

(5 cr) Jaan Praks Aalto University

Microwave EO and Climate Change

Atmosphere

Aalto University School of Electrical Engineering

CO₂ in atmosphere

Outgoing heat is absorbed by greenhouse gas molecules and re-emitted in all directions, warming the surface of the earth and the lower atmosphere

CO2

HZO

INOSPHERE

Re-radiated heat

Re-ra

SUN

Heat escapes into

CARBON CYCLE

As ancient solar energy builds up civilization, the energy carrier, CO2, builds up in atmosphere.

CO₂ emission development

3

Metric tons of Carbon/year (Billions)

We had 400 ppm CO_2 in 3 mil years ago. Climate was warmer 2-3 degrees and ocean was higher 20 m.

During Earth fauna mass extinction, the ruling species have disappeared.

Climate change and microwave EO

North is dark...

....and cloudy

MODIS Arctic time lapse (Pekka Laurila)

European workhorses in space

desa

6.676

CryoSat-2

Measures ice thickness

Active Ku-band (13,7 GHz) advanced radar system

Launched 2010 Polar orbit (inclination 92°) Period 99 min Altitude 720 km Mass 720 kg

Advanced interferometric radar mode.

Active Microwave Instrument

Measures ice thickness

Ku-band (13,7 GHz) Radar altimeter Dedicated for distance measurements

Three different measurement modes

Synthetic Aperture Radar (SAR)

eesa

Sentinel-1 5 GHz SAR Launched 2014

Ice Cover and ice extent

The sea ice thickness from SMOS

University of Hamburg / KlimaCampus / CliSAP / Institute of

INTERGOVERNMENTAL PANEL ON Climate change
ERS-1 SAR SAR in lake ice classification

Glaciers

Jakobshavn Glacier flow

Credit: ESA

Greenland

cryosat Greenland Ice Sheet Elevation Change

10 metres -5 -10

Credit: DMI Polar Portal.

Antarctica

Credit: ESA

Credit: ESA

But the crack is easier to detect in an 'interferogram'

·ee

10 20 km

SAR interferometry in height detection

Ice Motion from Passive Microwave: SMMR, SSM/I, SSMIS, and AMSR-E

Permafrost

Permafrost extent for the Northern Hemisphere

Continuous
Discontinuous
Sporadic
Isolated

Data source: Permafrost CCI, Obu et al., 2019 via the CEDA archive

Credit: ESA

Gas emission craters

(d)

(c)

Surface changes

SAR Interferometry InSAR DINSAR

https://doi.org/10.51

Large-scale InSAR monitoring of permafrost freeze-thaw cycles on the Tibetan Plateau

Simon Daout

Marie-Pierre Doin <u>Gilles Peltzer</u> <u>Anne Socquet</u> <u>Cécile Lasserre</u> First published: 09 January 2017 <u>https://doi.org/10.1002/2016GL070781</u> Citations: <u>33</u>

Sentinel-1 SAR Interferometry for Surface Deformation Monitoring in Low-Land Permafrost Areas

Tazio Strozzi, Sofia Antonova, Frank Günther, Eva Mätzler, Gonçalo Vieira, Urs Wegmüller, Sebastian Westermann and Annett Bartsch

https://doi.org/10.3390/rs10091360

Days:						
0	1	2	3	4	5	e

Multi-Mission Sea Level Trends

Period: Jan-1993 to Jan-2017

- _ _ ____

© CNES/LEGOS/CLS, 2017

WAVE HEIGHT

model based on satellite-derived wind speed and direction

0 m 15 m

Credit: ESA

ye the

Credit: ESA

Figure 9-32: A global mosaic of ATMS 23.8 GHz brightness temperatures observed on December 16, 2011.

