ELEC-E4130

Lecture 20: Rectangular Waveguides + circular Waveguides - Ch. 10

ELEC-E4130 / Taylor

Nov. 25, 2021

Conductor and dielectric loss

Waveguide Loss Setup: Taylor Expansion

In a lossy waveguide, as power decays according to the factor

$$e^{-2\alpha z}$$

$$\frac{P_0 - P_\ell}{P_0} = e^{-2\alpha\ell}$$

$$1 - \frac{P_{\ell}}{P_0} = e^{-2\alpha\ell}$$

$$\frac{P_{\ell}}{P_0} = 1 - e^{-2\alpha\ell} (\approx 2\alpha\ell)$$

when loss is small

Define the power dissipated after traveling length in waveguide as P_ℓ and the incident power as P_0 , the ratio between the power observed at the unit length away and the original incident power is

Let $\ell = 1$

The attenuation constant per unit length can thus be determined by:

$$\alpha = \frac{P_1}{2P_0} \quad (Np/m)$$

In general, power
dissipation in a non-ideal
waveguide may be
attributed to both conductor
loss and dielectric loss

conductor loss dielectric loss $\alpha = \frac{P_{\ell c} + P_{\ell d}}{2P_0} = \alpha_c + \alpha_d$

attenuation constant due to conductor loss

attenuation constant due to dielectric loss

Waveguide Loss Setup: Transmission lines

Forward traveling waves

$$V(z) = V_0^+ e^{-\gamma z}$$

$$V(z) = V_0^+ e^{-(\alpha + j\beta)z}$$

$$V(z) = V_0^+ e^{-(\alpha + j\beta)z}$$

$$V(z) = V_0^+ e^{-(\alpha + j\beta)z}$$

$$I(z) = \frac{V_0^+}{Z_0} e^{-(\alpha + j\beta)z}$$
Conductor loss
Dielectric loss

Time-average power propagated long the line at any z
$$P(z) = \frac{1}{2} \mathbb{R}e\{V(z)I^*(z)\} = \frac{(V_0^+)^2}{2|Z_0|^2} R_0 e^{-2\alpha z}$$

Rate of decrease in P(z) along z equals the time-average power loss along z

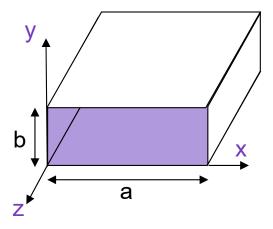
> Drop from initial power per unit length

$$\frac{\partial P(z)}{\partial z} = P_L(z) = -(-2\alpha P(z))$$
Loss per unit length

The attenuation constant per unit length can thus be determined by:

$$\alpha = \frac{P_L(z)}{2P(z)} \quad (Np/m)$$

TE₁₀ mode Equations



Surface Current Density

Floor (y=0):
$$\mathbf{J_s} = \left(+\mathbf{a_x} \mathbf{A_{10}} \cos\left(\frac{\pi \mathbf{x}}{a}\right) - \mathbf{a_z} \mathbf{A_{10}} \frac{\mathbf{j} \beta_{10} \mathbf{a}}{\pi} \sin\left(\frac{\pi \mathbf{x}}{a}\right) \right) e^{-\mathbf{j}\beta \mathbf{z}}$$

Ceiling (y=b):
$$\mathbf{J_s} = \left(-\mathbf{a_x} \mathbf{A_{10}} \cos\left(\frac{\pi \mathbf{X}}{a}\right) + \mathbf{a_z} \mathbf{A_{10}} \frac{\mathbf{j} \beta_{10} \mathbf{a}}{\pi} \sin\left(\frac{\pi \mathbf{X}}{a}\right)\right) e^{-\mathbf{j}\beta \mathbf{z}}$$

Fields

$$E_{y} = \frac{-j\omega\mu a}{\pi} B_{10} \sin\left(\frac{\pi x}{a}\right) e^{-j\beta z}$$

$$H_x = \frac{j\beta a}{\pi} B_{10} \sin\left(\frac{\pi x}{a}\right) e^{-j\beta z}$$

$$H_z = B_{10} \cos\left(\frac{\pi x}{a}\right) e^{-j\beta z}$$

$$E_z = E_x = H_y = 0$$

Phase constant

$$\beta_{10} = \sqrt{k^2 - k_{c,10}^2} = \sqrt{k^2 - \left(\frac{\pi}{a}\right)^2} = k \sqrt{1 - \left(\frac{\lambda}{2a}\right)}$$

Cutoff wavelength

$$\lambda_{c,10} = \frac{2\pi}{k_c} = \frac{2\pi}{\pi/a} = 2a$$

Cutoff frequency

$$f_{c,10} = \frac{c/\sqrt{\epsilon_r}}{\lambda_{c,10}} = \frac{c/\sqrt{\epsilon_r}}{2a} = \frac{1}{2a\sqrt{\mu\epsilon}}$$

Average power flow in the TE₁₀ mode

Poynting vector

$$\mathbf{S} = \mathbf{E} \times \mathbf{H}^* \rightarrow \mathbf{S}_{\mathbf{AVE}} = \frac{1}{2} \mathbb{R}e\{\mathbf{E} \times \mathbf{H}^*\}$$

Power subtended by an area

$$P = \int_{A} \mathbf{S} \cdot \mathbf{dA} \rightarrow P_{AVE} = \frac{1}{2} \mathbb{R}e \left\{ \int_{A} \mathbf{E} \times \mathbf{H}^{*} \cdot \mathbf{dA} \right\}$$

$$E_{y} = \frac{-j\omega\mu a}{\pi} B_{10} \sin\left(\frac{\pi x}{a}\right) e^{-j\beta z}$$

$$H_{x} = \frac{j\beta a}{\pi} B_{10} \sin\left(\frac{\pi x}{a}\right) e^{-j\beta z}$$

Average power flowing in the TE₁₀ mode

$$P_{10} = \frac{1}{2} \operatorname{\mathbb{R}e} \left\{ \int_{x=0}^{a} \int_{y=0}^{b} \mathbf{E} \times \mathbf{H}^{*} \cdot \mathbf{a}_{\mathbf{z}} dy dx \right\}$$

$$P_{10} = \frac{1}{2} \operatorname{\mathbb{R}e} \left\{ \int_{x=0}^{a} \int_{y=0}^{b} E_{y} H_{x}^{*} dy dx \right\}$$

