PHYS-C0252 - Quantum Mechanics Part 2 Section 1.3

Tapio.Ala-Nissila@aalto.fi

1.3 QHO in the position basis

- Another way of solving for the eigenfunctions and -values of the QHO is based on writing the Schrödinger equation in its natural position basis, where we define the wave function as $\psi(x) \equiv\langle x \mid \psi\rangle$
- This is a coordinate representation by using the basis set $\{\mid x>\}$ of the position operator \hat{q}
- The Schrödinger equation becomes

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)+\frac{m \omega^{2}}{2} x^{2} \psi(x)=E \psi(x)
$$

To simplify the equation, it is useful to define

$$
q=\left(\frac{m \omega}{\hbar}\right)^{1 / 2} x ; \lambda=\frac{2 E}{\hbar \omega} ; \quad \psi(x)=u(q)
$$

which gives (check)

$$
\frac{d^{2} u}{d q^{2}}+\left(\lambda-q^{2}\right) u=0
$$

This is an inhomogeneous but linear DE which can be solved in multiple ways. The easiest is to write $u(q)$ as

$$
u(q)=H(q) e^{-q^{2} / 2}
$$

where the functions (polynomials) $H(q)$ satisfy the DE

$$
H^{\prime \prime}-2 q H^{\prime}+(\lambda-1) H=0
$$

- The solutions of this DE are polynomial Hermite functions of order n that can be explicitly constructed by inserting a power law expansion to the DE (homework problem). This requires that $\lambda=2 n+1$ which gives

$$
E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)
$$

- The Hermite polynomials can be generated through

$$
H_{n}(y)=(-1)^{n} e^{y^{2}} \frac{d^{n}}{d y^{n}} e^{-y^{2}}
$$

- The complete, normalized eigenfunctions of the QHO are given by

$$
\begin{aligned}
& \psi_{n}(x)=\left(\frac{\alpha}{\sqrt{\pi} 2^{n} n!}\right) H_{n}(\alpha x) e^{-\alpha^{2} x^{2} / 2} \\
& \alpha=\sqrt{m \omega / \hbar}
\end{aligned}
$$

$$
\psi_{n}(x)=\left(\frac{\alpha}{\sqrt{\pi} 2^{n} n!}\right) H_{n}(\alpha x) e^{-\alpha^{2} x^{2} / 2}
$$

$$
\xi=\sqrt{m \omega / \hbar} x
$$

$$
\mathrm{V}(\mathrm{z})) \quad E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega
$$

$$
\psi_{n}(x)=\left(\frac{\alpha}{\sqrt{\pi} 2^{n} n!}\right) H_{n}(\alpha x) e^{-\alpha^{2} x^{2} / 2} \quad \xi=\sqrt{m \omega / \hbar} x
$$

Probability (density) of finding the particle at any given point

- The importance of the Hermite functions is that they form a complete, orthogonal set of eigenfunctions in the Hilbert space, where the inner product is defined by

$$
\int_{-\infty}^{\infty} H_{n}(\xi) H_{k}(\xi) e^{-\xi^{2}} d \xi=0 \quad \text { for } \quad n \neq k
$$

The complete set of orthonormal eigenfunctions

$$
\int_{-\infty}^{\infty} d x \psi_{n}^{*}(x) \psi_{k}(x)=\delta_{n k}
$$

is given by
$\psi_{n}(x)=2^{-n / 2}(n!)^{-1 / 2}\left(\frac{m \omega}{\hbar \pi}\right)^{1 / 4} e^{-m \omega x^{2} /(2 \hbar)} H_{n}\left(\sqrt{\frac{m \omega}{\hbar}} x\right)$

