Problem Set 5

Hung Le
19/11/2021

Exercise 1-PS5

Let $f(x, y, z)=x+2 z$ be a function defined over \mathbb{R}^{3}. In addition, let $g_{1}(x, y, z)=x+y+z$ and $g_{2}(x, y, z)=x^{2}+y^{2}+z$ be two additional functions defined over \mathbb{R}^{3}. Consider the constrained maximization problem:

$$
\begin{array}{rl}
\max _{x, y, z} & f(x, y, z) \\
\text { s.t. } & g_{1}(x, y, z)=1 \\
& g_{2}(x, y, z)=\frac{7}{4}
\end{array}
$$

(a) Check if the NDCQ is satisfied.
(b) Solve the maximization problem.

Exercise 1 - Solution

$$
L=x+2 z-\lambda_{1}(x+y+z-1)-\lambda_{2}\left(x^{2}+y^{2}+z-\frac{7}{4}\right)
$$

The rank of the Jacobian of the two constraint functions is equal to 2 unless $x=y=\frac{1}{2}$, in which case the rank is equal to 1 . However, there is no point in the constraint set in which $x=y=\frac{1}{2}$. Therefore, the NDCQ is satisfied.

The first order conditions are

$$
\begin{align*}
1-\lambda_{1}-2 \lambda_{2} x & =0 \tag{1}\\
-\lambda_{1}-2 \lambda_{2} y & =0 \tag{2}\\
2-\lambda_{1}-\lambda_{2} & =0 \tag{3}\\
x+y+z & =1 \tag{4}\\
x^{2}+y^{2}+z & =\frac{7}{4} \tag{5}
\end{align*}
$$

Exercise 1 - Solution

From (3) we obtain $\lambda_{2}=2-\lambda_{1}$, which inserted into (2) gives
$\lambda_{1}(2 y-1)=4 y$. This equation implies that $y \neq \frac{1}{2}$, so $\lambda_{1}=\frac{4 y}{2 y-1}$. Inserting this into (1) with $\lambda_{2}=2-\lambda_{1}$ eventually yields $y=2 x-\frac{1}{2}$. Inserting the last expression into the two constraints yields $3 x+z=\frac{3}{2}$ and $5 x^{2}-2 x+z=\frac{3}{2}$. These two equations combined give $z=\frac{3}{2}-3 x$ and $5 x(x-1)=0$. Thus, $x=0$ or $x=1$. If $x=0$, we obtain $y=-\frac{1}{2}$, $z=\frac{3}{2}$, and $\lambda_{1}=\lambda_{2}=1$. If $x=1$, we get $y=\frac{3}{2}, z=-\frac{3}{2}, \lambda_{1}=3$, and $\lambda_{2}=-1$. Evaluating f at these two critical points we get $f(0,-1 / 2,3 / 2)=3$ and $f(1,3 / 2,-3 / 2)=-2$. Thus the only candidate for a solution is $(0,-1 / 2,3 / 2)$. Given $\lambda_{1}=\lambda_{2}=1$, the Lagrangian is a concave function in (x, y, z). So we can conclude that $(0,-1 / 2,3 / 2)$ is the solution to this maximization problem.

Exercise 2

Let $u(x, y)=x^{a} y^{1-a}$ be a Cobb-Douglas utility function, where
$0<a<1$. Use the Kuhn-Tucker formulation to solve the following utility maximization problem:

$$
\begin{array}{ll}
\max _{x, y} & u(x, y) \\
\text { s.t. } & p_{x} x+p_{y} y \leq w \\
& x \geq 0 \\
& y \geq 0
\end{array}
$$

where $p_{x}>0$ and $p_{y}>0$ are commodity prices, and $w>0$ is income.