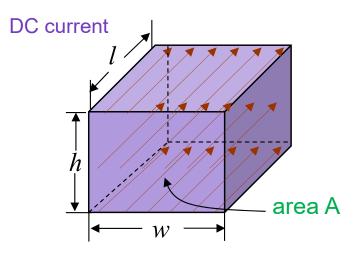
$$P_{10} = \frac{\omega \mu a^2}{2\pi^2} \mathbb{R}e(\beta) |A_{10}|^2 \int_{x=0}^{a} \int_{y=0}^{b} \sin^2\left(\frac{\pi x}{a}\right) dy dx$$

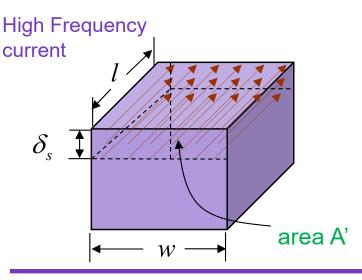
 $\frac{ab}{2}$

Average power flowing in the TE₁₀ mode

$$P_{10} = \frac{\omega \mu a^3 b}{4\pi^2} \mathbb{R}e(\beta) |A_{10}|^2 = \frac{\omega \mu a^3 b\beta}{4\pi^2} |A_{10}|^2$$

Current Flow in Good Conductor





Current flows inside the conductor uniformly. The resistance of the conductor is given by Ohm's law,

$$R = \frac{1}{\sigma} \frac{l}{A} = \frac{1}{\sigma} \frac{l}{w \cdot h}$$

Due to the skin effect, current flows within a very thin layer of conductor close to the surface. The resistance of the conductor is thus given by,

ce of the conductor is thus given by,
$$R = \frac{1}{\sigma} \frac{l}{A'} = \frac{1}{\sigma} \frac{l}{w \cdot \delta_s} = \frac{1}{\sqrt{\pi f \mu \sigma}}$$

$$\delta_s = \frac{1}{\sqrt{\pi f \mu \sigma}}$$

Surface impedance is thus defined as,

$$R_{s} = \frac{1}{\sigma \delta_{s}} = \sqrt{\frac{\pi f \mu}{\sigma}}$$

Conductor Loss

Consider the power dissipated over length ℓ

$$P_{\ell} = \ell \frac{R_s}{2} \int_{A} J_s \cdot J_s^* dS$$

Area reduces to contour integral due to sheet current

$$P_1 = \frac{P_{\ell}}{\ell} = \frac{R_s}{2} \int_A |J_s|^2 ds = \frac{R_s}{2} \oint_C |J_s|^2 dl$$
Sheet current, 2D integral reduces to 1D contour integral

 $P_1 = R_s |A_{10}|^2 \left(b + \frac{a}{2} + \frac{\beta^2 a^3}{2\pi^2} \right)$ Significant algebra

$$\alpha_c = \frac{P_1}{2P_0} = \frac{R_s \left(1 + \left(\frac{2b}{a}\right) \left(\frac{f_c}{f}\right)^2\right)}{\eta b \sqrt{1 - \left(\frac{f_c}{f}\right)^2}}$$

Consider the power dissipated over length &

$$\begin{aligned} & \text{Wall (x=0):} & \text{Wall (x=a):} & \text{Floor (y=0):} & \text{Ceiling (y=b):} \\ P_1 &= \frac{R_s}{2} \int_{v=0}^b \left| \textbf{J}_{\textbf{s},\textbf{y}} \right|^2 dy + \frac{R_s}{2} \int_{v=0}^b \left| \textbf{J}_{\textbf{s},\textbf{y}} \right|^2 dy + \frac{R_s}{2} \int_{x=0}^a \left[\left| \textbf{J}_{\textbf{s},\textbf{x}} \right|^2 + \left| \textbf{J}_{\textbf{s},\textbf{z}} \right|^2 \right] dx + \frac{R_s}{2} \int_{x=0}^a \left[\left| \textbf{J}_{\textbf{s},\textbf{x}} \right|^2 + \left| \textbf{J}_{\textbf{s},\textbf{z}} \right|^2 \right] dx \end{aligned}$$

Dielectric Loss

If the waveguide is complete filled in with a homogenous lossy medium, the complex propagation constant is,

$$\begin{split} \gamma &= \alpha_d + j\beta = \sqrt{k_c^2 - k_{complex}^2} \\ &= \sqrt{k_c^2 - \omega^2 \mu (\epsilon' - j\epsilon'')} \\ &= \sqrt{k_c^2 - \omega^2 \mu \epsilon (1 - j \tan \delta)} \end{split}$$

Define loss tangent as the ratio between the imaginary part and real part of the complex permittivity

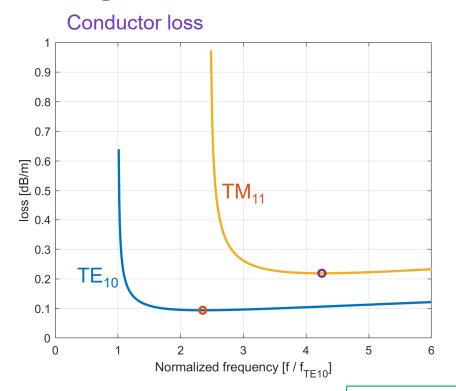
 $\tan \delta = \frac{\varepsilon''}{\varepsilon'}$

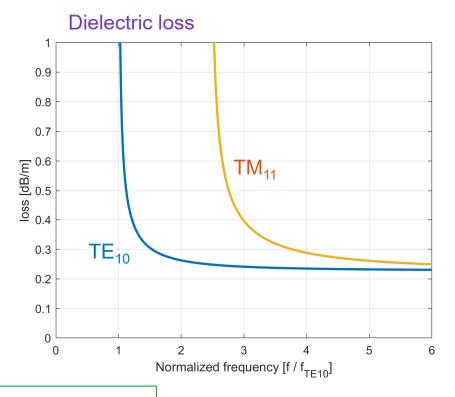
Binomial expansion, significant algebra (see your book, page 544)

$$\alpha_{d} = \frac{\eta \sigma}{2\sqrt{1 - \left(\frac{f_{c}}{f}\right)^{2}}} = \left(\frac{\epsilon''}{\epsilon'}\right) \left(\frac{\pi}{\lambda}\right) \left(\frac{\lambda_{g}}{\lambda}\right)$$

