

Lecture 10: Plasma equilibrium & (in-)stability

Today's menu

- Equilibrium and force balance
- Plasma beta
- Z-pinch
- Bennett relation
- Screw-pinch
- Magnetic safety factor and shear
- Grad-Shafranov equation
- Eigenvalue problem for instabilities
- Energy principle for instabilities

The various ways of being in equilibium

Qualitatively different equilibria depending on how likely you are to stay in $it - with$ small or large perturbations

21.11.2021 3

Equilibrium and force balance

Equilibrium \rightarrow no acceleration: $\frac{\partial}{\partial t} = 0$ Analyze the simpliest magnetic equilibrium: $\mathbf{E} = 0$, $\mathbf{v} \approx 0$, isothermal $\rightarrow 0 = -\nabla p + \mathbf{j} \times \mathbf{B}$

And we get the *force balance* between kinetic and magnetic forces:

$$
\nabla p = \boldsymbol{j} \times \boldsymbol{B}
$$

Additional information: $j \perp \nabla p \perp B$

i.e., both the confining magnetic field and current are *perpendicular* to the pressure gradient that they are holding up.

Confining current

Note: the force balance gives the relationships for ∇p , **j**, **B**. What is the current needed to hold up ∇p in given magnetic field \boldsymbol{B} ?

$$
\boldsymbol{j} = \boldsymbol{j}_{\perp} = \frac{\boldsymbol{B} \times \nabla p}{B^2} = (T_e + T_i) \frac{\boldsymbol{B} \times \nabla n}{B^2}
$$

… and we have re-discovered the *diamagnetic current* !

Typical of plasma physics: the same observed phenomenon can be obtained both from the particle picture and fluid picture – with different interpretation:

- **Particle picture:** with $\nabla n \neq 0$ the gyro motions do not cancel out
- *Fluid picture:* ∇p generates j_{\perp} so that the $j_{\perp} \times B$ exactly balances the kinetic pressure on each fluid element

Magnetic (counter-) forces

But the current and magnetic field are also related by Maxwell's equations:

$$
\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{j}
$$

$$
\blacktriangleright \nabla p = \frac{1}{\mu_0} (\nabla \times \mathbf{B}) \times \mathbf{B} \blacktriangleright
$$

$$
\nabla p = -\nabla (B^2 / 2\mu_0) + (B^2 / \mu_0) \kappa
$$

where $\boldsymbol{\kappa}$ is the *field line curvature*, $\boldsymbol{\kappa} = \frac{\boldsymbol{B}}{R}$ \boldsymbol{B} $\cdot \nabla (\frac{B}{D}$ $\frac{B}{B}$), with $|\boldsymbol{\kappa}| = 1/R_c$.

So the magnetic field exerts force to plasma in two ways:

- If the plasma tries to compress the field lines \rightarrow restoring force via *magnetic pressure:* $\frac{B^2}{2\mu}$ $2\mu_0$
- If the plasma tries to *bend* the field lines \rightarrow restoring force via *field line tension:* (B^2/μ_0) κ

Aalto University School of Science

Balancing the pressures

The field line tension that works to straighten out the field lines becomes important with *instabilities*, where the plasma tries to get out of control by (un-)bending field lines.

For 'straight' plasmas the equilibrium condition becomes

$$
\nabla (p + \frac{B^2}{2\mu_0}) = 0
$$

\n
$$
\Rightarrow p + \frac{B^2}{2\mu_0} = constant.
$$

 \rightarrow In equilibrium plasmas, the sum of kinetic and magnetic pressures is constant!

Plasma beta

So if we want to have a pressure gradient (= plasma confinement), the magnetic field strength has to diminish as we go inward!

How does that happen???

Via diamagnetic effect. \odot

The strength of the diamagnetic effect is given by a parameter called the *plasma beta*:

$$
\beta \equiv \frac{\sum n_j T_j}{B^2 / 2\mu_0}
$$

If β is NOT small, we cannot assume constant B .

Simplest case: axial field

Later: β is also a measure for the performance of B field.

So how would a real equilibrium look like?