Exercise 2 - Solution

First of all, a solution exists by Weierstrass's Theorem. The Kuhn-Tucker Lagrangian is

$$
\tilde{L}=x^{a} y^{1-a}-\mu\left(p_{x} x+p_{y} y-w\right)
$$

The first order conditions are

$$
\begin{align*}
a x^{a-1} y^{1-a}-\mu p_{x} & \leq 0 \tag{6}\\
(1-a) x^{a} y^{-a}-\mu p_{y} & \leq 0 \tag{7}\\
x\left(a x^{a-1} y^{1-a}-\mu p_{x}\right) & =0 \tag{8}\\
y\left((1-a) x^{a} y^{-a}-\mu p_{y}\right) & =0 \tag{9}\\
p_{x} x+p_{y} y & \leq w \tag{10}\\
\mu\left(p_{x} x+p_{y} y-w\right) & =0 \tag{11}\\
x \geq 0, y \geq 0, \mu & \geq 0 . \tag{12}
\end{align*}
$$

Notice that a solution must be such that $x>0$ and $y>0$. If not, total utility is zero. But then it would be feasible to attain strictly positive utility by choosing positive quantities of both commodities while satisfying the budget constraint.

Exercise 2 - Solution

Since we must have $x>0$ and $y>0$, (8) and (9) imply that both (6) and (7) hold with equality and, consequently, $\mu>0$, which in turn implies that the budget constraint is binding via (11). Combining (6) and (7), we get $y=\frac{p_{1}}{p_{2}} \frac{(1-a)}{a} x$. Combining the latter expression with the budget constraint we obtain $x=\frac{a w}{p_{x}}$ and $y=\frac{(1-a) w}{p_{y}}$, which is the unique solution.

Exercise 3

Consider the following maximization problem:

$$
\begin{array}{cl}
\max _{x, y} & x^{2}-y^{2} \\
\text { s.t. } & x^{2}+y^{2} \leq 9 \\
& x \geq-2 \\
& y \geq-1 .
\end{array}
$$

(a) Check if the NDCQ is satisfied.
(b) Form the Lagrangian and solve the problem.

Exercise 3 - Solution

(a) we check 8 cases of different values of λ_{1}, λ_{2}, and λ_{3} (whether the 3 constraints are active or not)
Case 1: $\lambda_{1}=0, \lambda_{2}=0$, and $\lambda_{3}=0$
The rank of $\operatorname{Dg}(x, y)$ is 0 . NDCQ holds.
Case 2: $\lambda_{1}>0, \lambda_{2}=0$, and $\lambda_{3}=0$
$\operatorname{Dg}(\mathrm{x}, \mathrm{y})=(2 \mathrm{x} 2 \mathrm{y})$. NDCQ holds because $\mathrm{x}^{2}+\mathrm{y}^{2}=9$.
Case 3: $\lambda_{1}=0, \lambda_{2}>0$, and $\lambda_{3}=0$
$\operatorname{Dg}(\mathrm{x}, \mathrm{y})=(-10)$. NDCQ holds.
Case 4: $\lambda_{1}>0, \lambda_{2}>0$, and $\lambda_{3}=0$
$\operatorname{Dg}(\mathrm{x}, \mathrm{y})=\left(\begin{array}{cc}2 x & 2 y \\ -1 & 0\end{array}\right)$. NDCQ holds because $x^{2}+y^{2}=9$ and $x=-2$.

Exercise 3 - Solution

(a) we check 8 cases of different values of λ_{1}, λ_{2}, and λ_{3} (whether the 3 constraints are active or not)
Case 5: $\lambda_{1}=0, \lambda_{2}=0$, and $\lambda_{3}>0$
$\operatorname{Dg}(\mathrm{x}, \mathrm{y})=(0-1)$. NDCQ holds.
Case 6: $\lambda_{1}>0, \lambda_{2}=0$, and $\lambda_{3}>0$
$\operatorname{Dg}(x, y)=\left(\begin{array}{cc}2 x & 2 y \\ 0 & -1\end{array}\right)$. NDCQ holds because $x^{2}+y^{2}=9$ and $y=-2$.
Case 7: $\lambda_{1}=0, \lambda_{2}>0$, and $\lambda_{3}>0$
$\operatorname{Dg}(\mathrm{x}, \mathrm{y})=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$. NDCQ holds.
Case 8: $\lambda_{1}>0, \lambda_{2}>0$, and $\lambda_{3}>0$
$x^{2}+y^{2}=5 \neq 9$, point $(-2,-1)$ violates the constraint set in this case.
NDCQ holds.

