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Conductor and dielectric loss
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Waveguide Loss Setup: Taylor Expansion

In a lossy waveguide, as power decays according to the factor | e ~2%Z
0 ¢ _ p—20tt Define the power dissipated after The attenuation constant per
Py traveling length in waveguide as unit length can thus be
P, St P, and the incident power as P, , — determined by:
1- P_o =e ¢ the ratio between the power Letf=1 P,
p ~.-—-._ | observed at the unit length away a = ETN (Np/m)
t_ 1— e—zaf’(;;«, 2a€:: and the original incident power is 0
PO / Sael_ . j
when loss is small
In general, power ) :
I _ conductor loss dielectric loss attenuation constant due to
dissipation in a non-ideal ~ ./ conductor loss
waveguide may be > Py + Pyy
attributed to both conductor “=72p, % T Lttenuation constant due to
loss and dielectric loss ) dielectric loss
A .
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Waveguide Loss Setup: Transmission lines

Forward traveling waves

0T ro-
(@) = 0 gy — Y= aFIB= x{/(RﬂwL)(G\:HwC) 1) = B et
0

V(Z) _ + —(oc+][3)z

Conductor loss Dielectric loss 0

Time—average power (V)2
propagated long the > P(z) = —]Re{V(z)I (2)} = — > Roe 2%
line at any z 2|Zy|

The attenuation constant per
_____ unit length can thus be

Rate of decrease in .
’ NN determined by:
P(z) along z equals ' OP(z) y

the time-average

power loss along z a / \ a= ;;((ZZ)) (Np/m)

Drop from initial
power per unit length Loss per unit length
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TE,, mode Equations

Surface Current Density

y . .
4 Wall (x=0): Js = —ayA;oe 1P Wall (x=a): Js = —ayA;oe 1P
X jBipa X :
=1 - = —_— _ i —_— _]BZ
o Floor (y=0): Jg <+aXA10 cos( 2 ) aAqp - sm( 2 )) e
X
< > . X jBroa . (mxy\ _.
i a Ceiling (y=b): Js = <_axA10 cos (?) + a,Aqo ——sin (;)) L
Fields Phase constant

_ —jwpa X

E, = B, sin (— ) e 1Pz

y o L0 (a) 0y 2 A
_ 2 1,2 2 _ () — [

o b= Jo o= = (D) = 1-(2)

Hy = — By sin (?) e Bz

H, = B4 cos (E) e~ 1Bz Cutoff wavelength Cutoff frequency
a \ 2m 2T 5 ¢ c/\& ¢/ & 1
= —_—= —= a = = =
E,=Ey=H, =0 “ ke m/a 7 Ao 22 2ayiE
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Average power flow in the TE,; mode

Poynting vector

1
S=EXH" - SAVEZERe{EXH*}

1
S-dA - PAVE=§IReU ExH -dA

K\A/»

Power subtended by an area

-]

—jwpa - /TIX
— . jBz
Ey 10 Sin ( " ) e
jBa TRy
Hy B1o sin ( " ) e

Average power flowing in the TE,, mode

}

P —1IR
10 =75 €

A ’

a b
{ j f EyH;dydx}
X=0Yy=0

ab
2
Average power flowing in the TE,, mode
3 3
_wpa’b , wua’bp 5
Pio = “am? Re(B)|A0l° = “am? |40l

1 a b
P;o = =Re {f J EXH"- azdydx}
2 x=0Yy=0
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Current Flow in Good Conductor

DC current

17

area A

High Frequency
current
1/

area A

— w—

Current flows inside the conductor uniformly. The
resistance of the conductor is given by Ohm’s law,

171 1 1
R_

_;Z=aw-h

Due to the skin effect, current flows within a very
thin layer of conductor close to the surface. The

resistance of the conductor is thus given by,
PN '

11 1 1 /131
R_ —_ —_

I
1

cgA' ow-8; ‘06

1

- 1
N,

.

