated by using
spatial smoothing preprocessing step.

* A preprocessing step called spatial smoothing is applied to build
the rank of the array covariance matrix

— Subdivide the array of M sensors into subarrays of P sensors
— compute sample covariance matrices for the subarrays
— Average the subarrays (forward-backward averaging)

— Plug in the averaged covariance matrix resulting from spatial
smoothing to your favourite subspace methdod

— The penalty we pay is that only 21//3 sources may be resolved.

* Let x;‘r denote the received signals at the [th forward subarray i.e.

X;f == [:.'Ifg. - ,.ITH__p_i)T.
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Spatial Smoothing

x|
xl .
I =1
o |
| 1
x| o Tp rpil TM—-1 Tpf
= |
b
X1 |
b
L= | X2
b
4,
The forwardibackward spatial smoothing scheme.
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Spatial Smoothing

* Let x? denote the complex conjugate of the received signals at the
[th backward subarray

b # . T
X = (Th—141- - s T—pP—i42) -

* Let D! denote the Ith power of the diagonal matrix
i)— diag{e—_}?a‘r{df)x) cos(f1) e—err(d,‘/\} cos{ﬁ';{)}_

« Adapting the same notation as before, we can model x/ and x! as:
x{ = AD0 Vst vf and x} = ADUD (DMDs)" 4 v}

where A = [a(f,),...,a(0k)] with a(f,.) beingthe P x 1 (P > K)

array steering vector corresponding to the DOA of the kth signal
component, and v; and v are noise vectors.
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Spatial Smoothing

* The forward-averaged spatially-smoothed covariance matrix 7 is
defined as the sample mean of the subarray covariance matrices

L
2%,
=1

H
where &/ = E{x/x/ '}and L= M - P +1.
* The backward averaged spatially smoothed covariance matrix is

b 1 - b
2= T
=1

=

e e

where ¥/ — B{xix™1.
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Spatial Smoothing

 The forward/backward spatial smoothed covariance matrix X is
defined as
a E-f € Zh
¥y = —— (3)
« it is possible to choose P such that the P — K smallest eigenvalues

of 3 are equal and the corresponding eigenvectors are orthogonal
to the columns of the matrix A

» The DOAs of the coherent signals can be estimated using any
subspace algorithm and an estimate of .
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Thank you for your attention!