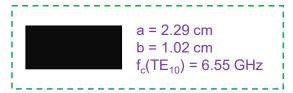
$$\epsilon'' = \frac{\sigma}{\omega}$$

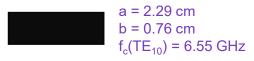
Waveguide loss

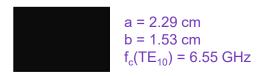




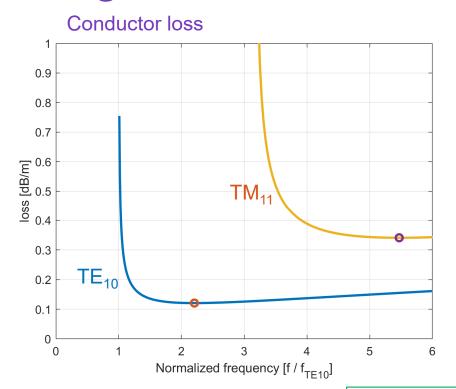
$$\alpha_{c,d}(dB/m) = 8.686\alpha_{c,d}(Np/m)$$

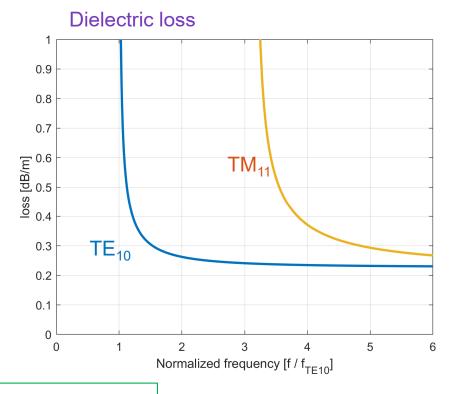




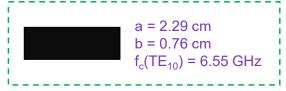


Waveguide loss



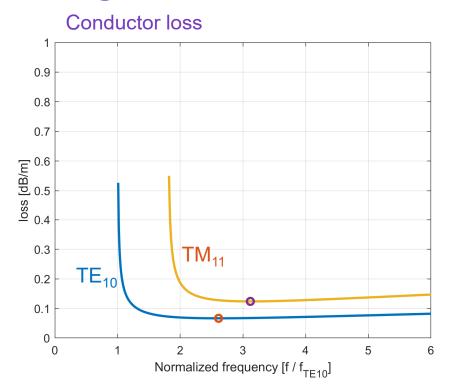


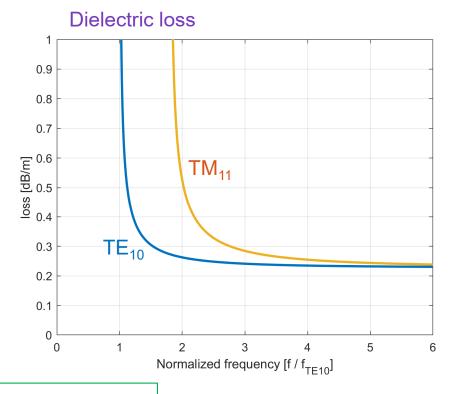
a = 2.29 cm b = 1.02 cm $f_c(TE_{10}) = 6.55 \text{ GHz}$



a = 2.29 cm b = 1.53 cm $f_c(TE_{10}) = 6.55 GHz$

Waveguide loss

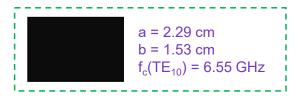




$$\alpha_{c,d}(dB/m) = 8.686\alpha_{c,d}(Np/m)$$

a = 2.29 cm b = 1.02 cm $f_c(TE_{10}) = 6.55 \text{ GHz}$

a = 2.29 cm b = 0.76 cm $f_c(TE_{10}) = 6.55 \text{ GHz}$



Waveguide Dimensions

Propagation loss

$$\alpha_{\rm c} \to {\rm f}^{3/2}$$
 for ${\rm f} \gg {\rm f}_{\rm c}$

$$\alpha_d \to f^1 \quad \text{for} \quad f \gg f_c$$

$$\alpha_c \downarrow \quad \text{for} \quad \frac{a}{b} \downarrow$$

Bandwidth

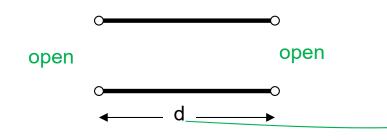
next mode occurs @
$$f_{c2,0} = 2\frac{f}{f_c}$$
 $a \ge 2b$

$$\begin{array}{ll} \text{next mode} \\ \text{occurs @} \end{array} \quad f_{\text{c0,1}} < 2 \frac{f}{f_{\text{c}}} \quad \text{a} < 2b \\ \end{array}$$

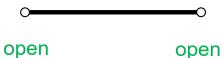
- Conductor loss decreases as the waveguide aspect ratio becomes taller
- ➤ Normalized waveguide bandwidth = 1f_{c1.0} until a<2b
- \triangleright a = 2b \rightarrow loss minimized subject to 1f_{c1,0} bandwidth constraint

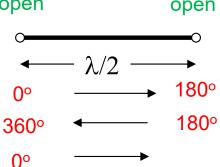
Transmission Line Resonator

Resonance: Self sustaining of electromagnetic energy in waveguide structures at certain discrete frequencies

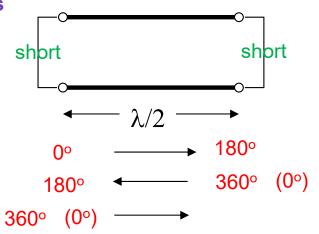


resonance when:
$$d = \frac{\lambda}{2} \cdot l$$
 for $l = 1, 2, 3, ...$



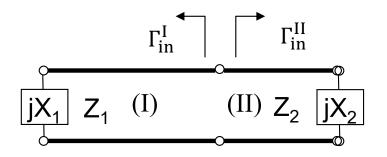


Equal Phase Analysis



Transmission Line Resonator

General Case



Resonance Condition:

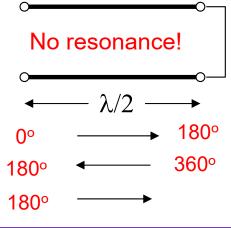
$$\Gamma_{in}^{I} = \Gamma_{in}^{II*}$$

(first order approximation when Z_1 and Z_2 are not very different)

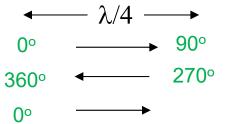
So the total transfer phase is

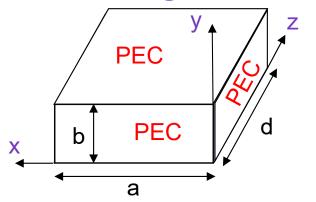
$$\varphi = \angle(\Gamma_{in}^{I} \cdot \Gamma_{in}^{II}) = \angle|\Gamma_{in}^{I}|^{2} = 0^{o}$$

Examples:



Yes resonance!



