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● The simplest case is that of a particle confned
between two infnite walls, where

Since there's no potential in the well, the solution of
the SE is that of a free particle

                                                                          

4. Particles in External Potentials
4.1 Infnite Potential Well
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This is the classical HO, whose solutions are

Continuity requires that                     and thus B = 0,
and because the function must be zero at boundaries

i.e.                                which means that the energy
is quantized as

Normalization of the wave function gives easily   
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The stationary states of the time-dependent SE are
given by (cf. Section 2):

Then the most general solution to the time-
dependent SE can be written as

where the expansion coefficients depend on the
initial state  
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● Another simple example is that of a particle in a
square-well potential: 

There are now two types of solutions: bound states
whose energy is below zero and unbound (free)
states. For x < 0, 

For bound states 0 < x < a

                                                                          

4.2 Square-Well Potential
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whose (continuous) solution is

● In the fnal region x > a, the free particle solution
applies (but with negative energy):

Now the general solution is
where B = 0 (why?)

● The continuity of          and           requires that  
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Because both variables depend on the energy, they
have to satisfy

  

For solutions (bound states) to exist, these two
equations have to match:
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For the unbound states the wave function is again
zero for x < 0. For 0 < x < a, the bound state equation
turns into 

with solution

In the last region

and we need to include phase shift   
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The continuity condition at a now gives 

Unlike for the bound states, there's a smooth
eigenfunction for any energy value as

By defning  
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we can write the solutions in the form

  

 

                                                                             

                                                                          

wave traveling back and forth inside the well

incoming wave outgoing wave with
phase difference 2d

a = 1
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