fuo

Surface impedance is f
thus defined as, R, K

o

1
oo
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Conductor Loss

—— a ﬁ2a3
— 2 —
Consider the power dissipated over length £ Py = Rs|Asol (b + 2 + 2172 )
P, =¢ Rs j I - JidS
Emr ) s Significant algebra
Area reduces to contour integral due to sheet current il
P, Rsf Rq 2b\ (f. 2
g o T w0
1 ’€ 2_\| A |]S| 2 - |]S| Pl S a f
R aC = =
Sheet current, 2D integral 2P0 2
reduces to 1D contour integral 77b 1 — (E)
f
Consider the power dissipated over length { >
Wall (x=0): Wall (x=a): Floor (y=0): Ceiling (y=b):
R [P 2 Rg P 2 Rs [ 2 2 Rs [ 2 2
P =7_[ |]s,y| dy+7] |]s,y| dy+7j “]S'X| + |]s,z| ]dx+7] [lls'xl T |]S'Z| ]dx
y=0 y=0 xX=0 X=0
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Dielectric Loss

If the waveguide is complete filled in with a homogenous lossy medium, the complex propagation constant is,

y=aq4+jB= \/kg - kcomplex2

)

Define loss tangent as the ratio between
the imaginary part and real part of the

complex permittivity

I

Ay

A

)

tand = —

€

.\
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Waveqguide loss

Conductor loss
1 T T T T

Dielectric loss

N

09 . 09 .
0.8 . 0.8 h
0.7 . 0.7 - b

EO.S— . EO.B- TM11 h

M fia)

S.05F T|\/|11 . D051 1

@ ?

L4t 1 Lo04t .
0.3 1 03 TE,, 1
02 TEq © ] 0.2+ ]
011 . 01r .

O 1 1 1 1 1 0 1 1 1 1
0 1 2 3 4 5 6 0 1 2 3 4 6
Normalized frequency [f / fTE10] Normalized frequency [f / fTE10]
ocq(dB/m) = 8.686a. 4(Np/m)

T T Tt T T T T T T

| a=229cm | a=229cm

: - b=1.02cm ! b=1.53cm

: f.(TE ) = 6.55 GHz :

a=2.29cm
f.(TE,,) = 6.55 GHz

f(TE,,) = 6.55 GHz
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Waveqguide loss

Conductor loss
1 T T T T

Dielectric loss

T 1 T T T
09r . 09 r .
0.8 . 0.8 .
0.7 | . 0.7 .
go.ﬁ- T §0.6* TM»H .
%05 - T|\/|11 1 %05 - 1
] Q
204t 1 204t 1
(o]
0.3 F . 03 TE,, -
02t TEqq 1 0.2} ]
0.1F 1 0.1 .
0 1 1 1 1 1 o 1 1 1 1
0 1 2 3 4 5 6 0 1 2 3 4
Normalized frequency [f/ fTE10] Normalized frequency [f / fTE’IO]
ocq(dB/m) = 8.686a. 4(Np/m)
G T Tttt T T T T T
| a=229cm | a=229cm
: - b=0.76 cm ! b=1.53cm
! f.(TE,,) = 6.55 GHz !

a=2.29cm
f.(TE4,) = 6.55 GHz

f(TE,,) = 6.55 GHz
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Aalto University
School of Electrical
Engineering

ELEC-E4130 / Taylor

Lecture 20



Waveqguide loss

Conductor loss
1 T T T T

Dielectric loss

N

09r . 09r .
0.8 b 0.8 .
0.7 F . 0.7 F .
— 0.6 . — 0.6 a

g £
S.05F . S.05F .

2 3
L4t . Lo04t .
0.3 T|\/|11 1 0.3 TE10 1
02 TEq ] 02t ]
0.1F © . 0.1+ .

