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I. INTRODUCTION

In this lecture we study the phenomenon of amplification of signals. Amplifiers are very

useful devices: they allow us to bring the signal of interest above the noise level, so it can

be measured and recorded. Usually in mesoscopic physics one encounters rather standard

room-temperature amplifiers as well as more specialized cryogenic (typically microwave-

range) HEMT (high electron mobility transistors) amplifiers. As we will see, in the process

of amplification, an amplifier would inevitably add its own noise to the signal. This is an

unwanted process, and in this lecture we will investigate one way to reduce it, namely by

the use of the process of parametric amplification. The applications of quantum amplifiers

include the generation of entangled states, squeezing of the vacuum noise, and back-action

evading measurements of position.

II. CLASSICAL PARAMETRIC EXCITATION

To develop an intuition about what is parametric amplification, it is useful to start

with the classical case. Consider a simple system, such as a harmonic oscillator with bare

oscillation frequency ω0 and with a friction force proportional to the speed and characterized

by a friction coefficient κ. Imagine now that we change the frequency of the oscillator,

ω0 → ω(t). The classical equation of motion is

d2x(t)

dt2
+ κ

dx(t)

dt
+ ω2(t)x(t) = 0. (1)

An elegant way of getting rid of the first-derivative friction term is to imagine that its role

will be anyway to produce an exponential decay of the solution. This intuition is correct -

let us make the substitution

x(t) = e−
κ
2
tq(t). (2)

One can immediately verify that it produces a new equation without the friction term but

with a renormalized frequency for the harmonic oscillator,

d2

dt2
q(t) +

[
ω2(t)− κ2

4

]
q(t) = 0. (3)

Let us define the time-independent renormalized frequency as

ω2
n = ω2

0 −
κ2

4
, (4)
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and we include the time-dependent part of ω(t) in a dimensionless function f(t)

ω2(t) = ω2
0 + ω2

nf(t). (5)

With these notations we can rewrite Eq. (3)

d2

dt2
q(t) + ω2

n [1 + f(t)] q(t) = 0. (6)

Let us now consider a particular form for the function f(t), namely f(t) = f0 sinωpt,

where ωp is called pump frequency. As we will see, the important case is when ωp/2

is close to the natural oscillation frequency of the harmonic oscillator - in other words the

oscillator is pumped at twice its natural frequency. In this case we will have the phenomenon

of parametric resonance. We would like now to solve approximately Eq. (6). For this,

let us separate the dynamics of q(t) into a fast dynamics, with frequency ωp and amplitudes

a(t) and a∗(t) that are comparatively slow. We search for a solution

q(t) = a(t)e−i
ωp
2
t + a∗(t)ei

ωp
2
t. (7)

Let us plug this in Eq. (6). Because a(t) and a∗(t) are assumed slow, we can neglect their

second-order derivatives. Of course, this has to be justified self-consistently (the solutions

that we get for a(t) and a∗(t) should indeed be slow compared to ωp/2). Also we neglect

fast-oscillating terms at frequencies ±3ωp/2, which is similar to doing a rotating wave ap-

proximation. With this, we get

ωp
d

dt
a(t) =

f0
2
ω2
na
∗(t) + i

[(ωp
2

)2
− ω2

n

]
a(t), (8)

ωp
d

dt
a∗(t) =

f0
2
ω2
na(t)− i

[(ωp
2

)2
− ω2

n

]
a∗(t). (9)

Next, let us make the substitution

a(t) = r(t)eiθ(t), (10)

which, when inserted in Eq. (8), produces

ṙ cos θ − rθ̇ sin θ =
f0

2ωp
ω2
nr cos θ − (ωp/2)2 − ω2

n

ωp
r sin θ, (11)

−ṙ sin θ − rθ̇ cos θ =
f0

2ωp
ω2
nr sin θ − (ωp/2)2 − ω2

n

ωp
r cos θ. (12)
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Next, we multiply the first equation by cos θ and the second by sin θ and substract them;

then we multiply the first by sin θ and the second by cos θ and add them. We find

dr

dt
=
f0ω

2
n

2ωp
r cos θ, (13)

dθ

dt
= −f0ω

2
n

2ωp
(sin 2θ − sin 2θ∞), (14)

where

sin 2θ∞ =
2

f0ω2
n

[(ωp
2

)2
− ω2

n

]
. (15)

Now, let us look at Eq. (14). We are interested in the long-term (asymptotic) behavior of

the solution. Let us consider a small difference between θ and θ∞; then we linearize

sin 2θ − sin 2θ∞ = 2 cos(θ + θ∞) sin(θ − θ∞) ≈ 2(θ − θ∞) cos 2θ∞. (16)

Then the solution of Eq. (14) is

θ(t) = θ∞ + [θ(0)− θ∞] exp

[
−f0ω

2
n

ωp
(cos 2θ∞)t

]
. (17)

Clearly the phase evolves asymptotically towards the value θ∞ given by Eq. (15), a phe-

nomenon called phase locking.

