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4.4 Delta-Function Potential

* The last case to consider here is that of a (hon-
analytic) delta-function potential at x = O:
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If the actual potential well has strength -a, the SE
reads

_;_mw”(x) —ao(zr)Y(x) = EY(x)
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* The delta-function potential well supports both
bound (E < 0) and scattering (E > 0) states

For bound states when x < 0:

o' (x) = K2 (a), n= YoE

where the solution is

Y(x) = Ae™ """ + Be"™* = Be™"



Correspondingly, in the other half of the plane
(x) = Fe™™

From the previous examples we have learned that

1. ¥ is always continuous, and
2. dyr/dx 1s continuous except at points
where the potential is infinite.

The first BC is easily satisfied with F =B



Bound state wave function for E < 0



The contradiction here is that the delta-function
potential does not enter the result. To examine this
we must look at the derivative at x = 0:
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L.h.s. term gives the jump in the derivative as

A (j—i) = %ﬁi lim f_ﬂ Vix)W(x)dx
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and due to the delta function
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Here

rdl,fr,/dx = —Bxe™*, for(x > 0), so d;&/dxh = — Bk,
| dy/dx = +Bke ™", for (x <0), so dlﬁrfdx‘_ = + B«k,

and thus

Normalization gives
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Thus the main result is that the delta-function
potential can support one and only one bound state
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For the scattering states £ > 0

V(@) = —K(), k=L

and the general solution for x < 0 is
w(m) _ Aezka: _1_B€—zkac

and forx > 0
w(aj) _ Fezkac 1+ Ge—zkx

Continuity requiresthat F + G = A + B and



dyr/dx = ik (Fe** — Ge™™**), for (x > 0), so di,b/dx|+ = ik(F - G)
dy/dx = ik (A€ — Be=**) | for (x < 0), sody/dx|_=ik(4 — B).

which gives the jJump

AY|og = 1k(F — G — A+ B) = ¥(0)

h2

* Because the plane waves are not normalizable in free
space, these equations don't have unique solutions

* We have to assume a wave coming from a given
direction, e.g. from left to right
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Assuming G = 0 gives B and F as a function of A
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These can now be used to refine the
corresponding reflection and

transmission coefficients R+ T = 1:
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