—
0 1 1 1 1 1 0 1 1 1 1
0 1 2 3 4 5 6 0 1 2 3 4 6
Normalized frequency [f/ fTE10] Normalized frequency [f / fTE10]
ocq(dB/m) = 8.686a. 4(Np/m)
i L L L R LR
a=2.29cm : a=2.29cm
- b=0.76 cm : b=1.53cm
f.(TE ) = 6.55 GHz :

a=2.29cm
f.(TE4,) = 6.55 GHz

f(TE,,) = 6.55 GHz
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Waveguide Dimensions

Propagation loss

Bandwidth
a. = £3/2 for > f,

next mode f

= 22— >
occurs @ fea0 =2 f. a2 2b
ag = f1 for > f,

2 next mode ¢ f
<2— a<?2b
ac L for b l occurs @ Ot T Uf,
» Conductor loss decreases as the waveguide aspect ratio becomes taller
» Normalized waveguide bandwidth = 1f_, , until a<2b
> a=2b — loss minimized subject to 1f_, , bandwidth constraint
Aalto Universi
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Rectangular Waveguide Cavities
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Transmission Line Resonator

Resonance: Self sustaining of electromagnetic energy in waveguide structures at certain discrete frequencies

maximum energy \/
Open ended transmission line accumulation & absorption

resonancewhen: d =—=-1 for = 1,2,3,..

N N

O———)
open open
O———)

«—d — » /

Equal Phase Analysis

O—)
O——)
open open ShE’t sEFrt
O—)
O——)
— ) —— N2/
00— 180° 0 ——» 180°
3600 «—— 180° 1800 +——— 360° (0°)
00— 3600 (0°) ——
e = ELEC-E4130 / Taylor
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Transmission Line Resonator

General Case Resonance Condition:
I rll . (first order approximation when Z, and Z,
lin in i = Tin

are not very different)
I
Xl z, @ D z, |iX,

So the total transfer phase is

_ﬂ
2
@ =2(Tf - T = £|r|" = 0°
O—) O———————————————)
Examples:
No resonance! Yes resonance!
O—) O———————————————)
— A2 — - 04—
0 —» 180° 00 — » 90°
1800 +—— 360° 3600 +«——— 270°
1800 —* 0 —
Aalto Uni i
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Rectangular Waveguide Cavity

Ya z
PEC @ Basically, the rectangular cavity can be considered as TE and TM waves of
<ﬁ(/ the waveguide bounce back and forth between the two conductor plates at
q z=0 and z=d
b PEC
%
T - 3 > From previous slides, if two ends are 4= Ag
shorted, the resonance should occur at 2 p

For TE,,, mode,

H,(x,y,z) = (Amne—iﬁmnz + aneiBmHZ) COS (mnx) coS (?) Add a reverse propagating mode

- J - J d
g g
Original +z New -z
prop. mode prop. mode
Aalto University .
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Rectangular Waveguide Cavity

y A Z
PEC QC/) For TE,,, mode,
Q
b| PEC d
X< CiBrnz B 7 mTx nmy
< 5 > H,(x,y,z) = (Amne mn% 4 B = elPmn )cos (T) COS (T)
- J . J
Y Y
Original +z New -z
prop. mode prop. mode
Boundary conditions (in additional to the original waveguide B.C):
Zz=20 Apn +Bmn =0 Amn = —Bmn
H,=H,=0 at = | | =
\ z=d Appe JPmnd 4 B, elPmnd = 0 sin( Bmnd) = 0
Normal component of His 0 at PEC
SaltolInie Ity ELEC-E4130 / Taylor
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Rectangular Waveguide Cavity

Ya z sin(Bppd) =0 = Bpnd = pT, p=1223....
PEC
QS) - B _ p_T[ N
Q mn — d )\
g
b PEC d Therefore, < S — d=-2.]

XA y £ = 2T 2
T« > -8 T Bn - agree with TRL model

a

- mmx nmyy = [Inz
Longitudinal H:  Hy(X,y,2) = 2Amnp COS (T) COS (T) sin q

pT mmy2  mmNZ K ly be certain discrete values !
e _ Pt kz—(—) _(_) < can only be certain discrete values !
H, satisfies:  Bmn p \/ . 5
Resonant wave number for the . B (mn)z N (TUT)Z N (pﬂ)z
mnpt" mode is thus given by, rmnp a b d

A Aat oniversity. ELEC-E4130 / Taylor
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Rectangular Waveguide Cavity

y A Z
PEC @
& Resonant wave number for the
Q mnph mode is thus given by,
b| PEC d
X :
< 3 >