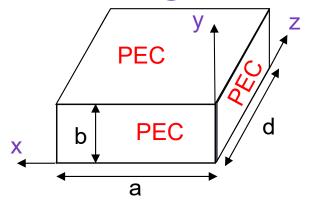


Basically, the rectangular cavity can be considered as TE and TM waves of the waveguide bounce back and forth between the two conductor plates at z=0 and z=d

From previous slides, if two ends are shorted, the resonance should occur at $d = \frac{\lambda_g}{2} \cdot p$

For TE_{mn} mode,
$$\beta_{mn} = \sqrt{k^2 - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}$$

$$H_z(x,y,z) = \left(A_{mn}e^{-j\beta_{mn}z} + B_{mn}e^{j\beta_{mn}z}\right)\cos\left(\frac{m\pi x}{a}\right)\cos\left(\frac{n\pi y}{b}\right)$$
 Add a reverse propagating mode Original +z prop. mode prop. mode



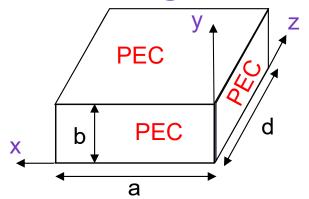
For TE_{mn} mode,
$$\beta_{mn} = \sqrt{k^2 - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}$$

$$H_z(x, y, z) = \left(A_{mn}e^{-j\beta_{mn}z} + B_{mn}e^{j\beta_{mn}z}\right)\cos\left(\frac{m\pi x}{a}\right)\cos\left(\frac{n\pi y}{b}\right)$$
Original +z
prop. mode
$$P(x, y, z) = \sqrt{\frac{m\pi x}{a}}$$
Original +z
prop. mode

Boundary conditions (in additional to the original waveguide B.C):

$$\begin{cases} z = 0 \\ H_n = H_z = 0 \end{cases} \text{ at } \begin{cases} A_{mn} + B_{mn} = 0 \\ A_{mn} e^{-j\beta_{mn}d} + B_{mn} e^{j\beta_{mn}d} = 0 \end{cases} \Rightarrow \begin{cases} A_{mn} = -B_{mn} \\ \sin(\beta_{mn}d) = 0 \end{cases}$$

Normal component of H is 0 at PEC



$$sin(\beta_{mn}d) = 0 \implies \beta_{mn}d = p\pi, \quad p = 1,2,3....$$

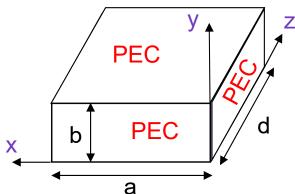
Therefore,
$$\left\{ \begin{array}{l} \beta_{mn} = \frac{p\pi}{d} \\ \\ \lambda_g = \frac{2\pi}{\beta_{mn}} \end{array} \right\} \qquad \text{agree with TRL model}$$

Longitudinal H:
$$H_z(x, y, z) = 2A_{mnp} \cos\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) \sin\left(\frac{l\pi z}{d}\right)$$

$$H_z$$
 satisfies: $\beta_{mn} = \frac{p\pi}{d} = \sqrt{k^2 - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}$ k can only be certain discrete values!

Resonant wave number for the *mnp*th mode is thus given by,

$$k_{r,mnp} = \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 + \left(\frac{p\pi}{d}\right)^2}$$



Resonant wave number for the mnpth mode is thus given by,

$$\Rightarrow k_{r,mnp} = \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 + \left(\frac{p\pi}{d}\right)^2}$$

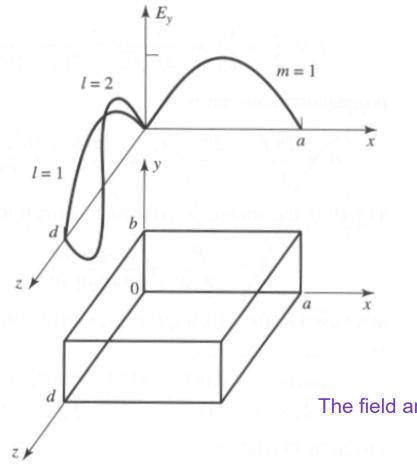
Resonant Wavelength

$$\lambda_{\rm mnp} = \frac{2\pi}{k_{\rm r,mnp}} = \frac{2\pi}{\sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 + \left(\frac{p\pi}{d}\right)^2}}$$

Resonant Frequency

$$f_{mnp} = \frac{c_0/\sqrt{\epsilon_r}}{\lambda_{mnp}} = \frac{k_{r,mnp}}{2\pi} \cdot \frac{c_0}{\sqrt{\epsilon_r}}$$

- Rectangular waveguide with ends capped with PEC will only resonate at discrete frequencies
- Only energy at discrete frequencies can be stored in the cavity



Similarly, for TM_{mn} mode, field is derived the same way and resonant frequencies are the same

$$E_{z}(x, y, z) = 2A_{mnp} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \cos \frac{l\pi z}{d}$$

For TE_{101} mode (lowest resonant frequency when a&d >b), the resonant wavelength is,

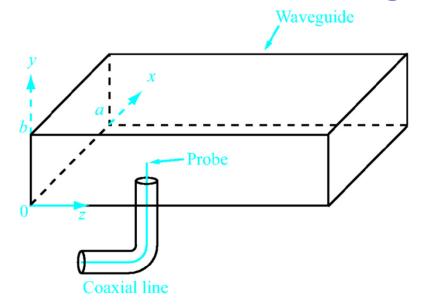
$$\lambda_{101} = \frac{2}{\sqrt{\left(\frac{1}{a}\right)^2 + \left(\frac{1}{d}\right)^2}}$$