Next, we solve Eq. (13) with the phase locked to θ∞. The result is

r(t) = r(0) exp

[
f0ω

2
n

2ωp
(cos 2θ∞)t

]
. (18)

Here the initial values of r and θ are set by x(0) = 2r(0) cos θ(0). In terms of the original

variable x, we get

x(t) = 2r(0) exp

[(
f0ω

2
n

2ωp
cos 2θ∞ −

κ

2

)
t

]
cos
[
θ(t) +

ωp
2
t
]
. (19)

This shows that there exists a regime where x(t) increases exponentially with time, if

f0ω
2
n

2ωp
cos 2θ∞ −

κ

2
> 0 (20)

is satisfied. This results in a parametric instability of the system. Obviously the max-

imum growth rate happens at resonance ωp/2 = ωn (resulting in θ∞ = 0) which is the

condition for parametric resonance.

One wonders if this effect can be used to amplify signals. Indeed, if we start with a

certain value x(0) for a signal, then by applying the parametric modulation the signal will

grow very fast. This is what we will do next, in the quantum case and using the input-output

formalism. As you will see, this is a natural application of the input-output theory: after

all, real amplifiers are devices with an input and an output.
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III. QUANTUM AMPLIFIERS

A. General theory of quantum amplification

We start with a general classification of quantum amplifiers. Let us introduce as usual

the symmetrized noise: for an operator Ô we define(
∆Ô

)2
=

1

2

〈{
Ô, Ô†

}〉
−
∣∣∣〈Ô〉∣∣∣2 . (21)

Before this, we will introduce the so-called field quadratures x̂ and ŷ, that can be defined

for any field â,

x̂ =
1√
2

[
â+ â†

]
, (22)

ŷ =
1√
2i

[
â− â†

]
. (23)

For example, suppose that we have the voltage across a transmission line or inside a coplanar

waveguide resonator (a finite-length section of a transmission line), then

V̂ (t) = x̂ cosωt+ ŷ sinωt, (24)

=
1√
2

(
âe−iωt + â†eiωt

)
. (25)

The Heisenberg uncertainty relations corresponding to the commutation relations

[x̂, ŷ] = i, (26)

are

∆x∆y ≥ 1

2
. (27)

A mode is then called squeezed if the uncertainty in one of the quadratures is less than

1/
√

2, for example

∆x < 1/
√

2. (28)

Inevitably, due to the uncertainty relations, the other mode will be larger than 1/2

∆y > 1/
√

2. (29)

With these definitions, and if G is gain of the amplifier, we can classify the amplifiers

into two classes:
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• Phase-insensitive (phase-preserving) amplifiers

Main features:

[1] Both input quadratures are multiplied by
√
G - no matter what the phase of the

signal (this is why it is called phase-insensitive).

[2] Must add at least 1/2 of quantum noise (when referred to the input) in the amplified

signal in order to satisfy the commutation relations.

• Phase-sensitive amplifiers

Main features:

[1] The quadratures are transformed by different amounts: one is multiplied by
√
G,

while the other one is mutiplied by 1/
√
G.

[2] It does not add noise (noiseless amplification) in the output mode because it satisfies

the commutation relations.

B. Phase-insensitive amplifiers and the Haus-Caves theorem

The question we would like to answer is why can’t we amplify both quadratures? Note

that this is already forbidden in classical physics: Liouville’s theorem tells us that for a single

degree of freedom the volume in phase space is constant. The only way out is to introduce

another degree of freedom, called idler, which allows us to bypass Liouville’s theorem.

In other words, suppose we call the output amplified mode b̂ and we denote by â the

mode to be amplified. Then we would like to have

b̂ =
√
Gâ, (30)

but this will contradict the commutation relations [â, â†] = 1 and [b̂, b̂†] = 1. We are therefore

forced to write

b̂ =
√
Gâ+ F̂ . (31)

Now an important difference between classical and quantum physics comes into play. To

reduce the noise of the field F we can cool this mode to a low enough temperature. Clas-

sically, the noise would be reduced to zero, since the thermal noise at zero temperature is

zero. However, quantum physics limits the reduction of the noise to a value that is due to
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vacuum fluctuations. This intuition is captured in the following theorem due to Haus and

Caves.