Resonant Wavelength
2T

e [ @)

Resonant Frequency

f _ CO/\/E_r _ kr,mnp . Co

}\mnp

» Rectangular waveguide with ends
capped with PEC will only
resonate at discrete frequencies

» Only energy at discrete
frequencies can be stored in the
cavity

Aalto University
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Rectangular Waveguide Cavity

Similarly, for TM,,,, mode, field is derived the same way and

resonant frequencies are the same
mnx . nmy Iz

E.(X,¥,2) = 2Apnp sin " sin 0 COST

A E

=Y

For TE,y, mode (lowest resonant frequency when a&d >b), the

resonant wavelength is, 2
A =
101 2 12
- (&) +(2)
h X
o= 2 X  TZ
7z — Aq191 COS q Sin d
p . a . TTX nZz
The field are { fx = ~g41015In—-cos—
z —jowua X | TZ
E, = - Aq01 sm;smg

Aalto University ELEC-E4130 / Taylor
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Excitation of waveguide, cavity

Electric field

/

A current probe can be used to excite
electromagnetic field into the waveguide

The electric field excited by the current probe
will resemble the direction of current flow in
the probe

For a fixed amount of current, the maximum
power of electromagnetic wave is excited for
that mode if the probe is probing at the

maximum electric field position of that mode

Aalto University
School of Electrical
Engineering
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Resonator Quality factor, TE,,

d /b (a
W, = ﬁj j j |Ey|2dv » Electric energy: sum of square electric field
4 )y Jo Jo subtended by the volume

d (b
W, = E] J fa{lelz + |H,|2}dv » Magnetic energy: sum of square Magnetic
4 Jo Jo Jo field subtended by the volume

R
Ploss,ave = 3 (integral) of surface current density in a lossy
conductor over walls for length d + sum
current density in a lossy conductor at the

end caps

39 1. ]2 » Power loss: total power lost meaning sum
Js1ds
C

A Aalto University ELEC-E4130 / Taylor
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Resonator Quality factor, TE,,

Quality factor Q for a resonator is defined as
stored magnetic stored electric /‘v*_\
} -/

energy x energy
_ (average energy stored) Wy, + W,
B (energy loss/second) Plossave
-------- {
power dissipation i
“ene ANV

For most resonators, the Q is inversely proportional to the fractional

bandwidth of the resonance ‘
- fmnp s f

Q= Af

For rectangular waveguides, the quality factor for the dominant TE,,; mode is given by

0 = nfio1poabd(a® + d*) 1 Imfu  Conductor loss but
Ri[2b(a3 + d?) + ad(a? + d?)] Ry =—%= no dielectric loss

00 o

A Aat oniversity. ELEC-E4130 / Taylor
School of Electrical
Engineering Lecture 20



Example

y A Z
PEC » A square based (a = c) cavity of rectangular corss sectionis
QC/) constructed of an X-band (8.2 GHz — 12.4 GHz) copper (o =5.7
Q x 107 S/m) waveguide that has inner dimensions a =2.29 cm, b
b PEC d = 1.02 cm. For the dominant TE,y; mode, determine the Q of
X y the cavity. Assume free space medium inside the cavity.
< 3 >
T 2 T 2 T[f101p.0abd(a2 + dZ)
— (= —_ = = 7757.9
o= |3+ () 0= e T

2T VEr 2m Much higher than can be reasonably
achieved in practice with lumped

element circuits
1 T
Ry=—= /ﬂ = 0.0254 Q
00 o

A Aalto University ELEC-E4130 / Taylor
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Circular, conductor walled waveguide
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Recall: Waveguide solutions

transverse variation

—

E(x,v,2) = [e/(xy) + aze,(x,y)]e 1B4+—— longitudinal
variation

H(x,y,z) = [hi(xy) + ash,(x, Y)]e_jB/
A

transverse component \ longitudinal component

transverse variation

—

E(r, d,2) = [ec(r, d) + a,e,(r, p)]e IB? «—— longitudinal

/ variation
e_j BZ

N longitudinal component

H(r,$,z) = [ht(rr ¢) + azh,(r, )]
A

transverse component

E.(r,d,2) = e,(T, (I))e_sz

H,(r, §,z) = h,(r, $)e P2

Aalto University ELEC-E4130 / Taylor
School of Electrical Lect 20
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Focus on E,

Rectangular Waveguide Notation Book Notation

E,(r, $,2) = e,(r, p)e P E.(r, ,2) = E2(r, p)e™Y*

v

Vector wave equation T - ré Explicit Trans. Variables
ViE2 + (y* + K?E2 =0 VipE2 +h%ED = 0

h? = (y? + k?)