Again, start with the simpliest geometry: *linear* device

But axial field is clearly no good due to unavoidable end losses

let's start pinching …

The z-pinch

**Aalto University
School of Science**

A different magnetic bottle

Since axial field is out of question, let's get going with axial *current*:

$$
j = j_z \rightarrow B = B_\theta
$$

Note: even though we now deal with cylindrical symmetry, we shall use the *toroidal* nomenclature:

Polar/azimuthal (angle, field) \Leftrightarrow poloidal (angle, field)

Reason: in the first approximation, many phenomena in largeaspect ratio tokamaks are analyzed in the limit $A \rightarrow \infty$, and then torus $->$ cylinder: $R\varphi \rightarrow z$

Magnetic field in z-pinch

Ampere's law in z-pinch: $\mu_0 j = \frac{1}{r}$ \boldsymbol{r} \boldsymbol{d} $\frac{d}{dr} r B_\theta$ $\left(= \frac{1}{r} \right)$ $\frac{1}{r}B_{\theta} + \frac{dB_{\theta}}{dr}$ $\frac{dr}{ }$

Assume uniform current density, $j_z = const = j_0$, $dS = r d\theta dr = 2\pi r dr$

•
$$
r > a
$$
: $I_p(r) \equiv I_p(a) = j_0 \pi a^2 \rightarrow B_\theta = \frac{\mu_0 I_p}{2\pi r}$

•
$$
r < a: \frac{d}{dr} r B_{\theta} = \mu_0 j_0 r \implies r B_{\theta} = \frac{1}{2} \mu_0 j_0 r^2 + C
$$
; B.C. @ $r = 0 \to C = 0$

$$
B_{\theta} = \frac{\mu_0 I_p}{2\pi r}, \qquad when \ r > a
$$

$$
B_{\theta} = \frac{\mu_0 I_p}{2\pi a^2} r, \qquad when \ r < a
$$

21.11.2021 12

Pressure profile in z-pinch

Force balance:
$$
\frac{dp}{dr} = -j_{z}B_{\theta} = -\frac{1}{\mu_{0}r}B_{\theta}^{2} - \frac{1}{2\mu_{0}}\frac{dB_{\theta}^{2}}{dr}
$$

\n
$$
r < a: B_{\theta} = \frac{\mu_{0}l_{p}}{2\pi a^{2}}r \rightarrow \frac{dB_{\theta}^{2}}{dr} = \left(\frac{\mu_{0}l_{p}}{2\pi a^{2}}\right)^{2} 2r
$$

\n
$$
\frac{dp}{dr} = -\left(\frac{\mu_{0}l_{p}}{2\pi a^{2}}\right)^{2} \left[\frac{r}{\mu_{0}} + \frac{r}{\mu_{0}}\right] = -\left(\frac{\mu_{0}l_{p}}{2\pi a^{2}}\right)^{2} \frac{2r}{\mu_{0}}
$$

\n
$$
\Rightarrow p(r) = -\left(\frac{\mu_{0}l_{p}}{2\pi a^{2}}\right)^{2} \frac{r^{2}}{\mu_{0}} + const. \quad \text{B.C.: } p(r = a) = 0 \rightarrow const = \frac{\mu_{0}l_{p}^{2}}{(2\pi a)^{2}}
$$

\n
$$
p = \frac{\mu_{0}l_{p}^{2}}{(2\pi a)^{2}} \left(1 - \left(\frac{r}{a}\right)^{2}\right)
$$

21.11.2021 13

B

Plasma beta in z-pinch

Let us calculate the *volume-averaged* pressure:

$$
\langle p \rangle = \frac{1}{V} \int pdV
$$

$$
V = \pi a^2 L \text{ , } dV = 2\pi r dr dz \implies = \frac{2}{a^2} \int_0^a p(r) r dr \implies = \frac{\mu_0 I_p^2}{4\pi^2 a^2} \frac{1}{2} \equiv \frac{B_\theta^2 (r = a)}{2\mu_0}
$$

 \rightarrow For z-pinch $\beta = \frac{}{R^2/(2\pi)}$ $\overline{B_\theta^2/(2\mu_0)}$ $= 1$!!!

→ z-pinch utilizes the poloidal magnetic field with 100% efficiency.

21.11.2021 14

Bennett relation

The relation $p > \frac{\mu_0}{\sqrt{2\pi a}}$ $(2\pi a)^2$ 1 $\frac{1}{2}I_p^2$ is called the *Bennett relation.*

Physics of the Bennett relation:

the good performance comes with a price …

- If the total current I_p and averaged pressure $\langle p \rangle$ are fixed, the plasma can exist *only at a single radius value* a!
- \rightarrow if you heat the plasma (= increase $\lt p >$), the plasma will *pinch*!

Isn't a small plasma a good thing?

