PHYS-C0252 - Quantum Mechanics Part 2 Sections 2-3

Tapio.Ala-Nissila@aalto.fi

2. Free Particles and Plane Waves

- Consider a free particle that does not experience any external potential in space. Going back to the symbolic notation, let us define the position and momentum (right) eigenvectors as

$$
\hat{q}|x\rangle=x|x\rangle ; \quad \hat{p}|p\rangle=p|p\rangle
$$

and correspondingly the left eigenvectors

$$
\langle x| \hat{q}=\langle x| x ; \quad\langle p| \hat{p}=\langle p| p
$$

The left and right eigenvectors are orthonormal:

$$
\left\langle x^{\prime} \mid x\right\rangle=\delta\left(x^{\prime}-x\right) ; \quad\left\langle p^{\prime} \mid p\right\rangle=\delta\left(p^{\prime}-p\right)
$$

and they form complete orthonormal sets that can be inserted between any states when necessary:

$$
\int d x|x\rangle\langle x|=1 ; \quad \int d p|p\rangle\langle p|=1
$$

Now we can define the momentum operator in the position basis as (can be derived by inserting p basis and partial integration)

$$
\left\langle x^{\prime}\right| \hat{p}|x\rangle=\delta\left(x^{\prime}-x\right) \frac{\hbar}{\imath} \frac{d}{d x}
$$

and the position operator in the momentum basis as

$$
\left\langle p^{\prime}\right| \hat{q}|p\rangle=-\delta\left(p^{\prime}-p\right) \frac{\hbar}{\imath} \frac{d}{d p}
$$

Now we can solve for the momentum eigenstate in the position basis $\psi_{p}(x)=\langle x \mid p\rangle$ from the DE

$$
\langle x| \hat{p}|p\rangle=\frac{\hbar}{\imath} \frac{d}{d x}\langle x \mid p\rangle=p\langle x \mid p\rangle
$$

This equation comes about from the fact that

$$
\begin{aligned}
\langle x| \hat{p}|p\rangle & =\int d x^{\prime}\langle x| p\left|x^{\prime}\right\rangle\left\langle x^{\prime} \mid p\right\rangle=\int d x^{\prime} \delta\left(x-x^{\prime}\right) \frac{\hbar}{\imath} \frac{d}{d x^{\prime}}\left\langle x^{\prime} \mid p\right\rangle \\
& =\frac{\hbar}{\imath} \frac{d}{d x}\langle x \mid p\rangle
\end{aligned}
$$

Thus we have the differential equation

$$
\frac{\hbar}{\imath} \frac{d}{d x}\langle x \mid p\rangle=p\langle x \mid p\rangle
$$

The solution to this DE is a simple plane wave

$$
\langle x \mid p\rangle=\sqrt{\frac{1}{2 \pi \hbar}} e^{\imath p x / \hbar}
$$

where $p=\hbar k$. The corresponding momentum eigenstate in the momentum basis is

$$
\psi_{p}\left(p^{\prime}\right)=\left\langle p^{\prime} \mid p\right\rangle=\delta\left(p-p^{\prime}\right)
$$

The normalized position eigenstate in the momentum basis can be obtained from

$$
\langle p \mid x\rangle=\langle x \mid p\rangle^{\dagger}=\sqrt{\frac{1}{2 \pi \hbar}} e^{-\imath p x / \hbar}
$$

and the normalized position eigenstate in the position basis is (of course)

$$
\psi_{x}(x)=\left\langle x^{\prime} \mid x\right\rangle=\delta\left(x-x^{\prime}\right)
$$

Note that these results can be immediately obtained from the Schrödinger equation (in the position basis)

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}=0
$$

- Let us next look at the time dependence of the plane waves in the position basis. The time-dependent Schrödinger equation is

$$
\imath \hbar \frac{\partial \Psi(x, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi(x, t)}{d x^{2}}
$$

We look for separable solutions of the form

$$
\Psi(x, t)=f(t) \psi(x)
$$

This gives

$$
\frac{\imath \hbar}{f(t)} \frac{\partial f(t)}{\partial t}=-\frac{1}{\psi(x)} \frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}
$$

Both sides must be constant (why?) and thus

$$
f(t)=e^{-\imath E t / \hbar}
$$

The solutions

$$
\Psi(x, t)=e^{-\imath E t / \hbar} \psi_{E}(x)
$$

are called stationary states because

$$
\partial_{t}|\Psi(x, t)|^{2}=0
$$

The general solution of the time-dependent wave equation can be obtained from the superposition principle

$$
\Psi(x, t)=\sum_{E} c_{E} e^{-\imath E t / \hbar} e^{\imath p x / \hbar}
$$

for the case of free particles (plane waves)

- An important generalization of this result is that if we use the completeness of the energy eigenfunctions to expand in terms of them $\psi_{E}(x)$, then in general

$$
\Psi(x, t)=\sum_{E} c_{E} e^{-\imath E t / \hbar} \psi_{E}(x)
$$

3. Particle in a Periodic Box

- Consider a free particle that traverses a box of finite (linear) size L, but no external $V(x)$ (periodic boundary conditions) s.t. $\psi_{k}(x)=\psi_{k}(x+L)$

The solution is that of the free particle, but now

$$
k=\frac{2 \pi n}{L}, n \in \mathbb{Z}
$$

The completeness relations now read as

$$
\int_{0}^{L} d x|x\rangle\langle x|=1 ; \quad \sum_{n=-\infty}^{\infty}|k\rangle\langle k|=1
$$

The wavevector eigenstate in the position basis is then simply

$$
\psi_{k}(x)=\langle x \mid k\rangle=\langle k \mid x\rangle^{\dagger}=\frac{1}{L^{1 / 2}} e^{\imath k x}
$$