Cylindrical coordinates Cylindrical coordinates
19 [ 9E®\ 1 92E? .
2R0 — 0 —
T or (T or ) T r2 g +h7E; =0 Assume separable Ez(r,¢) = RIDP(P)
A St ELEC-E4130 Taylor
Engineering Lecture 20



Focus on E,

Cylindrical coordinates

Ez(r,$) = R(n)P(d)

Cylindrical coordinates

r d
R(r)dr "ar

dR
(r)> + h*r? +

These terms vary

2
1 d7®(¢) _ o independently and

d(dp) dop? therefore must
“ U y equal the same
nt constant
r d/ dR(r) B 1 d*o(d)
m@(r dr ) Fher = O
d“R(r) 1dR(r) n? d2d(db)
az T ar (hz B r_2> R(r) =0 dp? +n?®(p) = 0

Aalto University
School of Electrical
Engineering
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g (x)

Bessel’s Differential equation Bessel function of the first kind

(_ 1)m (hr)n+2m

2 2 -
d"R(r) 1dR(r) . (hz - )R(r) =0 RO =Cpn) ~ Jyn) =

dr? r dr 2 m! (n + m)! (2)n+2m
= £ ml (n+m)! (2)
Arbitrary Constant
Aalto University -
A School of Electrical ELEC-E4130/ Taylor
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TE vs TM modes

TM modes HY(r,¢) =0
Eg(r» q)) = Cn]n(hr)cos(ncl))

EP(r, d) = ]B CnJ'n(hr)cos(ng)

EY(r, ) = ’B L Caln(hr)sin(nd)
HO(r, §) = — 2 ¢ g, () sin(nd)

Hcp(r (I)) - n] n(hr)cos(ncl))

E2r=a¢)=0 - Jy(ha)=0

‘o o 2.405 Rraon

TMO01 —

TE modes Eo(r $) =0
Ef(r,d) =

nJn(h)sin(nd)
E¢(r,d) = C'n] n(hr)cos(nd)

Hg(l‘, (b) = C'n]n(hr)cos(nd))

HO(r, &) = -0 +C'al'n (hr)cos(nd)

HY (1, ) = o C'yJa (h)sin(ng)

Hir=a¢)=0 - Jp(ha)=0

—_ =

1841 P hrpi

TE11 =

Aalto University
School of Electrical
Engineering
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Propagation equations

Guide wavelength

7\:2_1r: 2T _ 2T _ A
ey e

TE wave impedance

. No/VeEr
Lrg =
1— (f_c)z Propagation constant
f g = 2T
Ag

TM wave impedance

» The same equations apply as to
circular waveguides as did for
rectangular waveguides

» The cutoff frequencies are defined
by the geometry and dimensions.

» Once the cutoff frequency is
determined, then everything else is
determined

Aalto University
School of Electrical
Engineering
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In class exercise 1

>

Cutoff frequency of rectangular
waveguide mode

>
>
>
>

k. m\2  /ny2
e O

» A circular waveguide of radius a = 3 cm that is filled with
polystyrene (¢, = 2.56) is used at a frequency of 2 GHz. For the
dominant TE,, mode determine the following

(a) Cutoff frequency

(b) guide wavelength in cm
(c) Phase constant beta
(d) Wave impedance ZTE

(e) Compare the cutoff frequency to the fundamental mode
of a square (a = b) waveguide whose diagonal is equal to
the circular waveguide diameter

(f) Compare the cutoff frequency to the fundamental mode
of a square (a = b) waveguide whose side is equal to the
circular waveguide diameter