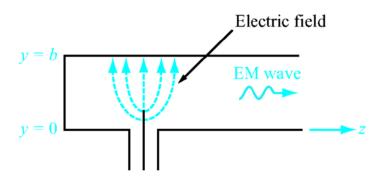
$$H_z = A_{101} \cos \frac{\pi x}{a} \sin \frac{\pi z}{d}$$

$$H_x = -\frac{a}{d} A_{101} \sin \frac{\pi x}{a} \cos \frac{\pi z}{d}$$

$$E_y = \frac{-j\omega\mu a}{\pi} A_{101} \sin \frac{\pi x}{a} \sin \frac{\pi z}{d}$$

Excitation of waveguide, cavity





- A current probe can be used to excite electromagnetic field into the waveguide
- The electric field excited by the current probe will resemble the direction of current flow in the probe
- For a fixed amount of current, the maximum power of electromagnetic wave is excited for that mode if the probe is probing at the maximum electric field position of that mode

Resonator Quality factor, TE₁₀₁

$$W_e = \frac{\epsilon_0}{4} \int_0^d \int_0^b \int_0^a |E_y|^2 dv$$

Electric energy: sum of square electric field subtended by the volume

$$W_{m} = \frac{\mu_{0}}{4} \int_{0}^{d} \int_{0}^{b} \int_{0}^{a} \{|H_{x}|^{2} + |H_{z}|^{2}\} dv$$

Magnetic energy: sum of square Magnetic field subtended by the volume

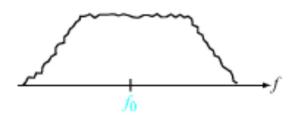
$$P_{loss,ave} = \frac{R_s}{2} \oint_C |J_s|^2 ds$$

Power loss: total power lost meaning sum (integral) of surface current density in a lossy conductor over walls for length d + sum current density in a lossy conductor at the end caps

Resonator Quality factor, TE₁₀₁

Quality factor Q for a resonator is defined as

$$Q = \omega \frac{(average\ energy\ stored)}{(energy\ loss/second)} = \omega \frac{W_m + W_e}{P_{loss,ave}}$$
 power dissipation



 $A/\sqrt{2}$

For most resonators, the Q is inversely proportional to the fractional

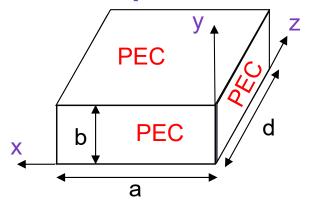
bandwidth of the resonance

$$Q \approx \frac{f_{mnp}}{\Lambda f}$$

For rectangular waveguides, the quality factor for the dominant TE₁₀₁ mode is given by

$$Q = \frac{\pi f_{101} \mu_0 abd(a^2 + d^2)}{R_s [2b(a^3 + d^3) + ad(a^2 + d^2)]} \longrightarrow R_s = \frac{1}{\sigma \delta_s} = \sqrt{\frac{\pi f \mu}{\sigma}}$$
 Conductor loss but no dielectric loss

Example



A square based (a = c) cavity of rectangular corss section is constructed of an X-band (8.2 GHz – 12.4 GHz) copper (σ = 5.7 x 10⁷ S/m) waveguide that has inner dimensions a = 2.29 cm, b = 1.02 cm. For the dominant TE₁₀₁ mode, determine the Q of the cavity. Assume free space medium inside the cavity.

$$k_{r,101} = \sqrt{\left(\frac{\pi}{a}\right)^2 + \left(\frac{\pi}{d}\right)^2}$$

$$Q = \frac{\pi f_{101} \mu_0 abd(a^2 + d^2)}{R_s [2b(a^3 + d^3) + ad(a^2 + d^2)]} = 7757.9$$

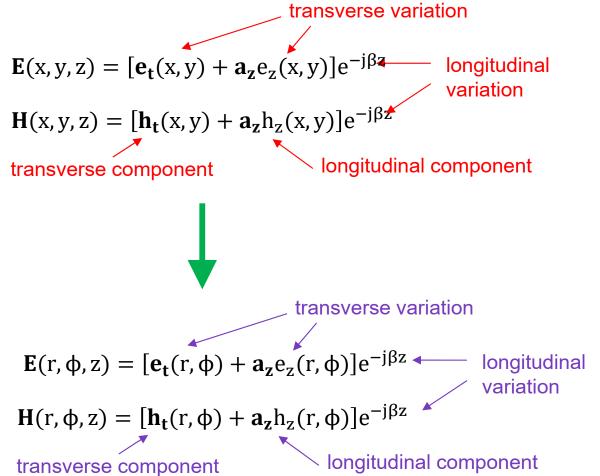
$$f_{\text{mnp}} = \frac{k_{r,101}}{2\pi} \cdot \frac{c_0}{\sqrt{\epsilon_r}} = \frac{c_0 k_{r,101}}{2\pi} = 9.28 \text{ GHz}$$

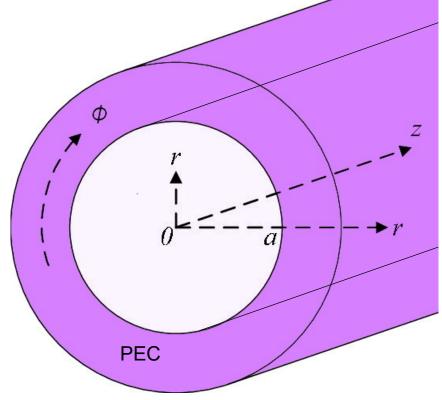
$$R_{s} = \frac{1}{\sigma \delta_{s}} = \sqrt{\frac{\pi f \mu}{\sigma}} = 0.0254 \,\Omega$$

Much higher than can be reasonably achieved in practice with lumped element circuits