Big magnets are expensive…

Pinching in imperfect world = first glimpse at instabilities …

Any small perturbation can make the plasma in z-pinch unstable.

Kink instability:

If the cylinder is ever so slightly bent, the magnetic pressure is smaller at the kinking part \rightarrow perturbation grows.

Sausage instability:

If the contraction of plasma is not homogeneous, the pressure at 'waist line' is stronger, pinching it further \rightarrow perturbation grows.

Aalto University School of Science Now is the time to revive the so-far-neglected term in our force balance

$$
\nabla p = -\nabla (B^2/2\mu_0) + (B^2/\mu_0)\kappa
$$

→ if we introduce an axial field *in addition* to the poloidal field, this axial field will make the cylinder stiff $=$ ensure stability of the z-pinch plasma.

To have a substantial restoring force on field lines, the *stabilizing* axial field has to be larger than the *confining* poloidal field.

… the field lines are now helical and we get a configuration called ..

The screw-pinch

Aalto University School of Science

The 'straight tokamak' …

- Drive an *axial current* by, e.g., axial electric field
- \rightarrow poloidal field B_{θ}
- Wind coils poloidally around the plasma
- \rightarrow axial magnetic field $B_{z0} \approx constant$ But that is not all:

A *pinching* plasma implies radial motion (v_r)

$$
\Rightarrow v_r \times B_z \rightarrow j_\theta \rightarrow \text{additional axial field: } \frac{dB_{z1}}{dr} = \mu_0 j_\theta
$$

Physical interpretation:

• Incompressibility of the axial magnetic field (ideal MHD)

Get 'real' …

A uniform current profile is not very realistic (HW)

 \rightarrow let's take a simple form where the current profile peaks at the center:

$$
j_z = j_0 \left(1 - \frac{r^2}{a^2}\right)^{\alpha}
$$

Then the *plasma current* inside a radius r becomes (HW)

$$
I_p(r) = j_0 \frac{\pi a^2}{\alpha + 1} \left\{ 1 - \left[\left(1 - \frac{r^2}{a^2} \right)^{\alpha + 1} \right] \right\}
$$

And the *confining* poloidal magnetic field is (HW)

$$
B_{\theta}(r) = \frac{\pi a^2}{\alpha + 1} \frac{\mu_0 j_0}{2\pi r} \left\{ 1 - \left[\left(1 - \frac{r^2}{a^2} \right)^{\alpha + 1} \right] \right\}
$$

Force balance & plasma beta are screwed

The force balance thus becomes

$$
\frac{dp}{dr} = -\frac{1}{\mu_0 r} B_\theta^2 - \frac{1}{2\mu_0} \frac{d}{dr} \left(B_\theta^2 + B_z^2 \right)
$$

where $B_z^2 = B_{z0}^2 + B_{z1}^2$.

While B_{z0} and B_{θ} are externally imposed, B_{z1} is determined by the plasma.

- \rightarrow additional degree of freedom
- \rightarrow equilibrium configuration can be found for any minor radius α !

But there is a price to pay:

Now the magnetic pressure has also a contribution from the axial field B_{z0} that does not contribute to confinement $\rightarrow \beta$ < 1.

Helical field lines & magnetic safety factor

Suddenly the field lines are *screwed = helical* The field line pitch is given by the so-called *safety factor,*

> $q \equiv$ # of toroidal turns # of poloidal turns

 \rightarrow safety factor = ratio of the toroidal to poloidal angle along the field line. Along the field line: $\frac{B_\theta}{D}$ B_{Z} $=\frac{r\Delta\theta}{R\Delta\theta}$ $R\Delta\varphi$ $\rightarrow q = \frac{\Delta \varphi}{\Delta \theta} = \frac{r}{R}$ \overline{R} $B_{\rm z}$ B_{θ} *; (remember* $2\pi R \leftrightarrow L$) The safety factor is not usually constant across the plasma **→** magnetic field lines are *sheared* radially.

The shear s can be calculated from the safety factor $q: s = \frac{r}{q}$ \overline{q} dq $\frac{dr}{ }$

What is so safe about the safety factor?

Remember:

the axial field was needed to *stabilize* the plasma against any bending. Clearly the safety factor increases with increasing axial field. High enough q thus keeps the plasma *safe* against such instability.