A Aalto University

ELEC-E4130 / Taylor
Lecture 20



In class exercise 1

Cutoff frequency of rectangular
waveguide mode

fc,rect = ﬁs—r \/ (?)2 + (%)2

(a) Cutoff frequency

1.841
chE11 = 2na\/ﬁ

= 1.835 GHz

(b) guide vxavelength in cm

Ag = = 9.357 cm

(e) Cutoff frequency
ﬁarect = 2a¢ir¢

Arect = \/Eacirc

= 2.21 GHz

fc,rect =
2aCirc 2€r

(c) Phase constant beta

21
B=—=0.2692rad/s
Ag

(d) Wave impedance ZTE

€
7o = —VE _ sg6 560

)

(f) Cutoff frequency

Ayrect = 2acirc

C
f =—— =156 GH
crect 4‘acirc\/8—r Z

Aalto University
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Engineering
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TEp

snana 1811

TARE T AR

™3

J
AT
NRNad

SN

Nt

>
|
™4y

S
e

iy i

N 1

.:
N
!

» Rectangular waveguide modes less densely
distributed than circular waveguide modes

Aalto University
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Com pari%
-omes TEpq TEq4 TEp4 2b

2
USTE TE20 ™4 ™71 TE3p Rs (1 T ( a ) (f
| T
» 2
T T T fC
1 2 3 fe/fetet0 L (T)
I | h k. (&)
| | | il —_
XeTEOL =
1 2 fe/ TeTE £\
an [1-(%)

» Rectangular waveguides have broadest single mode operation
» In an oversized circular metal waveguide, a very low-loss TEO1 mode can propagate.
» The cut-off wavelength of this mode is A, = 1.64a

Aalto University ELEC-E4130 / Taylor
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Why should we care about circular waveguides?

Y/ /) )

Y

|

| . |
L | |
| | n
} L i {
S

|

!

le
L

Fransmission line Antenna Radiated free-space wave

» Waveguides are often used as a transmission line between and device and antenna
» Good beam patterns are obtained with radially symmetric aperture cross sections
» How do you couple a rectangular waveguide to a circular mode?

A Aalto University ELEC-E4130 / Taylor
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Why should we care about circular waveguides?

Flare Section

TABLE 7.1 Parameters' for Optimum Coupling of Various Feed Struc- A
tures to Fundamental Mode Gaussian Beam Flare ‘—T
2 : —_— Anagle Aperture
Feed type wila [col € pol €pal 10 | Th‘:‘g:r::ss Diameter
P, T | r 1
Corrugated circular | 0.64 0.98 1.0 0.98 BBV
Corrugatéd square 0.35 098 1.0 0.98 i i _l
Smooth-walled circula”®  0.76 091 096 0.87
Smooth-walled circular’ 0.88,0.64 093 096 0.89 J L
‘Dual-mode | 0.59 098 099 0.97 Mode-Launching B
Rectangular 035050 088 1.0 0.88 SeoRon R Depth
Rectangular’ 0.35 088 1.0 0.8 p d
Square® 0.43 0.84 1.0 0.84
Rectangular’ 0.30 0.85 1.0 0.85 MATCHING IRIS

Diagonal 0.43 0.93 0.91 0.84 HORN FLARE

Hard 0.89 082 10 0.82 MSUrpRESSOR

Corner cube 1.24 A o — 0.78 g

Hybrid mode 0.64 098 1.0 0.98 CQuioE HORN
Slotline — — — 0.80

Lens + planar antenna® - — — 0.89

———
TES,TM,

TES TA,

Aalto University ELEC-E4130 / Taylor
School of Electrical Lecture 20
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Conclusions
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Propagation

yA

d

v X

A
v

» The one conductor geometry supports TE/TM operation

» The longitudinal phase variation of a TE/TM is not equal to the free space (plane wave)
TEM phase variation

» [B — rectangular waveguide longitudinal phase variation
» Kk — free space longitudinal phase variation
» [ is a strong function of frequency and geometry

Aalto University ELEC-E4130 / Taylor
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