Exercise 3 - Solution

(b) The Lagrangian is

$$
L=x^{2}-y^{2}-\lambda_{1}\left(x^{2}+y^{2}-9\right)-\lambda_{2}(-2-x)-\lambda_{3}(-1-y)
$$

The first order conditions are

$$
\begin{align*}
2 x-2 x * \lambda_{1}+\lambda_{2} & =0 \tag{13}\\
-2 y-2 y * \lambda_{1}+\lambda_{3} & =0 \tag{14}\\
\lambda_{1}\left(x^{2}+y^{2}-9\right) & =0 \tag{15}\\
\lambda_{2}(-2-x) & =0 \tag{16}\\
\lambda_{3}(-1-y) & =0 \tag{17}\\
\lambda_{1} \geq 0, \lambda_{1} \geq 0, \lambda_{3} & \geq 0 \tag{18}\\
x^{2}+y^{2}-9 \leq 0,-2-x \leq 0,-1-y & \leq 0 . \tag{19}
\end{align*}
$$

Exercise 3 - Solution

(b) We can check 8 cases of different values of λ_{1}, λ_{2}, and λ_{3} (whether the 3 constraints are active or not). Alternatively, it might be faster to go through 4 separate cases: 1) $x=-2$ and $y=-1$;2) $x=-2$ and $y>-1$; 3) $x>-2$ and $y=-1$ and 4) $x>-2$ and $y>-1$.
Case 1: $x=-2$ and $y=-1$
We have $\lambda_{1}=0, \lambda_{2}=4, \lambda_{3}=-2$.
Eliminate this case since $\lambda_{3}<0$
Case 2: $x=-2$ and $y>-1$
We have $\lambda_{2}>0$, and $\lambda_{3}=0$.
If $\lambda_{1}=0$, then $\mathrm{y}=0, \lambda_{2}=4,(-2,0)$ is a candidate.
If $\lambda_{1}>0$, then $y^{2}=5,(-2, \sqrt{5})$ and $(-2,-\sqrt{5})$ are candidates.

Exercise 3 - Solution

Case 3: $x>-2$ and $y=-1$
We have $\lambda_{2}=0$, and $\lambda_{3}>0$.
If $\lambda_{1}=0$, then $\mathrm{x}=0, \lambda_{3}=-2$. Eliminate this case since $\lambda_{3}<0$.
If $\lambda_{1}>0$, then $x^{2}=8,(\sqrt{8},-1)$ and $(-\sqrt{8},-1)$ are candidates.
Case 4: $x>-2$ and $y>-1$
We have $\lambda_{2}=0$, and $\lambda_{3}=0$.
If $\lambda_{1}=0$, then $x=y=0,(0,0)$ is a candidate.
If $\lambda_{1}>0$, then $2 x\left(1-\lambda_{1}\right)=0$ and $-2 y\left(1+\lambda_{1}\right)=0$. Therefore, $\lambda_{1}=1$
and $y=0$. Point $(3,0)$ is a candidate.
Checking all candidates, the unique solution is $(3,0)$.

Exercise 4

Let $f(x, y)=x$ and $g(x, y)=y^{5}-x^{4}$ be two functions defined over \mathbb{R}^{2}.
Consider the following constrained problem:

$$
\begin{array}{ll}
\min _{x, y} & f(x, y) \\
\text { s.t. } & g(x, y)=0 .
\end{array}
$$

(a) Form the Lagrangian and show that it does not have any critical points.
(b) Find all the points where the NDCQ fails.
(c) Solve the constrained minimization problem.