For instance, to stabilize the kink instability (in a tokamak) we need $q > 1$. Typically $q(r = 0) \sim 1$, $q(r = a) \sim 3$ in a 'large' aspect ratio tokamak, $R/a = 3$ $\rightarrow B_{tor} \sim 10 B_{pol}$

 \rightarrow tokamak β 's are only a few % : $\beta = \frac{}{R^2/(2\pi)^2}$ $B_{tot}^2/(2\mu_0$ $\approx \frac{}{R^2/(2)}$ $B_{tor}^2/(2\mu_0)$ $\approx \frac{1}{10}$ $\frac{1}{100}$ β_{pol}

Toroidal configurations

Aalto University School of Science

Toroidal plasma & flux surfaces

We already slipped into toroidal geometry – and there is no return:

By introducing the axial field to z-pinch we also re-introduced end losses. \odot

- \rightarrow let's eliminate the ends by going to torus!
- \rightarrow each field line traces one concentric toroidal surface. Recall:

$$
\mathbf{B}\cdot\nabla p=\mathbf{B}\cdot\mathbf{j}\times\mathbf{B}=0=\mathbf{j}\cdot\nabla p
$$

→ pressure gradient can exist only *perpendicular* to these surfaces.

The surfaces are called *flux surfaces* because they are defined by …

Flux integrals

Toroidal magnetic flux:

• Integrate toroidal field through a vertical surface spanned by one of the concentric plasma surfaces

flux surface label that steadily increases from magnetic axis

Poloidal magnetic flux:

Aalto University School of Science

- Integrate poloidal field through a horizontal surface that increases in size from edge towards magnetic axis
	- *flux surface label that steadily decreases from magnetic axis*

Toroidal current: similarly $I_{tor} = \int \boldsymbol{j} \cdot d\boldsymbol{a}_{\varphi} = \frac{1}{\mu}$ μ_0 $\oint \bm{B}\cdot d\bm{l}_{\bm{\varphi}}$

Poloidal current: similarly $I_{pol} = \int \boldsymbol{j} \cdot d\boldsymbol{a}_{\theta} = \frac{1}{\mu}$ μ_0 $\oint \bm{B}\cdot d\bm{l}_{\bm{\theta}}$ *Either of the magnetic fluxes can be used as a generalized radial coordinate for plasmas with arbitrary cross section.*

Magnetic field in terms of …

$$
\Psi_{pol} = 2\pi \int_0^R B_z(R', z) R' dR'
$$

$$
\Rightarrow B_z(R, z) = \frac{1}{2\pi R} \frac{\partial \Psi_{pol}(R, z)}{\partial R}
$$

Total magnetic field has to be divergence free: $\nabla \cdot \mathbf{B} = 0$

$$
\blacktriangleright B_R(R, z) = -\frac{1}{2\pi R} \frac{\partial \Psi_{pol}(R, z)}{\partial z}
$$

 \rightarrow the poloidal magnetic field can be expressed as

$$
\blacktriangleright \boldsymbol{B}_{pol} = B_R \nabla R + B_Z \nabla Z = \frac{1}{2\pi R} \left(-\frac{\partial \Psi_{pol}}{\partial z} \nabla R + \frac{\partial \Psi_{pol}}{\partial R} \nabla Z \right) \equiv \frac{1}{2\pi} \nabla \Psi_{pol} \times \nabla \varphi
$$

(In cylindrical coordinates: $R\nabla\varphi = \nabla z \times \nabla R$)

21.11.2021 27

… the flux functions

How about the toroidal field?

Use the definition of poloidal current: $I_{pol} = \frac{1}{\mu}$ μ_0 $B_{tor} \cdot 2\pi R$

$$
\blacktriangleright B_{tor} = \frac{\mu_0 I_{pol}}{2\pi R} \blacktriangleright B_{tor} = \frac{\mu_0 I_{pol}}{2\pi} \nabla \varphi
$$

$$
\rightarrow
$$
 Total magnetic field: $B_{tot} = \frac{1}{2\pi} \left(\nabla \Psi_{pol} \times \nabla \varphi + \mu_0 I_{pol} \nabla \varphi \right)$

This is associated with the current density given by Ampere's law:

 $j=\frac{1}{n}$ μ_{0} $\nabla \times \boldsymbol{B} = ...$ which takes a little work to give ..