Average of 3 days ending: 2015/02/03, WindSat, version 7.0.1

Surface Wind Speed (m/s)

Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats

MIT Lincoln Laboratory (proposing organization)

William J. Blackwell, Principal Investigator. Scott Braun (NASA GSFC), Project Scientist

Floods

Guy J.-P. Schumann, Delwyn K. Moller, Short SAR wavelength (e.g. C, X) Microwave remote sensing of flood inundation, Physics and Chemistry of the Earth, Parts A/B/C, Volumes 83–84, 2015, Pages 84-95, ISSN 1474-7065, https://doi.org/10.1016/j.pce.2015.05.002. (http://www.sciencedirect.com/science/article/pii/S1474706515000406) Long SAR wavelength (e.g. L, P)

FLOOD SITUATION **YANKTON, USA** Event ID: 103068, taken on 3/19/2019 5:32:31 PM (UTC) Sensor Mode: LEFT_26.6 Orbit Direction: DESCENDING Look Angle: 26.2 Center coordinates (LAT, LON): 42.9044, -97.3614

ICEYE

FLOOD SITUATION **YANKTON, USA** Event ID: 103068, taken on 3/19/2019 5:32:31 PM (UTC) Sensor Mode: LEFT_26.6 Orbit Direction: DESCENDING Look Angle: 26.2 Center coordinates (LAT, LON): 42.9044, -97.3614

ICEYE

Droughts

Global Soil Moisture

Landslides

Credit: ESA

Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide, Maoxian, Sichuan, China Article Full-text available Oct 2017 Xuanmei Fan Qiang Xu

Gianvito Scaringi[...] Hans-Balder Havenith

Atmosphere

Microwave Radiometer (MWR) by Radiometrics. Water vapor and liquid water measurements at frequencies: 23.8 and 31.4 GHz

Figure 9-39: AMSU-retrieved (a) ice-water path, (b) surface rain rate, (c) cloud liquid water, and (d) integrated precipitable water vapor (IPWV) for Hurricane Isabel on September 12, 2003 [Liu and Weng, 2005].

Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats

MIT Lincoln Laboratory (proposing organization)

William J. Blackwell, Principal Investigator. Scott Braun (NASA GSFC), Project Scientist

Average of 3 days ending: 2015/02/03, WindSat, version 7.0.1

Cloud Liquid Water(mm)

Average of 3 days ending: 2015/02/03, WindSat, version 7.0.1

Atmospheric Water Vapor (mm)

Average of 3 days ending: 2015/02/03, WindSat, version 7.0.1

Surface Wind Speed (m/s)

Aalto University School of Electrical Engineering

Debunking Q&A

al eclipse of the trut

ractivity, not carbon emission rols all weather and clima appy anot ConNED

There is no change!

There is.

How years compare with the 20th Century average 1900 10 warmest years 10 coldest years Hotter +1.2 +1.0+0.8+0.6 +0.4 +0.220th Century average --0.2 -0.4 -0.6 -0.8 Colder Μ Μ S N F А J A 0 J J Months

D

Not our fault?

Is not a relevant question

We cannot do anything!

Only we can. This is our only hope.

Beef has the biggest climate impact

Greenhouse gas emissions per kilogram

BBC

Source: Poore & Nemecek (2018), Science

It is good that it will get warmer!

To certain extent, but even this is very expensive.

AVERAGE SURFACE TEMPERATURE Earth 57°F Venus 864°F

<u>太太</u> () () ()

Fast-growing cities face worse climate risks

Population growth 2018-2035 over climate change vulnerability

61° 13'N, 149° 54'W, Anchorage · Alaska

Is it all money and conspiracy?

Base your actions on facts and you might have a chanche to affect the reality.

What to do?

Let's think some actions!

- Fusion reactor research. Civilization needs clean energy.
- Promote nuclear power, promote Onkalo.
- Better legislation for nuclear waste transport.
- Solar energy.
- Energy storage. Hydrogen technologies?
- Better waste management.
- Alternatives for concrete.
- CO2 capture.
- Vote the right people!

Let's think some actions!

- Education, especially girls and women.
- European green deal. Taxation and carbon trade.
- Promoting the big picture thinking.