Circular, conductor walled waveguide

Recall: Waveguide solutions

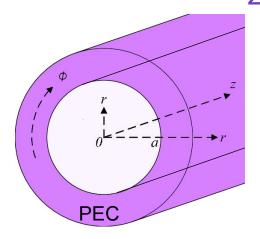




$$E_{z}(r, \phi, z) = e_{z}(r, \phi)e^{-j\beta z}$$

$$H_{z}(r, \phi, z) = h_{z}(r, \phi)e^{-j\beta z}$$

Focus on E₇



Rectangular Waveguide Notation

$$E_z(r, \phi, z) = e_z(r, \phi)e^{-j\beta z}$$

Book Notation

$$E_z(r,\varphi,z) = E_z^0(r,\varphi)e^{-\gamma z}$$

Vector wave equation

$$\nabla_T^2 E_z^0 + (\gamma^2 + k^2) E_z^0 = 0$$

$$\begin{array}{c}
\mathbf{T} \to \mathbf{r}\mathbf{\phi} \\
 & \downarrow \\
h^2 = (\gamma^2 + k^2)
\end{array}$$

Explicit Trans. Variables

$$\nabla_{\mathbf{r}\mathbf{\phi}}^2 \mathbf{E}_{\mathbf{z}}^0 + \mathbf{h}^2 \mathbf{E}_{\mathbf{z}}^0 = 0$$

Cylindrical coordinates

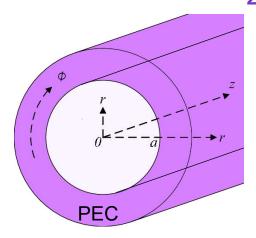
$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial E_{z}^{0}}{\partial r}\right) + \frac{1}{r^{2}}\frac{\partial^{2}E_{z}^{0}}{\partial \phi^{2}} + h^{2}E_{z}^{0} = 0$$

Assume separable

Cylindrical coordinates

$$E_z^0(r, \phi) = R(r)\Phi(\phi)$$

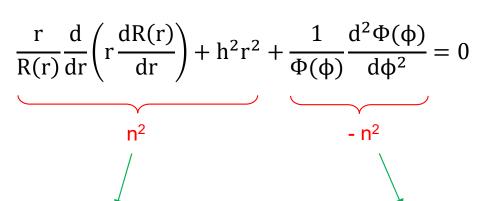
Focus on E₇



Cylindrical coordinates

$$E_z^0(r, \phi) = R(r)\Phi(\phi)$$

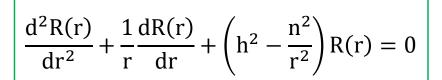
Cylindrical coordinates



These terms vary independently and therefore must equal the same constant

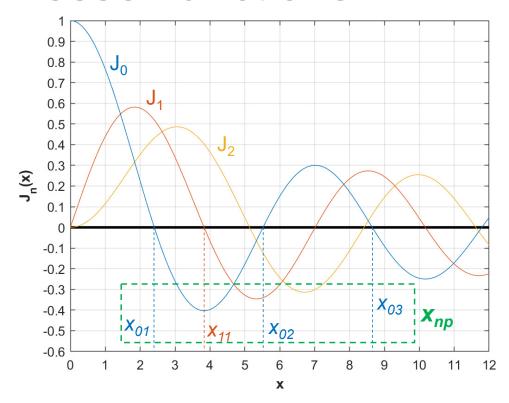
$$\frac{r}{R(r)}\frac{d}{dr}\left(r\frac{dR(r)}{dr}\right) + h^2r^2 = n^2$$

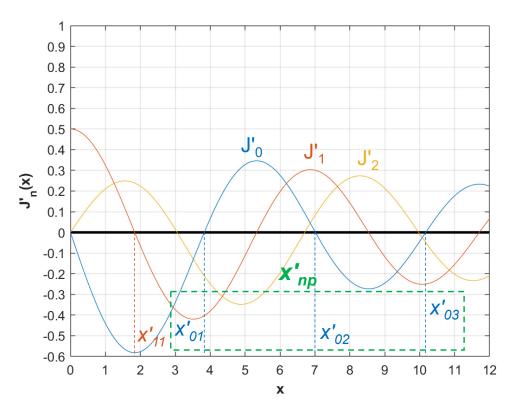
$$\frac{1}{\Phi(\phi)} \frac{d^2 \Phi(\phi)}{d\phi^2} = -n^2$$



$$\frac{d^2\Phi(\phi)}{d\phi^2} + n^2\Phi(\phi) = 0$$

Bessel functions





Bessel's Differential equation

$$\frac{d^{2}R(r)}{dr^{2}} + \frac{1}{r}\frac{dR(r)}{dr} + \left(h^{2} - \frac{n^{2}}{r^{2}}\right)R(r) = 0$$

Bessel function of the first kind

$$\frac{d^2R(r)}{dr^2} + \frac{1}{r}\frac{dR(r)}{dr} + \left(h^2 - \frac{n^2}{r^2}\right)R(r) = 0 \qquad R(r) = C_nJ_n(hr) \quad \rightarrow \quad J_n(hr) = \sum_{m=0}^{\infty} \frac{(-1)^m(hr)^{n+2m}}{m! \; (n+m)! \; (2)^{n+2m}}$$

Arbitrary Constant

TE vs TM modes

TM modes $H_z^0(r, \phi) = 0$

$$E_z^0(r, \phi) = C_n J_n(hr) \cos(n\phi)$$

$$E_{r}^{0}(r, \phi) = -\frac{j\beta}{h} C_{n} J'_{n}(hr) \cos(n\phi)$$

$$E_{\phi}^{0}(r,\phi) = \frac{j\beta n}{h^{2}r}C_{n}J_{n}(hr)\sin(n\phi)$$

$$H_r^0(r, \phi) = -\frac{j\omega \epsilon n}{h^2 r} C_n J_n(hr) \sin(n\phi)$$

$$H_{\phi}^{0}(r, \phi) = -\frac{j\omega\epsilon}{h} C_{n} J'_{n}(hr) \cos(n\phi)$$

$$E_z^0(r = a, \phi) = 0 \rightarrow J_n(ha) = 0$$

$$x_{01} \rightarrow h_{TM01} = \frac{2.405}{a} \rightarrow f_{c,TM01} = \frac{h_{TM01}}{2\pi\sqrt{\mu\epsilon}}$$