Grad-Shafranov equation

$$
\boldsymbol{j} = \frac{1}{2\pi\mu_0} \big(\mu_0 \nabla I_{pol} \times \nabla \varphi - \Delta^* \Psi_{pol} \nabla \varphi \big)
$$

Where $\Delta^*\Psi_{pol}\equiv R^2\nabla\cdot\frac{\nabla\Psi_{pol}}{R^2}$ R^2 is the so-called *Stokes operator.*

In cylindrical coordinates: $\Delta^* = R \frac{\partial}{\partial t}$ ∂R 1 \overline{R} ∂ ∂R $+\frac{\partial^2}{\partial z^2}$ ∂z^2

For those brave of heart, plug these expressions into the force balance \rightarrow

$$
\Delta^* \Psi_{pol} = -\mu_0 2\pi R j_\varphi = -\mu_0 (2\pi R)^2 p' - \mu_0^2 I'_{pol} I_{pol}
$$

This is called the *Grad-Shafranov equation* and it gives the *equilibrium* (= flux surface structure Ψ_{pol}) dictated by the pressure profile and the currents.

Not a piece of cake: *non-linear elliptic PDE – remember:* $p = p(\Psi_{pol})$

How to determine the stability of our equilibria?

Aalto University

Stability of an equilibrium

Recall start of the lecture: equilibria can vary wrt their *stability properties.*

After solving for our equilibrium, how can we find whether it is stable or not?

At least two methods:

- 1. As an eigenvalue problem
- 2. Via energy principle

Intuitive approach to stability

Let's once again perturb our *equilibrium* and make a *linear stability analysis* by writing all terms as $f = f_0 + f_1$ and keeping only terms up to first order.

Here our primary quantity is the *plasma displacement,* ξ : $\mathbf{v}_1 = \frac{d\xi}{dt}$ dt

This means that we have to *integrate in time* many of the MHD equations. Starting with our standard, simple plasma, the linearized equations become:

Continuity: $\rho_1 = -\nabla \cdot (\rho_0 \xi)$ *Equation of state:* $p_1 = -p_0 \gamma \nabla \cdot \boldsymbol{\xi} - \boldsymbol{\xi} \cdot \nabla p_0$ *Faraday + Ohm:* $B_1 = \nabla \times (\xi \times B_0)$

Instability as an eigenvalue problem

And last but not least (using also Ampere's law) …

The equation of motion:

$$
\rho_0 \frac{\partial^2 \xi}{\partial t^2} = \frac{1}{\mu_0} \left[(\nabla \times \boldsymbol{B}_0) \times \boldsymbol{B}_1 + (\nabla \times \boldsymbol{B}_1) \times \boldsymbol{B}_0 \right] + \nabla (p_0 \gamma \nabla \cdot \boldsymbol{\xi} + \boldsymbol{\xi} \cdot \nabla p_0)
$$

This can be expressed as $\rho_0 \frac{\partial^2 \xi}{\partial t^2}$ $\frac{\partial}{\partial t^2} = F(\xi)$

Now applying the Fourier decomposition gives $\omega^2 \rho_0 \xi = F(\xi)$ Which is an *eigenvalue problem* for ω^2 and gives the stability:

•
$$
\omega^2 > 0 \rightarrow \text{stable}
$$

• ω^2 < 0 \rightarrow unstable

 \rightarrow not only do we get the (in-)stability, but even the *growth rate, Im(* ω *)*!

Energy principle in stability analysis

Unfortunately, the eigenvalue problems tend to be mathematically very complicated and can be solved only numerically.

However, if one is only interested whether a given equilibrium is stable or not, one can apply the *energy principle:*

Multiply the eigenvalue problem by ξ^* , the complex-conjugate of ξ , and integrate over the whole volume \rightarrow

$$
\omega^2 \int |\xi|^2 dV = - \int \xi^* \cdot F(\xi) dV
$$

LHS: clearly the *kinetic energy* of the system, $K(\xi, \xi^*)$ RHS: the *work* done against the force $F \rightarrow$ potential energy $\delta W(\xi, \xi^*)$

Understanding the energy principle

So we have a very simple-looking equation for ω^2 : $\omega^2 = \frac{\delta W(\xi,\xi^*)}{K(\xi,\xi^*)}$ $K(\xi,\xi^*)$

But we don't have to solve that to find the stability: $K(\xi, \xi^*) > 0$ always \rightarrow Stability of the equilibrium is given by $\delta W(\xi, \xi^*)$:

- $\delta W(\xi, \xi^*) > 0$ \rightarrow a stable equilibrium
- $\delta W(\xi, \xi^*) < 0$ \rightarrow unstable equilibrium.

Looks easy? Not necessarily:

- There is a lot of sophisticated math skipped here
- One has to come up with an appropriate test function ξ
- *SW* has actually three terms: plasma+vacuum+surface ...

