PHYS-C0252 - Quantum Mechanics Part 2 22.11.2021-10.12.2021

Tapio.Ala-Nissila@aalto.fi

1. Harmonic Oscillators (Recap) 1.1 Classical Harmonic Oscillators

- Harmonic oscillators appear in many applications in physics (lattice vibrations i.e. phonons, photons etc.)
- For interacting atoms in a classical solid lattice we can write in general

$$
H=\sum_{i=1}^{N} \frac{\vec{p}_{i}^{2}}{2 m}+V\left(\overrightarrow{r_{1}}, \overrightarrow{r_{2}}, \ldots, \overrightarrow{r_{N}}\right)
$$

Ideal lattice positions \vec{R}_{j}

For small displacements $\vec{u}_{j}=\vec{r}_{j}-\vec{R}_{j}$ around the equilibrium positions \vec{R}_{j} the interaction potential can be expanded in Taylor series as

$$
V \approx V_{0} \sum_{i, j} \underbrace{\frac{\partial V^{j}}{\partial x_{i}}}_{=0} u_{x_{i j}}+\frac{1}{2} \sum_{i, j ; k, l} \frac{\partial^{2} V^{k l}}{\partial x_{i} \partial x_{j}} u_{x_{i} k} u_{x_{j} l}
$$

which is called the Harmonic Approximation
The classical pendulum of Sec. 3.6 is an example of this expansion (cf. Eq. (3.8))

- By diagonalizing (in normal coordinates) the classical harmonic Hamiltonian can be written as

$$
H\left(q_{1}, \ldots, q_{N}, p_{1}, \ldots, p_{N}\right)=\sum_{i=1}^{3 N}\left(\frac{p_{i}^{2}}{2 m}+\frac{1}{2} m \omega^{2} q_{i}^{2}\right)
$$

for identical but distinguishable particles in 3D space.

- The equations of motion can be obtained from the standard Hamilton equations as

$$
\begin{aligned}
\dot{p}_{i} & =-\frac{\partial H}{\partial q_{i}} \\
\dot{q}_{i} & =\frac{\partial H}{\partial p_{i}}
\end{aligned}
$$

- The equations of motion are linear and can be easily solved (1D homework problem)...

1.2 Quantum Harmonic Oscillators

- Consider a single 1D QHO whose Hamiltonian is given by (Sec. 4.2)

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{q}^{2}
$$

which we have obtained by simple quantization from the classical Hamiltonian as $x \rightarrow \hat{q}, p \rightarrow \hat{p}$ where

$$
[\hat{q}, \hat{p}]=\imath \hbar
$$

Next it is useful to define adimensional operators as

$$
\begin{equation*}
\hat{Q} \equiv\left(\frac{m \omega}{\hbar}\right)^{\frac{1}{2}} \hat{q} ; \hat{P} \equiv\left(\frac{1}{m \hbar \omega}\right)^{\frac{1}{2}} \hat{p} \tag{6}
\end{equation*}
$$

which now satisfy

$$
[\hat{Q}, \hat{P}]=\imath
$$

This gives us the Hamiltonian

$$
\hat{H}=\frac{1}{2} \hbar \omega\left(\hat{P}^{2}+\hat{Q}^{2}\right)
$$

The next trick is to introduce two new operators that are Hermitian conjugates as

$$
\hat{a} \equiv \frac{Q+\imath P}{\sqrt{2}} ; \quad \hat{a}^{\dagger} \equiv \frac{\hat{Q}-\imath P}{\sqrt{2}} ;
$$

that now satisfy

$$
\left[\hat{a}, \hat{a}^{\dagger}\right]=1
$$

The 1D Q.H.O. Hamiltonian can now be written as

$$
\hat{H}=\frac{1}{2} \hbar \omega\left(\hat{a} \hat{a}^{\dagger}+\hat{a}^{\dagger} \hat{a}\right)=\hbar \omega\left(\hat{a} \hat{a}^{\dagger}-\frac{1}{2}\right)=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)
$$

Note that no matter how you write this, it has to be Hermitian (why?)

- The importance of this form is that it allows us to obtain a fully algebraic solution for the QHO without having to explicitly solve for the Schrödinger equation. The formal (eigen)solution is given by

$$
\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)|\nu\rangle=N|\nu\rangle
$$

where N is the eigenvalue of the operator $\hat{a}^{\dagger} \hat{a}$ which is called the number operator

$$
\hat{N} \equiv \hat{a}^{\dagger} \hat{a}
$$

It obeys (homework)

$$
[\hat{N}, \hat{a}]=-\hat{a} ;\left[\hat{N}, \hat{a}^{\dagger}\right]=\hat{a}^{\dagger}
$$

- Let us assume that \hat{N} has a complete set of orthogonal eigenvectors s.t. $\hat{N}|n\rangle=n|n\rangle$. Then it follows that (prove)

$$
\hat{N} \hat{a}|n\rangle=\hat{a}(\hat{N}-1)|n\rangle=(n-1) \hat{a}|n\rangle
$$

Similarly

$$
\hat{N} \hat{a}^{\dagger}|n\rangle=\hat{a}^{\dagger}(\hat{N}+1)|n\rangle=(n+1) \hat{a}^{\dagger}|n\rangle
$$

It was shown in Chapter 4 that the eigenvalues must be non-negative and the spectrum is bounded from below by the ground state for which $n=0$.

- The squared norm of $\hat{a}^{\dagger}|n\rangle$ can be calculated as

$$
(\langle n| \hat{a})\left(\hat{a}^{\dagger}|n\rangle\right)=\langle n|(\hat{N}+1)|n\rangle=(n+1)\langle n \mid n\rangle
$$

and thus $\quad \hat{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$

Thus any eigenstate | $n>$ can be written as (prove)

$$
|n\rangle=(n!)^{-1 / 2}\left(\hat{a}^{\dagger}\right)^{n}|0\rangle
$$

Another important result is that the all the matrix elements can be simply calculated as

$$
\begin{aligned}
& \left\langle n^{\prime}\right| \hat{a}^{\dagger}|n\rangle=(n+1)^{1 / 2} \delta_{n^{\prime}, n+1} \\
& \left\langle n^{\prime}\right| \hat{a}|n\rangle=n^{1 / 2} \delta_{n^{\prime}, n-1}
\end{aligned}
$$

- Finally, we can read off the eigenvalues of the Hamiltonian as

$$
\hat{H}|n\rangle \equiv E_{n}|n\rangle=\hbar \omega\left(n+\frac{1}{2}\right)|n\rangle
$$