Exercise 4 - Solution

(a) The Lagrangian is

$$
L=x-\mu\left(y^{5}-x^{4}\right)
$$

The first order conditions are

$$
\begin{align*}
1+4 \mu x^{3} & =0 \tag{20}\\
5 \mu y^{4} & =0 \tag{21}\\
y^{5}-x^{4} & =0 . \tag{22}
\end{align*}
$$

From (21) we have either $\mu=0$ or $y=0$. If $\mu=0$, (20) cannot hold. If $y=0$, then $x=0$ by (22) and, consequently, (20) cannot hold. Thus the system (20)-(22) does not admit any solution.
(b) The NDCQ fails when $\frac{\partial g}{\partial x}=\frac{\partial g}{\partial y}=0$. That is, $5 y^{4}=4 x^{3}=0$, which holds only at the point $(x, y)=(0,0)$. Notice that $(0,0)$ belongs to the constraint set.

Exercise 4 - Solution

(c) The point where the NDCQ fails is just a solution candidate but not the true solution. We do not have a solution for the constrained minimization problem because \times can go to negative infinity.

Exercise 5

Consider the following constrained minimization problem:

$$
\begin{array}{cl}
\min _{x, y, z} & f(x, y, z)=x^{2}+y^{2}+z^{2} \\
\text { s.t. } & g_{1}(x, y, z)=x+2 y+z=30 \\
& g_{2}(x, y, z)=2 x-y-3 z=10
\end{array}
$$

(a) Find the unique point that satisfies the first order conditions for optimality.
(b) Use second order conditions to show that the point you found in (a) is a local minimizer of f subject to $g_{1}(x, y, z)=30$ and $g_{2}(x, y, z)=10$.

Exercise 5 - Solution

The Lagrangian is

$$
L=x^{2}+y^{2}+z^{2}-\mu_{1}(x+2 y+z-30)-\mu_{2}(2 x-y-3 z-10) .
$$

The first order conditions are

$$
\begin{array}{r}
2 x-\mu_{1}-2 \mu_{2}=0 \\
2 y-2 \mu_{1}+\mu_{2}=0 \\
2 z-\mu_{1}+3 \mu_{2}=0 \\
x+2 y+z-30=0 \\
2 x-y-3 z-10=0 .
\end{array}
$$

The above is a system of 5 linear equations in 5 unknowns. The unique solution is $\left(x, y, z, \mu_{1}, \mu_{2}\right)=(10,10,0,12,4)$.

Exercise 5 - Solution

The bordered Hessian is:

$$
H=\left(\begin{array}{ccccc}
0 & 0 & \frac{\partial g_{1}}{\partial x} & \frac{\partial g_{1}}{\partial y} & \frac{\partial g_{1}}{\partial z} \\
0 & 0 & \frac{\partial g_{2}}{\partial x} & \frac{\partial g_{2}}{\partial y} & \frac{\partial g_{2}}{\partial z} \\
\frac{\partial g_{1}}{\partial x} & \frac{\partial g_{2}}{\partial x} & L_{x x}^{\prime \prime} & L_{x y}^{\prime \prime} & L_{x z}^{\prime \prime} \\
\frac{\partial g_{1}}{\partial y} & \frac{\partial g_{2}}{\partial y} & L_{y x}^{\prime \prime} & L_{y y}^{\prime \prime} & L_{y z}^{\prime \prime} \\
\frac{g_{1}}{\partial z} & \frac{\partial g_{2}}{\partial z} & L_{z x}^{\prime \prime} & L_{z y}^{\prime \prime} & L_{z z}^{\prime \prime}
\end{array}\right)=\left(\begin{array}{ccccc}
0 & 0 & 1 & 2 & 1 \\
0 & 0 & 2 & -1 & -3 \\
1 & 2 & 2 & 0 & 0 \\
2 & -1 & 0 & 2 & 0 \\
1 & -3 & 0 & 0 & 2
\end{array}\right) .
$$

In this problem, we have $n=3$ variables and $m=2$ constraints. We have to check the sign of the last $n-m$ leading principal minors. That is, we only need to check the sign of the determinant of the whole matrix H. This determinant is equal to 150 . Since $(-1)^{m}=1$ and $(-1)^{n}=-1$, and since $\operatorname{det}(H)>0$, we conclude that H is positive definite on the constraint set. Therefore, $(10,10,0)$ is a strict local minimizer of f over the given constraint set.