TE modes
$$E_z^0(r, \phi) = 0$$

$$E_r^0(r, \phi) = \frac{j\omega\mu n}{h^2 r} C'_n J_n(hr) \sin(n\phi)$$

$$E_{\phi}^{0}(r, \phi) = \frac{j\omega\mu}{h^{2}r} C'_{n} J'_{n}(hr) \cos(n\phi)$$

$$H_z^0(r, \phi) = C'_n J_n(hr) \cos(n\phi)$$

$$H_{r}^{0}(r, \phi) = -\frac{j\beta}{h} C'_{n} J'_{n}(hr) \cos(n\phi)$$

$$H_{\phi}^{0}(r, \phi) = \frac{j\beta n}{h^{2}r} C'_{n} J_{n}(hr) \sin(n\phi)$$

$$H_z^0(r = a, \phi) = 0 \rightarrow J'_n(ha) = 0$$

$$x'_{11} \rightarrow h_{TE11} = \frac{1.841}{a} \rightarrow f_{c,TE11} = \frac{h_{TE11}}{2\pi\sqrt{\mu\varepsilon}}$$

Propagation equations

Guide wavelength

$$\lambda_{g} = \frac{2\pi}{\beta} = \frac{2\pi}{\sqrt{k^{2} - k_{c}^{2}}} = \frac{2\pi}{k\sqrt{1 - \left(\frac{f_{c}}{f}\right)^{2}}} = \frac{\lambda}{\sqrt{1 - \left(\frac{f_{c}}{f}\right)^{2}}}$$

TE wave impedance

$$Z_{TE} = \frac{\eta_0/\sqrt{\epsilon_r}}{\sqrt{1-\left(\frac{f_c}{f}\right)^2}}$$
 Propagation constant
$$\beta = \frac{2\pi}{\lambda_g}$$

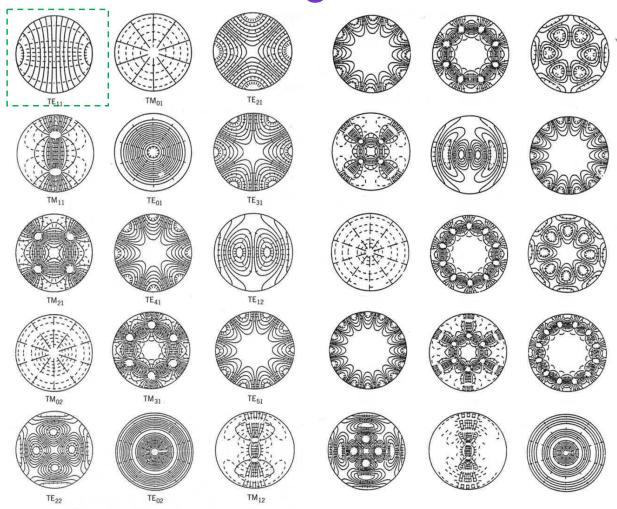
$$\beta = \frac{2\pi}{\lambda_g}$$

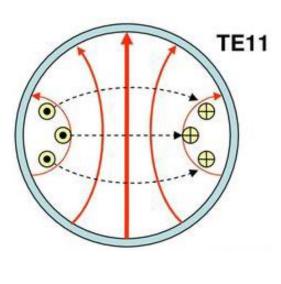
TM wave impedance

$$Z_{TM} = \frac{\eta_0}{\sqrt{\epsilon_r}} \sqrt{1 - \left(\frac{f_c}{f}\right)^2}$$

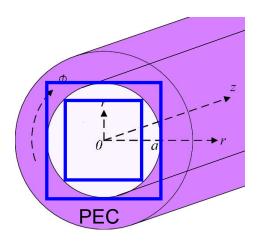
- The same equations apply as to circular waveguides as did for rectangular waveguides
- The cutoff frequencies are defined by the geometry and dimensions.
- Once the cutoff frequency is determined, then everything else is determined

Circular Waveguide modes





In class exercise 1

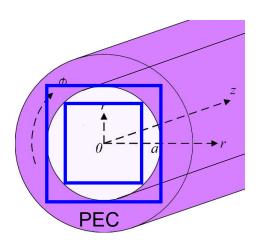


Cutoff frequency of rectangular waveguide mode

$$f_c = \frac{k_c}{2\pi\sqrt{\mu\varepsilon}} = \frac{c}{2\sqrt{\varepsilon_r}}\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$

- A circular waveguide of radius a = 3 cm that is filled with polystyrene ($\epsilon_r = 2.56$) is used at a frequency of 2 GHz. For the dominant TE_{mn} mode determine the following
 - (a) Cutoff frequency
 - > (b) guide wavelength in cm
 - (c) Phase constant beta
 - (d) Wave impedance ZTE
 - (e) Compare the cutoff frequency to the fundamental mode of a square (a = b) waveguide whose diagonal is equal to the circular waveguide diameter
 - (f) Compare the cutoff frequency to the fundamental mode of a square (a = b) waveguide whose **side** is equal to the circular waveguide diameter

In class exercise 1



(a) Cutoff frequency

$$f_{cTE11} = \frac{1.841}{2\pi a \sqrt{\mu \varepsilon}} = 1.835 \text{ GHz}$$

(b) guide wavelength in cm
$$\lambda_{\rm g} = \frac{\lambda}{\sqrt{1 - \left(\frac{f_{\rm c}}{f}\right)^2}} = 9.357 \ {\rm cm}$$

Cutoff frequency of rectangular waveguide mode

$$f_{c,rect} = \frac{c}{2\sqrt{\epsilon_r}}\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$

(e) Cutoff frequency

$$\sqrt{2}a_{rect} = 2a_{circ}$$

$$a_{rect} = \sqrt{2}a_{circ}$$

$$f_{c,rect} = \frac{c}{2a_{circ}\sqrt{2\epsilon_r}} = 2.21 \text{ GHz}$$

(c) Phase constant beta

$$\beta = \frac{2\pi}{\lambda_{\rm g}} = 0.2692 \, rad/s$$

(d) Wave impedance ZTE

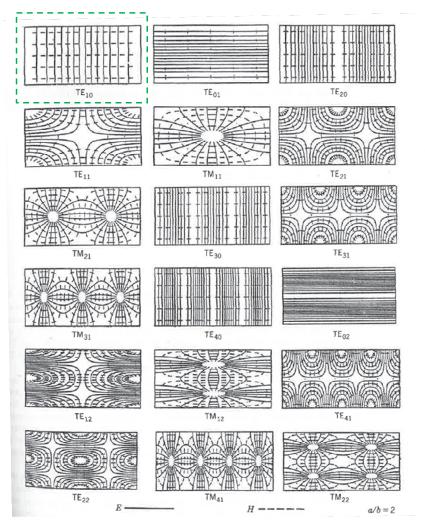
$$Z_{TE} = \frac{\eta_0/\sqrt{\varepsilon_r}}{\sqrt{1 - \left(\frac{f_c}{f}\right)^2}} = 586.56 \Omega$$