The Haus-Caves theorem

The theorem says that the minimum value of the noise at the output of a phase-preserving

amplifier is given by the input noise multiplied by the gain plus the noise from the idler,

(∆b̂)2 ≥ G(∆â)2 +
1

2
|G− 1|. (32)

Proof: We have

(∆b̂)2 ≡ 1

2

〈{
b̂, b̂†

}〉
−
∣∣∣〈b̂〉∣∣∣2 (33)

=
1

2

〈
(
√
Gâ+ F̂)(

√
Gâ† + F̂ †) + (

√
Gâ† + F̂ †)(

√
Gâ+ F̂)

〉
− (34)

−(
√
G < â > + < F̂ >)(

√
G < â† > + < F̂ † >). (35)

Next, we use the fact that the idler field is a distinct uncorrelated with the input signal,

that is [
â, F̂

]
= 0,

[
â, F̂ †

]
= 0, (36)

and 〈
âF̂
〉

= 0,
〈
âF̂ †

〉
= 0. (37)

As a result,

(∆b̂)2 = G(∆â)2 +
1

2

〈{
F̂ , F̂ †

}〉
(38)

≥ G(∆â)2 +
1

2

∣∣∣〈[F̂ , F̂ †]〉∣∣∣ . (39)

Now the commutator can be easily evaluated,

1 = [b̂, b̂†] = [
√
Gâ+ F̂ ,

√
Gâ† + F̂ †] = G[â, â†] + [F̂ , F̂ †] = (40)

= G+ [F̂ , F̂ †], (41)

therefore

[F̂ , F̂ †] = 1−G. (42)

As a result, we get the Haus-Caves theorem in the form

(∆b̂)2 ≥ G(∆â)2 +
1

2
(G− 1), (43)
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or equivalently

(∆b̂)2

G
≥ (∆â)2 +

1

2G
(G− 1). (44)

Let us analyze this result in two limit cases:

• No amplification therefore G = 1, which means

(∆b̂)2 = (∆â)2, (45)

therefore no noise is added, 1
2G

(G− 1) = 0.

• Large amplification, meaning G� 1, resulting in

(∆b̂)2

G
≥ (∆â)2 +

1

2
. (46)

This shows that, for any reasonably good amplifier (G� 1 is not so difficult to realize!)

there is a minimum amount of noise, equal to 1/2, which is inevitably added to the

input signal. One says that the noise added by the amplifier, when referred to the

input, is at least 1/2.

Note: Eq. (39) can be proved in the following way. Let F̂ = F̂1 + iF̂2, therefore

F̂1 =
1

2
(F̂ + F̂ †), (47)

F̂2 =
1

2i
(F̂ − F̂ †). (48)

Some useful relations:

F̂2 = F̂2
1 − F̂2

2 + i(F̂1F̂2 + F̂2F̂1), (49)

1

2
(F̂F̂ † + F̂ †F̂) = F̂2

1 + F̂2
2 , (50)

[F̂ , F̂ †] = −2i[F̂1, F̂2]. (51)

Then

(∆F̂)2 = (∆F̂1)
2 + (∆F̂2)

2 (52)

≥ 2(∆F̂1)(∆F̂2) (53)

≥
∣∣∣〈[F̂1, F̂2

]〉∣∣∣ (54)

=
1

2

∣∣∣〈[F̂ , F̂ †]〉∣∣∣ . (55)
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For obtaining the inequality Eq. (54) we used the uncertainty principle applied to F̂1,

and F̂2. The uncertainty principle in the Robertson formulation, which states that for two

Hermitean operators Â and B̂ we have the inequality

(∆Â) · (∆B̂) ≥ 1

2

∣∣∣〈[Â, B̂]〉∣∣∣ . (56)

IV. STANDARD MODELS FOR QUANTUM AMPLIFIERS

A. One-mode idler

In this case

F̂ =
√
G− 1d̂†, (57)

F̂ † =
√
G− 1d̂, (58)

where d̂ is a bosonic mode. This choice results in the correct commutation relations for the

idler,

[F̂ , F̂ †] = (G− 1)[d̂†, d̂] = 1−G. (59)

In this case we have for the added noise for the idler,〈
{F̂ , F̂ †}

〉
= (G− 1)

〈
{d̂, d̂†}

〉
= (G− 1)

(
1 + 2

〈
d̂†d̂
〉)

= G− 1, (60)

assuming that the idler mode d̂ is assumed cooled to vacuum. As a result,

(∆b̂)2 = G(∆â)2 +
1

2
(G− 1). (61)

The main result is here that for a single-mode idler the Haus-Caves inequality becomes

equality.