(f) Cutoff frequency

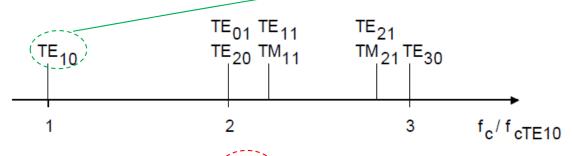
$$a_{rect} = 2a_{circ}$$

$$f_{c,rect} = \frac{c}{4a_{circ}\sqrt{\epsilon_r}} = 1.56 \text{ GHz}$$

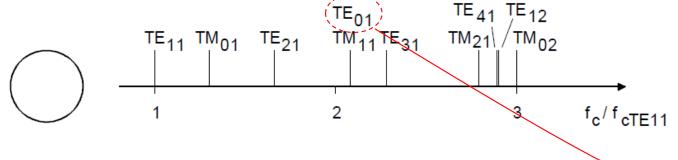
Compare to Rectangular Waveguide modes



Rectangular waveguide modes less densely distributed than circular waveguide modes Comparison



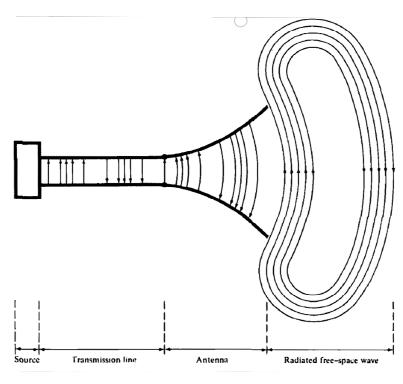
$$\alpha_{c,TE10} = \frac{R_s \left(1 + \left(\frac{2b}{a} \right) \left(\frac{f_c}{f} \right)^2 \right)}{\eta b \sqrt{1 - \left(\frac{f_c}{f} \right)^2}}$$



$$\alpha_{c,TE01} = \frac{R_s \left(\frac{f_c}{f}\right)^2}{a\eta \sqrt{1 - \left(\frac{f_c}{f}\right)^2}}$$

- Rectangular waveguides have broadest single mode operation
- In an oversized circular metal waveguide, a very low-loss TE01 mode can propagate.
 - \triangleright The cut-off wavelength of this mode is $\lambda_c = 1.64a$

Why should we care about circular waveguides?



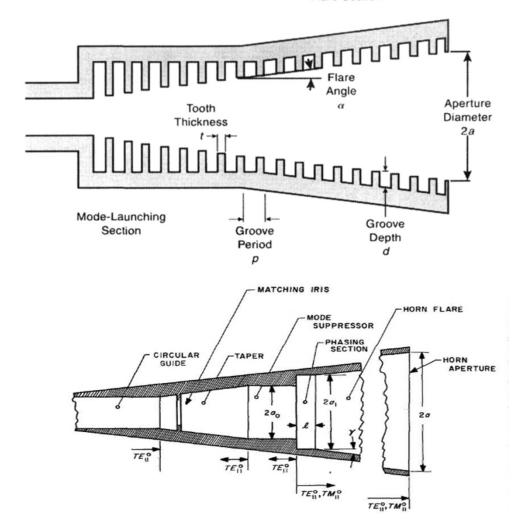
- Waveguides are often used as a transmission line between and device and antenna
- Good beam patterns are obtained with radially symmetric aperture cross sections
- How do you couple a rectangular waveguide to a circular mode?

Why should we care about circular waveguides?

Flare Section

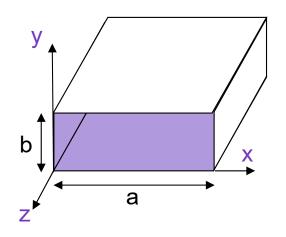
TABLE 7.1 Parameters¹ for Optimum Coupling of Various Feed Structures to Fundamental Mode Gaussian Beam

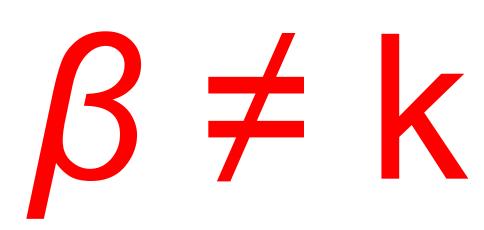
Feed type	wla	$ c_0 ^2$	$\epsilon_{ m pol}$	$\epsilon_{\rm pol} c_0 ^2$
Corrugated circular	0.64	0.98	1.0	0.98
Corrugated square	0.35	0.98	1.0	0.98
Smooth-walled circular ²	0.76	0.91	0.96	0.87
Smooth-walled circular ³	0.88, 0.64	0.93	0.96	0.89
Dual-mode	0.59	0.98	0.99	0.97
Rectangular ⁴	0.35, 0.50	0.88	1.0	0.88
Rectangular ⁵	0.35	0.88	1.0	0.88
Square ⁶	0.43	0.84	1.0	0.84
Rectangular ⁷	0.30	0.85	1.0	0.85
Diagonal	0.43	0.93	0.91	0.84
Hard	0.89	0.82	1.0	0.82
Corner cube	1.24 λ			0.78
Hybrid mode	0.64	0.98	1.0	0.98
Slotline				0.80
Lens + planar antenna ⁸		_		0.89



Conclusions

Propagation





- The one conductor geometry supports TE/TM operation
- ➤ The longitudinal phase variation of a TE/TM is not equal to the free space (plane wave) TEM phase variation
 - \triangleright $\beta \rightarrow$ rectangular waveguide longitudinal phase variation
 - ightharpoonup k ightharpoonup free space longitudinal phase variation
- \triangleright β is a strong function of frequency and geometry