B. Two-mode idler

In this case we choose

F̂ =
√
G− 1(cosh θd̂†1 + sinh θd̂2), (62)

F̂ † =
√
G− 1(cosh θd̂1 + sinh θd̂†2). (63)
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The commutation relations of the idler are satisfied,[
F̂ , F̂ †

]
= (G− 1)

(
[d̂†1, d̂1] cosh2 θ + [d̂2, d̂

†
2] sinh2 θ

)
= 1−G. (64)

For the noise we obtain〈
{F̂ , F̂ †}

〉
= (G− 1)

(
cosh2 θ

〈
{d̂†1, d̂1}

〉
+ sinh2 θ

〈
{d̂†2, d̂2}

〉)
(65)

= (G− 1)
(
cosh2 θ + sinh2 θ

)
= (G− 1)(1 + 2 sinh2 θ] ≥ G− 1, (66)

and we have equality for θ = 0 - in which case we are back to the case of a single-mode idler,

see Eqs. (62, 63).

V. A NONLINEAR CAVITY AS A MODEL FOR PARAMETRIC AMPLIFICA-

TION

Suppose we have a cavity filled with a nonlinear medium. This medium can be for example

a second-order nonlinear susceptibility (denoted by χ(2) in quantum optics). In microwave

electronics, this nonlinearity can be realized by using Josephson junctions. Suppose then

that we pump this cavity with a tone ωp. In the lowest-order approximation, we can write

the Hamiltonian

Ĥ = ~ωcâ†â−
~
2

[
α∗eiωpt + αe−iωpt

]
(â† + â)2. (67)

To get rid of the time-dependence in the exponentials, we move to a rotating-frame defined

by the following transformation

Û = ei
ωp
2
â†ât. (68)

The following relations can be proved by a Taylor expansion of the exponentials,

eiνâ
†âtâe−iνâ

†ât = e−iνtâ, (69)

eiνâ
†âtâ†e−iνâ

†ât = eiνtâ†. (70)

The transformed Hamiltonian is

ˆ̃H =

(
i~
dÛ

dt

)
Û † + ÛĤÛ †. (71)

Let us take ωp = 2ωc and then perform a rotating wave approximation (RWA),

ˆ̃HRWA = −~
2

[
α∗â2 + αâ†2

]
. (72)
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Then, we can write the Heisenberg-Langevin equations

d

dt
â =

i

~

[
ˆ̃HRWA, â

]
− κ

2
â−
√
κb̂in, (73)

or

d

dt
â = iαâ† − κ

2
â−
√
κb̂in (74)

d

dt
â† = −iα∗â− κ

2
â† −

√
κb̂†in (75)

Now, taking the Fourier transform we find χ−1(ω) −iα

iα∗ χ−1(ω)

 â[ω]

â†[ω]

 = −
√
κ

 b̂in[ω]

b̂†in[ω]

 , (76)

where χ(ω) is the response function of the cavity,

χ(ω) =
1

κ
2
− iω

. (77)

Note that at resonance ω = 0 the system becomes unstable if |α|2 ≥ κ/2. This equation can

be readily solved,

â[ω] =
−
√
κχ−1(ω)

χ−1(ω)2 − |α|2
b̂in[ω]− iα

√
κ

χ−1(ω)2 − |α|2
b̂†in[ω], (78)

â†[ω] =
iα∗
√
κ

χ−1(ω)2 − |α|2
b̂in[ω]−

√
κχ−1(ω)

χ−1(ω)2 − |α|2
b̂†in[ω]. (79)

Now using the input-output relations

b̂out[ω] = b̂in[ω] +
√
κâ[ω], (80)

we obtain the structure

b̂out[ω] = M(ω)b̂in[ω] + L(ω)b̂†in[ω], (81)

b̂†out[ω] =
(
b̂out[−ω]

)†
= M(−ω)∗b̂†in[ω] + L(−ω)∗b̂in[ω], (82)

where

M(ω) = −(κ/2)2 + ω2 + |α|2

(κ/2− iω)2 − |α|2
, (83)

L(ω) = − iακ

(κ/2− iω)2 − |α|2
. (84)
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It is now easy to verify that

|M(ω)|2 − |L(ω)|2 = 1. (85)

This means that we can identify the gain as

G(ω) = |M(ω)|2 . (86)

We can also ignore the phases from the definition ofM and L: for example, we can include the

i into α and then being left with only a global (irrelevant) phase, Arg {1/[(κ/2− iω)2 − |α|2]}.

Thus we get the final result

b̂out[ω] =
√
G(ω)b̂in[ω] +

√
G(ω)− 1

(
b̂in[−ω]

)†
. (87)

Note now that the gain is dependent on ω and on the cavity linewidth (cavity dissipation).

At ω = 0 the system becomes unstable for too strong pumping |α| ≥ κ/2.

This type of amplifier, which uses only one mode, is called a degenerate parametric

amplifier. In this case, at parametric resonance, a pump photon with energy ~ωp splits into

two cavity photons, each with energy ωc = ωp/2. The simplest generalization of this amplifier

is the nondegenerate parametric amplifier, where one photon from the pump is split

into two photons with different energies (usually corresponding to two modes propagating

into different waveguides), such that the sum of the energies of these two photons equals ωp.
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